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1. If there is a real 0 < p < 1 such that

<Z)p(§) + <Z> 1-p)& <1,

then the Ramsey number R(k, () satisfies that R(k, ) > n.
Using this, show that
R(4,0) > Q3 (log 0)*/?).

Solution: Follow the procedure of the basic method. We colour every edge in a
complete graph K, red with probability p and blue with probability 1 — p. Let Rg be
the “bad” event that S C [n] is a red clique, and Bg be the “bad” event that S C [n]

£

is a blue clique. We have that Pr(Rg) = p@) if |S| = k, and Pr(Bg) = (1 — p)(2) if
|S| = ¢. Then by the union bound,

Pr /\R_S/\ /\B_S =1—Pr \/ Rg V \/Bg

S, |S|=k S, |8|=¢ S |S|=k S, |5|=¢

S (Z)p@) _ (Z)“ @ =0

Thus there must exist an edge colouring of the complete graph so that there is no red
clique of size k nor blue clique of size /.

For the case of kK = 4, we need to choose p appropriately so that there exists a ¢ such

3/2
that n =c - (@) and

Note that

(00 (D= < () '+ ()
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To make the first term a constant, we can choose ¢ = e~! and p = lofe, in which case

the first term becomes 4~%. Plugging it back, we see that the second term becomes

¢ ¢
(5 ()" - () ) v
l log ¢ ¢ \logt

= ("2 (log ) /> ¢~ loe 5
= (/2 (log 6)_3/% 5
— 61/2 <log£)73/2f .

Thus with our choices of ¢ and p, we have that

(Z) p(E) 4 (Z) 1-p)6) <474 02 (log ) < 1,

where the last equality is easy to verify for all ¢ > 4.

2. Let k > 4 and H be a k-uniform hypergraph with at most 4*~!/3% edges. Prove that
there is a 4-colouring of the vertices of H so that in every edge all four colours are
represented.

Remark: this kind of colourings is called “rainbow” colouring.

Solution: We colour every vertex with one of the four colours uniformly at random.
Let A, be the event that e does not contain all four colours, where e is a hyperedge.
When A, holds, e must be coloured by at most 3 colours, and there are (g) many ways
of picking the 3 colours. Thus, by a union bound, for any hyperedge e,

4 . 3k 3k
Pr(A.) < (3)4k =1

Then by the union bound,

(A7)

k

>1—-—m- > 0,

4k-1

4k

3:. Thus there must exist at least one valid

where we use the assumption that m <
rainbow colouring of H.

3. Let S be a finite collection of binary strings. For example, S may contain elements like
000, 010101, etc. Assume that no member of S is a prefix of another. Let N; denote
the number of strings of length ¢ in S. Show that
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Solution: Suppose the maximum length of elements in S is £. Define the following
probability process, starting with s = ():

(a) Uniformly at random generate one bit x = 0/1 and append z to s.

(b) If the current s is an element in S, then stop and return success. If s has length
¢but s ¢ S, then stop and return failure. In any other case, go back to (a).

We claim that the probability that such a trial stops at length ¢ < ¢ successfully is
pi = % This is because that no element of S is a prefix of any other. Let sq,..., sy,
be the strings in S with length i. Then the probability of stopping with s; for any
1 <k < N;is 27% and these events are disjoint.

1N,
pi = 2 90"
k=1

Clearly the probability of success is at most 1. It implies that

Yo=Yt

=1 i=1
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. A planar graph is one so that we can draw it on a plane. By Euler’s formula, for a planar
graph G, m < 3n — 6, where n is the number of vertices and m is the number of edges.
Moreover, if a graph is drawn on a plane, then there are at least m —3n+6 > m — 3n
many crossings.

Use the above fact, show that if m > 4n, then drawing G on a plane has at least

3 .
51,7 nany crossings.

Solution: Let ¢ be the number of crossings for an arbitrary drawing of G' on a plane.
Consider a random subgraph G’ which is the induced subgraph of choosing every vertex
with probability p. Let X be the number of vertices, ¥ be the number of edges, and Z
be the number of crossings in G’. (All of them are random variables.) Then E X = pn,
EY = p*m, and E Z = p*t. By the linearity of expectation,

E[Z — (Y — 3X)] = p*t — (p*m — 3pn).
There must exist a G’ for which Z — (Y — 3X) is at least p*t — (p?m — 3pn). Clearly

G’ is still drawn on a plane. Thus, using the fact, we have that Z > Y — 3X. In other
words,

pit > p*m — 3pn.

Equivalently, ¢ > p~2m — 3p~3n. We want p~2m and p~3n to have the same order,
yielding p = C'- I* for some constant C'. Setting C' = 4 proves the original claim.

This fact is called the “crossing lemma”, and is found by Ajtai, Chvatal, Newborn,
and Szemerédi in 1982, and independently by Leighton in 1983.



