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1. Prove that there exists a two-edge-colouring of Kn with at most(
n

a

)
21−(

a
2)

monochromatic Ka.

Solution: Consider a uniformly at random 2-edge-colouring of Kn. Let X be the (ran-
dom) total number of monochromatic cliques of size a in Kn, and XS be the indicator
variable of the event that the set S is monochromatic. Then X =

∑
S, |S|=aXS. Note

that

EXS = Pr(XS = 1) =
2

2(
a
2)
.

By the linearity of expectations,

EX =
∑

S, |S|=a

EXS =

(
n

a

)
21−(

a
2).

Hence, there must exist a colouring such that X ≥ EX =
(
n
a

)
21−(

a
2).

2. Using the alteration method, prove that the Ramsey number R(4, k) satisfies

R(4, k) ≥ Ω((k/ log k)2)

Solution: Recall that in the class we have showed that For any integer n and p ∈ (0, 1),

R(4, k) > n−
(
n

4

)
p(

4
2) −

(
n

k

)
(1− p)(

k
2).

A rough estimate is to set
(
n
4

)
p(

4
2) < n/4 and

(
n
k

)
(1 − p)(

k
2) < n/4 and then R(4, k) >

n/2. Note that (
n

4

)
p(

4
2) <

n4

24
p6.
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Hence we should set p = n−1/2. For the other constraint we use once again 1− p < e−p

and
(
n
k

)
≤

(
ne
k

)k
, which yields,(

n

k

)
(1− p)(

k
2) ≤

(ne
k

)k

e−p(k2) =
(ne
k

)k

e−k(k−1)/2
√
n ≤

(ne
k

)k

e−k2/4
√
n,

where we use a loose bound k(k−1)
2

≥ k2

4
to make the calculation easier. Our goal is to

set the right hand side less than n/4. Equivalently, taking the logarithm, we want

k log n+ k − k log k − k2

4
√
n
≤ log n− log 4.

As hinted by the question, we should take n = c ·
(

k
log k

)2

. One can verify that this

choice does the job if c = 1/16, and thus R(4, k) ≥ n/2 = 1
32

(
k

log k

)2

.

Another way of deriving n = Ω

((
k

log k

)2
)

is the following. First note that n should

be larger than k, and thus k log k, k, and log n are of lower order of magnitude com-
paring to k log n and k2

4
√
n
. Thus all we need to do is to ensure that

k2

4
√
n
≥ k log n

⇔ 4
√
n log n ≤ k,

which indicates that we should set n = Ω

((
k

log k

)2
)
.

3. An subset S of vertices in a hypergraph H = (V,E) is independent if there is no e ∈ E
such that e ⊆ S. In other words, S does not completely contain any (hyper-)edge.

Prove that every 3-uniform hypergraph with n vertices and m ≥ n/3 edges contains
an independent set of size at least

2n3/2

3
√
3m

.

Solution: This is similar to the graph case in class. Let S be a random set by choosing
each vertex with probability p independently. Let X = |S| and Y be the number of
occupied hyperedges. Let Ye be the indicator variable that all vertices in a hyperedge
e are chosen. Thus, Y =

∑
e∈E Ye. For a fixed e ∈ E,

EYe = Pr(Ye = 1) = p3.

Due to linearity of expectations,

EX = np,
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whereas

EY =
∑
e∈E

EYe = mp3.

Similar to the graph case, the alteration is that we remove one vertex of each hy-
peredge, leaving an independent set I. Then |I| = X − Y . Again, by linearity of
expectations,

E |I| = EX − EY = np−mp3.

We will set np and mp3 to have the same order of magnitude. Thus, p should be set
to c ·

√
n/m for some constant c. Plugging it back in, we have

E |I| = (c− c3) · n
3/2

√
m
.

Optimizing c− c3, we get that c = 1/
√
3 and

E |I| = 2

3
√
3
· n

3/2

√
m
.

4. Let G = (V,E) be a graph. Associate each v ∈ V a list S(v) of colours of size at least
10d for some d ≥ 1. Moreover, suppose that for each v ∈ C and c ∈ S(v), there are at
most d neighbours u of v such that c ∈ S(u).

Prove that there is a proper colouring of G assigning to each vertex v a colour from
its list S(v).

Solution: Consider a random colouring by assigning each v uniformly and indepen-
dently a colour c ∈ S(v). For each edge (u, v) ∈ E, let Ac

uv be the “bad” event that u
and v have the same colour c.

What events are correlated with Ac
uv? There are three possibilities (1) Ac′

uv′ where
v′ ̸= v but c′ is arbitrary, (2) Ac′

u′v where u′ ̸= u but c′ is arbitrary, or (3) Ac′
uv where

c′ ̸= c. The number of choices for the three cases are:

(1) at most 10d choices for c′ and d choices for v′ by assumption, implying at most
10d2 choices in total;

(2) same as case (1), at most 10d2 choices;

(3) at most (10d− 1) choices for c′.

Thus, the total number of dependent events of any Ac
uv is at most ∆ = 20d2 + 10d ≤

30d2.

The probability of Ac
uv is p = Pr(Ac

uv) =
(

1
10d

)2
= 1

100d2
. We want to apply the

symmetric version of the Lovász Local Lemma. It only needs to verify that ep∆ =
e · 30d2 · 1

100d2
< 1. Hence, there is a colouring such that none of Ac

uv holds, namely a
proper colouring.
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5. Let G = (V,E) be a cycle of length 11n, and V = V1 ∪ V2 ∪ · · · ∪ Vn be an arbitrary
partition of its 11n vertices; that is, Vi ∩ Vj = ∅ for any 1 ≤ i ̸= j ≤ n. Moreover,
|Vi| = 11 for every i ∈ [n].

Prove that there exists an independent set of G that contains precisely one vertex
from each Vi.

Solution: Uniformly at random chooce one vertex from each Vi. For each (u, v) ∈ E
and u, v do not belong to the same Vi, let Auv be the event that both u and v are
chosen. Clearly Pr(Auv) =

1
112

= 1
121

.

We want to apply the symmetric version of the Lovász Local Lemma. How many
events are correlated with Auv? Since G is a cycle, there are at most two events
having the form Auu′ and Avv′ . Another possibility is Axy where x or y is in the same
partition as u or v. There are at most 10 choices for the vertex and there are two
events associated with the vertex, implying at most 20 possibilities for each u and v,
and 40 possibilities in total. Hence, the maximum degree ∆ in the dependency graph
is at most 2 + 40 = 42. We may verify that

ep(∆ + 1) =
43e

121
< 1.

The condition of symmetric LLL is met, and there must exist an independent set that
contains precisely one vertex from each Vi.
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