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1. Prove that for each n ∈ N, if G is a triangle free graph with n vertices and e(G) =
⌊n2/4⌋ then G is isomorphic to K⌊n/2⌋,⌈n/2⌉.

Solution: Suppose n is even, then from the first proof of Mantel’s theorem in the
class, we see that if the equality holds, then for any (u, v) ∈ E, d(u) + d(v) = n. In
particular, it implies that Γ(u) ∪ Γ(v) = V . Again, since G is triangle-free, there is
no edge between vertices in Γ(u) or Γ(v). We see that L = Γ(u) and R = Γ(v) form
a bipartition of all vertices. Thus, G has to be a complete bipartite graph Ks,t to
maximize the number of edges, where s+ t = n.

Otherwise, n is odd. We want to use the same argument, which only requires an
edge (u, v) ∈ E, such that d(u) + d(v) = n. Suppose otherwise, then for any edge

(u, v) ∈ E, d(u) + d(v) ≤ n − 1. Follow the same proof we see that e(G) ≤ n(n−1)
4

,
which is impossible.

It is easy to see that e(G) = st. Given s+t = n, to maximize st = s(n−s) = ns−s2,
it must be that s = ⌊n/2⌋ or ⌈n/2⌉.

2. Show that if G is a graph with n vertices, m edges, and t triangles, then

t ≥ m

3n
(4m− n2).

Find an infinite family of graphs such that the above equality holds; that is,

t =
m

3n
(4m− n2).

Solution: For each edge (u, v) ∈ E, let tuv be the number of triangles containing
(u, v). Thus,

tuv = |Γ(u) ∩ Γ(v)| = |Γ(u)|+ |Γ(v)| − |Γ(u) ∪ Γ(v)| ≥ d(u) + d(v)− n,

or equivalently,

d(u) + d(v) ≤ tuv + n.

Sum over all edges (u, v) ∈ E,∑
v∈V

d(v)2 ≤
∑
uv∈E

tuv + e(G)n.
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Note that each triangle is counted three times in
∑

uv∈E tuv. Hence
∑

uv∈E tuv = 3t. It
implies that ∑

v∈V

d(v)2 ≤ 3t+mn.

Then we apply Cauchy-Schwarz and the Handshaking lemma:

3t+mn ≥
∑
v∈V

d(v)2 ≥
(∑

v∈V d(v)
)2

n

=
4m2

n
.

Rearranging the terms yields the desired inequality.

For the second part, verify that complete graphsKn satisfy the requirement (m =
(
n
2

)
and t =

(
n
3

)
).

3. For each integer n ≥ 3, what is the maximum possible number of edges in a graph with
n vertices which contains exactly one triangle. Prove your answer.

Solution: The answer is ⌊
(n− 1)2

4

⌋
+ 2.

We first show that e(G) ≤
⌊
(n−1)2

4

⌋
+ 2 for any graph G with exactly one triangle.

Suppose the triangle is T = {u, v, w}. Then consider S = G\T . It is easy to see
that

e(G) = e(S) + e(S, T ) + 3,

where e(S, T ) is the number of edges between S and T . Clearly S is triangle-free.
Hence by Mantel’s theorem,

e(S) ≤
⌊
(n− 3)2

4

⌋
.

Moreover, Γ(u), Γ(v), and Γ(w) must be disjoint, as otherwise we have another triangle.
It implies that

e(S, T ) = d(u) + d(v) + d(w) ≤ v(S) = n− 3.

Put everything together:

e(G) ≤ 3 + n− 3 +

⌊
(n− 3)2

4

⌋
= n+

⌊
n2 − 6n+ 9

4

⌋
= n+

⌊
n2 − 2n+ 1

4
− n+ 2

⌋
= 2 +

⌊
(n− 1)2

4

⌋
.
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We also need to show that this upper bound can be achieved. We take an in-
stance achieving the upper bound of Mantel’s theorem with n − 1 vertices; namely,
K⌊(n−1)/2⌋,⌈(n−1)/2⌉. Then add one more vertex and connect it to one vertex of each
class. This adds two edges.

4. Suppose that n and d are positive integers. Suppose that x1, · · · , xn are vectors in Rd

with |xi| > 1 for all 1 ≤ i ≤ n. Show that the number of pairs (i, j) with i < j and
|xi + xj| < 1 is at most ⌊n2/4⌋.
(Here, |x| is the Euclidean length of the vector x ∈ Rd; namely

|x| =

√√√√ d∑
k=1

x(k)2,

where x(k) is the kth entry of the vector x.)

Solution: We want to apply Mantel’s theorem. Construct the following graph G. Let
V = {1, 2, 3, . . . , n}. Add an edge (i, j) if |xi + xj| < 1. Then if G is triangle-free, by
Mantel’s theorem, we see that the claim is proved.

Assume otherwise that G has a triangle and the three vectors are x, y, and z. Hence,

|x+ y| < 1, |y + z| < 1, |x+ z| < 1.

Moreover,

|x| > 1, |y| > 1, |z| > 1.

Use the above two facts:

3 > |x+ y|2 + |y + z|2 + |x+ z|2

=
n∑

k=1

(x(k) + y(k))2 +
n∑

k=1

(y(k) + z(k))2 +
n∑

k=1

(z(k) + x(k))2

=
n∑

k=1

(
2x(k)2 + 2y(k)2 + 2z(k)2 + 2x(k)y(k) + 2y(k)z(k) + 2x(k)z(k)

)
=

n∑
k=1

x(k)2 +
n∑

k=1

y(k)2 +
n∑

k=1

z(k)2

+
n∑

k=1

(
x(k)2 + y(k)2 + z(k)2 + 2x(k)y(k) + 2y(k)z(k) + 2x(k)z(k)

)
> 1 + 1 + 1 +

n∑
k=1

(x(k) + y(k) + z(k))2

= 3 +
n∑

k=1

(x(k) + y(k) + z(k))2 .

This is impossible.
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