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Random graphs, degree sequences and other properties

Gn,p is the binomial random graph, with n vertices and each

possible edge present with probability p, independently of all

other edge/non-edge choices.

The degree of a vertex in Gn,p has the binomial distribution

Bin(n− 1, p).

If p = p(n) is not too small then with high probability all

degrees in Gn,p are concentrated around the mean.

Specifically, if ε > 0 and p = Ω
(

logn
nε2

)

then with high

probability all degrees lie in [(1− ε)pn, (1 + ε)pn].



Problem: Real-world networks often have heavy-tailed

degree distributions.



Problem: Real-world networks often have heavy-tailed

degree distributions.

(Image from network-science.org)



Problem: Real-world networks often have heavy-tailed

degree distributions.

(Image from network-science.org)

So if you want to use random graphs to model some

real-world network then Gn,p might not be a good choice.
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Instead, you might want more control over the degree

sequence of the random graph.

We will look at the problem of generating random graphs

with a given degree sequence d.

• This could then be applied to a random degree sequence,

e.g. with each entry i.i.d. from some distribution.

• Also, Chung & Lu (2002) gave an efficient algorithm for

generating random graphs with a given expected degree

sequence.

See the excellent book by van der Hofstad (2016).
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Graphs with given degrees

Let G be a graph with vertex set [n] = {1,2, . . . , n}.

The degree sequence of G is (d1, . . . , dn), where dj is the

degree of vertex j.

A sequence d = (d1, . . . , dn) is graphical if there exists a

graph with degree sequence d.

1 2 3

4 5 6

⇒ (2,3,4,3,3,3) is graphical
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Let G(d) be the set of all graphs on the vertex set [n] with

degree sequence d. If d = (d, d, . . . , d) is regular then write

G(n, d) instead.

We really have a sequence of sets G(d(n)), and we are

interested in asymptotics as n → ∞.

Lots of prior work on algorithms for sampling from G(d).

See my BCC 2021 survey for some details (!!).

We will discuss the Markov chain approach.

But if your maximum degree dmax is not too large then you

should use the very fast exactly uniform sampling algorithms

of Arman, Gao & Wormald (2021).
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The switch chain is a particular Markov chain on G(d) which

performs a random switch at each time step.



The switch Markov chain

From current graph G ∈ G(d):

• choose two non-adjacent edges uv, yz u.a.r.

• choose a perfect matching M of u, v, y, z u.a.r.

• if (E(G) \ {uv, yz}) ∩M = ∅ then

delete edges uv, yz and insert edges M

• otherwise, stay at G.

Here u.a.r. means uniformly at random.
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• Switches connect the set G(d).

Some attribute this to Taylor (1981). He may have been

the first to write down a proof for (simple) graphs with

arbitrary d.

But Petersen (1891) proved that switches connect G(n, d)

when d is even (i.e., regular graphs of even degree).
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• Switches connect the set G(d).

• The switch chain is also aperiodic as P (G,G) ≥ 1/3 for all

G ∈ G(d).

• Hence the switch chain is ergodic, so it has a unique

stationary distribution which is a limiting distribution.

• The stationary distribution π is uniform on G(d).

This follows from the detailed balance equations:

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ Ω.
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The switch chain is known to be rapidly mixing for a wide

range of degree sequences, including those from

⋄ P-stable families (Erdős et al., 2022), and

⋄ certain heavy-tailed distributions (Gao & Greenhill, 2021).

(“Rapidly” means in time polynomial in n and dmax.)

Almost all proofs rest on a multicommodity flow argument,

which is a generalisation of a canonical path argument. The

resulting runtime bounds are very high degree polynomials

and are believed to be very far from tight.
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An exception...

Tikhomirov & Youssef, arXiv.2206.12477 proved that the

switch chain converges in time Cd n logn on d-regular

bipartite graphs, where 2 ≤ d ≤ n/2, for some constant

Cd > 0 which depends only on d.

This bound is optimal up to the constant Cd, improves on

the same authors’ earlier work (Probab. Theory Related Fields 2022)

and is a huge improvement on all earlier bounds.

Proof involves establishing a new comparison result for the

modified log-Sobolev inequality.
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Quick reminder: Canonical paths

Constrictions in the state space make it difficult for the

chain to escape: exponential time required to converge to

stationary distribution.

Lack of constrictions allows chain to converge quickly.

Results by Jerrum & Sinclair (1987) make this precise.



Quick reminder: Canonical paths

X

YZ
W

• For all pairs (X,Y ) ∈ Ω2, define a path from X to Y ,

where each step is a transition of the Markov chain.



Quick reminder: Canonical paths

X

YZ
W

• For all pairs (X,Y ) ∈ Ω2, define a path from X to Y ,

where each step is a transition of the Markov chain.

• Analyse the congestion of the set of all paths: are any

transitions heavily loaded? Then apply Sinclair (1992).
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For example, in social networks we see a lot of triangles.

