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1. Recall the second proof of Turán’s Theorem in class. Use Erdős’s theorem to show
that if a Kr+1-free graph G of order n has tr(n) many edges, then it is isomorphic to
Tr(n).

Solution: Suppose G is aKr+1-free graph with tr(n) many edges. By Erdős’s theorem,
there exists an r-partite graph H with V (H) = V (G) and dH(v) ≥ dG(v) for all v ∈ G.
Since e(G) = tr(n), we must have that dH(v) = dG(v).

Thus the equality must hold in every step. Recall that G1 is the subgraph induced
on Γ(v) where v is a vertex such that dG(v) = ∆(G). In particular, we have that
dG1(u) = dH1(u) for all u ∈ V (G1).

Let U1 = V (G)\Γ(v) and W1 = Γ(v). We claim that there is no edges of G within
U1. First notice that ∑

x∈U1

dG(x) = 2e(G[U1]) + e(U1,W1).

This is because each edge within G[U1] is counted twice in the left hand side, and each
edge in e(U1,W1) is counted only once. Then

e(G) = e(G[U1]) + e(U1,W1) + e(G1)

=
∑
x∈U1

dG(x) + e(G1)− e(G[U1])

=
∑
x∈U1

dH(x) + e(H1)− e(G[U1])

= e(H)− e(G[U1]).

The last step is because H is r-partite and U1 is a class of H. However, we know that
e(G) = e(H). Thus e(G[U1]) = 0.

We can recursively apply the same argument on G1 to produce U2 with no edges
within. Eventually we stop at some partition U1, U2, . . . , Uk. We claim that k ≤ r.
This is because otherwise we get a clique of size r + 1, contradicting Kr+1-freeness.

2. Recall the third proof of Turán’s Theorem in class.
Let G be a Kr+1-free graph that maximizes the number of edges. In class we have
shown that if uw ̸∈ E, vw ̸∈ E, then uv ̸∈ E.
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Fill in the details to determine G’s structure.

Solution: Define an equivalence relation ∼ such that u ∼ v if uv ̸∈ E. It is easy to
verify that this is an equivalence relation:

• v ∼ v.

• u ∼ v if and only if v ∼ u.

• If u ∼ w, w ∼ v, then u ∼ v. (The claim above)

Thus this equivalence relation partitions the whole graph into several equivalence
classes. For each class, there is no edge in between. For two different classes, all
edges are present. In other words, the graph is a k-partite complete graph for some k.

Then we claim that k ≤ r. This is because G contains Kk as a subgraph. Thus
k ≥ r + 1 would contradict to Kr+1-freeness. Hence G is a complete r-partite graph
that maximizes the number of edges. It has to be the Turán graph.

3. We know that trees have maximum number of edges in a graph of order n without any
cycle, which have n− 1 edges. Determine:

(a) The maximum number of edges in a graph of order n without any cycle of odd
length.

(b) The maximum number of edges in a graph of order n without any cycle of even
length.

Solution (a): Such a graph G must be triangle-free. Hence by Mantel’s theorem
e(G) ≤ ⌊n2/4⌋. Moreover, e(G) = ⌊n2/4⌋ is achieved by complete bipartite graph
K⌊n/2⌋,⌈n/2⌉, and a bipartite graph does not contain any odd cycle. Hence the answer
is exactly ⌊n2/4⌋.
Solution (b): We claim that if G has no even cycle, then e(G) ≤ ⌊3(n− 1)/2⌋. We
prove the claim by an induction on n. The base case of n = 2 is trivial.

Now for the induction step. Let n ≥ 3, and the claim holds for graphs of ≤ n − 1
vertices. If G has no cycle, then G is a tree and e(G) ≤ n− 1 < 3(n− 1)/2.

Hence we may assume that G has a cycle of odd length. Let C be that cycle. Let
G′ be the graph obtained by removing all edges in C (but not the vertices!). If D
is a component of G′, then G′ can contain at most one vertex of C. This is because
otherwise it contains say v1 and v2 on C. Because D is connected, so there is a path
from v1 to v2. No matter what the parity of this path is, there is a path in C has the
same parity. Thus we can construct a cycle of even length.

