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1. If there is a real 0 ≤ p ≤ 1 such that(
n

k

)
p(

k
2) +

(
n

ℓ

)
(1− p)(

ℓ
2) < 1,

then the Ramsey number R(k, ℓ) satisfies that R(k, ℓ) > n.

Using this, show that

R(4, ℓ) ≥ Ω(ℓ3/2 (log ℓ)−3/2).

Solution: Follow the procedure of the basic method. We colour every edge in a
complete graph Kn red with probability p and blue with probability 1− p. Let RS be
the “bad” event that S ⊂ [n] is a red clique, and BS be the “bad” event that S ⊂ [n]

is a blue clique. We have that Pr(RS) = p(
k
2) if |S| = k, and Pr(BS) = (1 − p)(

ℓ
2) if

|S| = ℓ. Then by the union bound,

Pr

 ∧
S, |S|=k

RS ∧
∧

S, |S|=ℓ

BS

 = 1− Pr

 ∨
S, |S|=k

RS ∨
∨

S, |S|=ℓ

BS


≥ 1−

(
n

k

)
p(

k
2) −

(
n

ℓ

)
(1− p)(

ℓ
2) > 0.

Thus there must exist an edge colouring of the complete graph so that there is no red
clique of size k nor blue clique of size ℓ.

For the case of k = 4, we need to choose p appropriately so that there exists a c such

that n = c ·
(

ℓ
log ℓ

)3/2
and (

n

4

)
p(

4
2) +

(
n

ℓ

)
(1− p)(

ℓ
2) < 1.

Note that(
n

4

)
p(

4
2) +

(
n

ℓ

)
(1− p)(

ℓ
2) ≤

(ne
4

)4
p6 +

(ne
ℓ

)ℓ
e−p(ℓ2)

=

(
ce

4
·
(

ℓ

log ℓ

)3/2
)4

p6 +

(
ce

ℓ
·
(

ℓ

log ℓ

)3/2
)ℓ

e−p(ℓ2)

=
(ce
4

)4( ℓ

log ℓ
· p
)6

+

(
ce

ℓ
·
(

ℓ

log ℓ

)3/2
)ℓ

e−p(ℓ2).
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To make the first term a constant, we can choose c = e−1 and p = log ℓ
ℓ
, in which case

the first term becomes 4−4. Plugging it back, we see that the second term becomes(
ce

ℓ
·
(

ℓ

log ℓ

)3/2
)ℓ

e−p(ℓ2) =

(
1

ℓ
·
(

ℓ

log ℓ

)3/2
)ℓ

e−
log ℓ
ℓ

· ℓ(ℓ−1)
2

= ℓℓ/2 (log ℓ)−3/2ℓ e− log ℓ· ℓ−1
2

= ℓℓ/2 (log ℓ)−3/2ℓ ℓ−
ℓ−1
2

= ℓ1/2 (log ℓ)−3/2ℓ .

Thus with our choices of c and p, we have that(
n

4

)
p(

4
2) +

(
n

ℓ

)
(1− p)(

ℓ
2) ≤ 4−4 + ℓ1/2 (log ℓ)−3/2ℓ < 1,

where the last equality is easy to verify for all ℓ ≥ 4.

2. Let k ≥ 4 and H be a k-uniform hypergraph with at most 4k−1/3k edges. Prove that
there is a 4-colouring of the vertices of H so that in every edge all four colours are
represented.

Remark: this kind of colourings is called “rainbow” colouring.

Solution: We colour every vertex with one of the four colours uniformly at random.
Let Ae be the event that e does not contain all four colours, where e is a hyperedge.
When Ae holds, e must be coloured by at most 3 colours, and there are

(
4
3

)
many ways

of picking the 3 colours. Thus, by a union bound, for any hyperedge e,

Pr(Ae) ≤
(
4
3

)
· 3k

4k
=

3k

4k−1
.

Then by the union bound,

Pr

(∧
e∈E

Ae

)
= 1− Pr

(∨
e∈E

Ae

)

≥ 1−m · 3k

4k−1
> 0,

where we use the assumption that m < 4k−1

3k
. Thus there must exist at least one valid

rainbow colouring of H.

3. Let S be a finite collection of binary strings. For example, S may contain elements like
000, 010101, etc. Assume that no member of S is a prefix of another. Let Ni denote
the number of strings of length i in S. Show that

∞∑
i=1

Ni

2i
≤ 1.
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Solution: Suppose the maximum length of elements in S is ℓ. Define the following
probability process, starting with s = ∅:

(a) Uniformly at random generate one bit x = 0/1 and append x to s.

(b) If the current s is an element in S, then stop and return success. If s has length
ℓ but s ̸∈ S, then stop and return failure. In any other case, go back to (a).

We claim that the probability that such a trial stops at length i ≤ ℓ successfully is
pi :=

Ni

2i
. This is because that no element of S is a prefix of any other. Let s1, . . . , sNi

be the strings in S with length i. Then the probability of stopping with sk for any
1 ≤ k ≤ Ni is 2

−i, and these events are disjoint.

pi =

Ni∑
k=1

1

2i
=

Ni

2i
.

Clearly the probability of success is at most 1. It implies that

ℓ∑
i=1

Ni

2i
=

ℓ∑
i=1

pi ≤ 1.

4. A planar graph is one so that we can draw it on a plane. By Euler’s formula, for a planar
graph G, m ≤ 3n− 6, where n is the number of vertices and m is the number of edges.
Moreover, if a graph is drawn on a plane, then there are at least m− 3n+6 > m− 3n
many crossings.

Use the above fact, show that if m ≥ 4n, then drawing G on a plane has at least
m3

64n2 many crossings.

Solution: Let t be the number of crossings for an arbitrary drawing of G on a plane.
Consider a random subgraph G′ which is the induced subgraph of choosing every vertex
with probability p. Let X be the number of vertices, Y be the number of edges, and Z
be the number of crossings in G′. (All of them are random variables.) Then EX = pn,
EY = p2m, and EZ = p4t. By the linearity of expectation,

E[Z − (Y − 3X)] = p4t− (p2m− 3pn).

There must exist a G′ for which Z − (Y − 3X) is at least p4t− (p2m− 3pn). Clearly
G′ is still drawn on a plane. Thus, using the fact, we have that Z > Y − 3X. In other
words,

p4t > p2m− 3pn.

Equivalently, t > p−2m − 3p−3n. We want p−2m and p−3n to have the same order,
yielding p = C · n

m
for some constant C. Setting C = 4 proves the original claim.

This fact is called the “crossing lemma”, and is found by Ajtai, Chvátal, Newborn,
and Szemerédi in 1982, and independently by Leighton in 1983.
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