Image from https://commons.wikimedia.org/wiki/File:Sna large.png

This phenomenon (“triadic closure”) dates back to 1908:
Soziologie by Georg Simmel.
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But in a graph chosen randomly from G(d), the expected

number of triangles is asymptotically equal to

µ(d) :=
M3

2

6M3

where

M = M(d) =
∑

j∈[n]

dj, M2 = M2(d) =
∑

j∈[n]

dj(dj − 1).

Since M2 ≤ dmaxM , in particular this means that if dmax is

constant then the expected number of triangles is at most

d3max/6, also constant.

(Distribution is asymptotically Poisson.)

So a random graph from G(d) might not be a great model

for a social network.
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Idea: Can we adapt the switch chain to enable more control

on the number of triangles?

Definition: A switch is a △-switch (triangle switch) if it

changes the set of triangles.

Q: Do △-switches connect G(d)?
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Note, one △-switch can affect a lot of triangles!

Sometimes this can complicate the analysis.
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Cooper, Dyer, Greenhill (IWOCA 2021):

Triangle switches connect G(n, d) whenever d ≥ 3.

Proof: Given any G ∈ G(n, d) we found a sequence of

triangle switches which transformed G into a union of many

disjoint copies of Kd+1 and at most one “fragment” F with

d+1 < |F | < 2(d+1).

G · · · F

Then we showed that we could transform any two graphs

of this form into each other, using triangle switches. �
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But, if we wanted to try to prove rapid mixing using

canonical paths...

G(n, d)

x y

graphs consisting of lots of Kd+1’s and one fragment

... these paths would be a pretty bad choice.
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New approach (Cooper, Dyer & me):

Let d be a graphical degree sequence with dmin ≥ 3.

We proved that we can simulate any switch using a

“simulation path” of at most five △-switches.

Proof: combinatorial argument, lots of cases.

Since switches connect the space G(d) (by Taylor 1981), it

follows that △-switches connect G(d).

x y
each switch is simulated by a sequence of △-switches
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How?

If the switch is also a △-switch then we are done.

Otherwise, we work through several cases depending on how

many “diagonals” are present, on whether the endvertices

of the diagonals have common neighbours, etc.

a1 a2

a3 a4

a1 a2

a3 a4

For example, suppose one diagonal a1a4 is present, that

a2 and a3 have two common neighbours u, v which are

adjacent, and a1u, a4v are non-edges. (This is Case V.)
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What about a variant of the switch chain that will encourage

triangles? It will need a non-uniform stationary distribution.

Let t(G) be the number of triangles in the graph G, and fix

λ ≥ 1. Let π be the probability distribution on G(d) defined

by

π(G) = λt(G)/Zλ(d)

where

Zλ(d) =
∑

G∈G(d)

λt(G).

If λ > 1 then triangles are encouraged.



Metropolis △-switch chain with parameter λ ≥ 1

From current graph G ∈ G(d):

• choose two non-adjacent edges uv, yz u.a.r.

• choose a perfect matching M of u, v, y, z u.a.r.

• let H be obtained from G by deleting edges uv, yz and

inserting M

• if G 7→ H is a valid △-switch then

the next state is H with probability min
{

1, λt(H)−t(G)
}

otherwise, stay at G.
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For any G ∈ G(d), the number of choices of two non-

adjacent edges in G is exactly

a(d) =
(M/2

2

)

− 1
2M2.

If G and H differ by one △-switch then the corresponding

transition probability is

P (G,H) =
1

3 a(d)
min

{

1, λt(H)−t(G)
}

.

Hence the Metropolis △-switch chain satisfies the detailed

balance equations

π(G)P (G,H) = π(H)P (H,G) for all G,H ∈ G(d).

This implies that π is the unique stationary distribution of

the chain.



Recall that µ = µ(d) is the expected number of triangles in
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We proved that if dmax logλ = o(logn) then for G drawn

from the distribution π on G(d),
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Recall that µ = µ(d) is the expected number of triangles in

a uniformly random element of G(d).

We proved that if dmax logλ = o(logn) then for G drawn

from the distribution π on G(d),

Pr(t(G) = s) ∼
e−λµ(λµ)s

s!

if s is not too large (more precisely, if s = o(nε)).

So in the stationary distribution of the Metropolis △-switch

chain, the number of triangles is (roughly) asymptotically

Poisson with mean λµ.

⇒ It looks like we should take λ as large as possible?



[First we looked at the distribution of triangles under the

uniform distribution on G(d), using a switching argument to

prove asymptotic Poisson-ness.

Prior work e.g. McKay, Wormald & Wysocka (2004), Gao

(2021) for the regular case.]
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Here is our main mixing/convergence result.

Theorem Let D be a family of graphical sequences which

all have minimum degree at least 3. Let λ = λ(n) ≥ 1.