If C is a component of G. Then removing C and applying the induction hypothesis
yields the claim.
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Otherwise, let A be a component of G′ of more than one vertex and sharing one
vertex with C. Let B be the rest of the graph except this special vertex on C. Let
|A| = a and |B| = b. Then a+ b− 1 = n. Apply the induction hypothesis on A and B:

e(G) = e(A) + e(B)

≤ ⌈3(a− 1)/2⌉+ ⌈3(b− 1)/2⌉
≤ ⌈3(a+ b− 2)/2⌉
= ⌈3(n− 1)/2⌉ .

Thus the claim holds.

We still need to construct graphs without even cycles achieving this bound. The
idea is to take triangles and then “stick” them together, sharing only one vertex. This
is pictured in Figure 1a. If we have k triangles, then this construction have 3k many
edges and 3k − (k − 1) = 2k + 1 many vertices. This finishes the odd n case.

For even n, we take the same construction, but attach the special vertex with one
more new vertex. There are 3k + 1 many edges and 2k + 2 vertices. This is pictured
in Figure 1b. The bound is also met.

(a) Odd n (b) Even n

Figure 1: Sticking triangles

4. Let A be the graph in Figure 2a and B be the graph in Figure 2b.

(a) A (b) B

Figure 2: The graphs A and B

(a) If G is a graph on n ≥ 4 vertices with e(G) ≥ ⌊n2/4⌋ + 1, then G contains A as
a subgraph.

(b) If G is a graph on n ≥ 5 vertices with e(G) ≥ ⌊n2/4⌋ + 2, then G contains B as
a subgraph.
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(c) Determine ex(n,A) and ex(n,B).

Solution (a): Let G be a graph of order n ≥ 4 and A-free. We show that e(G) ≤
⌊n2/4⌋. By Mantel’s theorem, the inequality holds if G is triangle-free. Thus we only
care about G that contains at least one triangle.

We do an induction on n. The base case is that n = 4. As G contains a triangle,
say uvw. Then the other vertex can only be adjacent to one of u, v, w, as otherwise it
produces A. Hence e(G) ≤ 4 as desired.

Let n ≥ 5 and assume that the claim holds with ≤ n − 1 vertices. Let uvw be the
triangle of G. We claim that

d(u)− 2 + d(v)− 2 + d(w)− 2 ≤ n− 3.

This is because the three sets Γ(u)\{v, w}, Γ(v)\{u,w}, and Γ(w)\{u, v} have to be
mutually disjoint.

Thus, say d(v) is the smallest of these three. Then d(v) ≤ (n + 1)/3 ≤ ⌊n/2⌋ as
n ≥ 5. We can simply remove v and proceed as in Mantel’s theorem.

Solution (b): The idea is the same as the proof above. Let G be a graph of order
n ≥ 5 and B-free. We show that e(G) ≤ ⌊n2/4⌋+ 1. By part (a), the inequality holds
if G is A-free. Thus we only care about G that contains at least one A. Then we do
an induction on n.

The base case is n = 5. Suppose the vertices are uvwxy and uvw, uvx are the
two triangles. If wx ∈ E, then y can be adjacent to at most one of uvwx, implying
e(G) ≤ 6 + 1 as desired. Otherwise wx ̸∈ E. If d(y) ≥ 3, then it is adjacent to, say, u
and w. Then we have a copy of B. Hence d(y) ≤ 2 and e(G) ≤ 5 + 2 ≤ 7 as desired.

For the induction step. Again we only need to find a vertex of degree at most ⌊n/2⌋.
Since G contains a copy of A, let uvw be a triangle uvx be another. If d(w) ≤ 3, then
we can remove it as its degree is no more than ⌊n/2⌋. Otherwise d(w) > 3, then there
is another y ∈ V (G) such that wy ∈ E. Now notice that w and y cannot have any
common neighbour as otherwise we have a B. Then we have that d(w)−1+d(y)−1 ≤
n− 2. Hence d(w)+ d(y) ≤ n. The smaller will be at most ⌊n/2⌋ and we then proceed
as in Mantel’s theorem.

Solution (c): Part (a) showed that ex(n,A) ≤ ⌊n2/4⌋. Since the complete bipartite
graph K⌊n/2⌋,⌈n/2⌉ achieves this bound and does not contain A, we have that ex(n,A) =
⌊n2/4⌋.
Part (b) showed that ex(n,A) ≤ ⌊n2/4⌋+ 1. To get a matching bound, we take the

complete bipartite graph K⌊n/2⌋,⌈n/2⌉ with an arbitrary single edge. It will create a lot
of triangles, but not the graph B. Thus we have that ex(n,A) = ⌊n2/4⌋+ 1.
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