Advanced Combinatorics - 2016 Fall Exercise 8

Questions 4 and 5 will need the Lovász Local Lemma. Comments and corrections are welcome.

> Heng Guo h.guo@qmul.ac.uk

1. Prove that there exists a two-edge-colouring of K_n with at most

$$\binom{n}{a} 2^{1 - \binom{a}{2}}$$

monochromatic K_a .

2. Using the alteration method, prove that the Ramsey number R(4, k) satisfies

$$R(4,k) \ge \Omega((k/\log k)^2)$$

3. An subset S of vertices in a hypergraph H = (V, E) is *independent* if there is no $e \in E$ such that $e \subseteq S$. In other words, S does not completely contain any (hyper-)edge.

Prove that every 3-uniform hypergraph with n vertices and $m \ge n/3$ edges contains an independent set of size at least

$$\frac{2n^{3/2}}{3\sqrt{3m}}$$

4. Let G = (V, E) be a graph. Associate each $v \in V$ a list S(v) of colours of size at least 10d for some $d \ge 1$. Moreover, suppose that for each $v \in C$ and $c \in S(v)$, there are at most d neighbours u of v such that $c \in S(u)$.

Prove that there is a proper colouring of G assigning to each vertex v a colour from its list S(v).

5. Let G = (V, E) be a cycle of length 11n, and $V = V_1 \cup V_2 \cup \cdots \cup V_n$ be an arbitrary partition of its 11n vertices; that is $V_i \cap V_j = \emptyset$ for any $1 \le i \ne j \le n$. Moreover, $|V_i| = 11$ for every $i \in [n]$.

Prove that there exists an independent set of G that contains precisely one vertex from each V_i .