Suppose that there exists α ∈ (0,1) such that

λµ(d) ≤ logα n

for every d ∈ D of length n.

If the switch chain is rapidly mixing on G(d) for all d ∈ D

then the same is true for the modified Metropolis △-switch

chain with parameter λ.

(I’ll explain “modified” soon.)



Proof. If the switch chain is rapidly mixing on G(d) then

there is a set Γ′ of canonical paths for G(d) with low

congestion. (See Sinclair 1992, Guruswami 2000.)



Proof. If the switch chain is rapidly mixing on G(d) then

there is a set Γ′ of canonical paths for G(d) with low

congestion. (See Sinclair 1992, Guruswami 2000.)

Replacing each switch in these paths by the

corresponding simulation path of at most 5 △-switches gives

a set of canonical paths Γ for the Metropolis △-switch chain.



Proof. If the switch chain is rapidly mixing on G(d) then

there is a set Γ′ of canonical paths for G(d) with low

congestion. (See Sinclair 1992, Guruswami 2000.)

Replacing each switch in these paths by the

corresponding simulation path of at most 5 △-switches gives

a set of canonical paths Γ for the Metropolis △-switch chain.

Applying a result from Cooper, Dyer, Greenhill, Handley

(2019) [with an error fixed!] to the Metropolis △-switch

chain guarantees that the congestion of Γ can be no bigger

than the congestion of Γ′ times an adjustment factor of

100 d2max

(

2M + d2max

)

n2α
Zλ(d)

|G(d)|
.
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Machinery from Cooper, Dyer, Greenhill, Handley (2019):

the two-stage direct canonical path construction method.

Say we have canonical paths Γ′ for a Markov chain M′, and

we have a simulation path for each transition of M′ using a

sequence of transitions of M. This gives a set Γ of canonical

paths for M.

Let P , π denote the transition matrix and stationary

distribution of M, and similarly for M′.

(We assume here that M and M′ have the same state

space.)



Extra factors in the congestion bound for Γ:

• maximum length of the simulation paths

• maximum number of simulation paths through a transition

of M

• simulation gap max π′(z)P ′(z,w)
π(u)P (u,v)

• stationary ratio
(

max π(x)
π′(x)

)2

(In CDGH we forgot about the stationary ratio.)
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in a simulation path in Case V? If the switch is G 7→ H then

the simulation path is G 7→ G1 7→ G2 7→ G3 7→ H.

First step: (X,Y ) = (G,G1).
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• 2 choices for which deleted edge is a1a4,

• at most d2max choices for a2, a3.
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Second step: (X,Y ) = (G1, G2).

v

a2

a1 a4

a3

u

−→

v

a2

a1 a4

a3

u

• All switch vertices uniquely identified (up to symmetry),

• at most d2max choices for u, v, needed to reconstruct

G from G1.

Overall a △-switch can be part of a simulation path in

Case (V) in at most 6d2max ways.
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The simulation gap is bounded above by Zλ(d)/|G(d)|, which

is precisely the expected value of λt(G) when G ∈ G(d) is

chosen uniformly at random.

Problem:

If λ is large then the upper tail of the distribution can

contribute significantly, and this factor will not be

polynomially-bounded.

Our solution: Modify the Metropolis △-switch chain so that

the stationary distribution is proportional to λmin{t(G), ν},

where ν := logn/(log logn).

This new distribution is polynomial-time indistinguishable

from π.
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In the modified Metropolis △-switch chain, the simulation

gap is the expected value of λmin{t(G), ν}, which is at most

λν ≤ nα.

Hence the congestion of the set of canonical paths Γ for the

modified Metropolis △-switch chain is at most a factor

100 d2max

(

2M + d2max

)

n3α

worse than the congestion of the set of canonical paths Γ′

for the switch chain.

This factor is polynomial (great!!) and shows up as a factor

in the bound on the mixing time.

But, the condition λµ(d) ≤ logα n is more restrictive than

we would like.



Final questions:

• Is there a better choice than Metropolis for the transitions

of a triangle switch chain?



Final questions:

• Is there a better choice than Metropolis for the transitions

of a triangle switch chain?

• Is there a better choice for the analysis than comparision

to the switch chain?



Final questions:

• Is there a better choice than Metropolis for the transitions

of a triangle switch chain?

• Is there a better choice for the analysis than comparision

to the switch chain?

[We also claimed that this is the “first rigorous analysis of a

Markov chain algorithm for generating graphs from a known

non-uniform distribution.” If you know a counter-example

to this please let me know!]



Final questions:

• Is there a better choice than Metropolis for the transitions

of a triangle switch chain?

• Is there a better choice for the analysis than comparision

to the switch chain?

[We also claimed that this is the “first rigorous analysis of a

Markov chain algorithm for generating graphs from a known

non-uniform distribution.” If you know a counter-example

to this please let me know!]

∗ Thank you! ∗


