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Sampling Proper Colorings

(g: number of colors; A: maximum degree)

Glauber dynamics | . o .
Conjecture: The chain is rapidly

mixing when g > A + 2

L

|
h ® Pick a uniform vertex v € V and a legal color ¢

| ® Color v to ¢ |

.00 |
D Condition for rapid mixing
G = . Color List L = { @ ® O 11
O— « 4> (? — €> A in general [CDMPP’19]

(1, @) 2, ®)

u—>n—> — 10

e > ?A for line graphs [ALOG’21]

e g > (1+ o0(l))A for line graphs [this work]
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Let L=[g] =1{1,2,....,g}and | V| =mn

The universe
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A proper coloring ¢ . V — |g] can be
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More Notations on &

e For every 1 < k < n, (k) is the collection of partial colorings
where exactly k vertices are colored

e Let 7 € G(k) be a partial coloring. € _ is the simplicial complex
for proper colorings on uncolored vertices consistent with 7
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The Local Chain

Let € be the simplicial complex for proper colorings of G

The state space for the local chain Pis V X [¢]

R e _ e — e —

tSimilarly define P,
Standing at (v, ¢y)... for each € ...

L

® Pick v, € V\{v,} uniformly at random
® Pick ¢, with probability ~ # of colorings with v, — ¢, v, — ¢,

e Move from (v, ¢;) to (v,, ¢,)
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The Glauber dynamics mixes rapidly on
H

Lline graphs when g > (1 + o(1))A
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Matrix Trickle-Down Theorem

Abdolazimi, Liu and Oveis Gharan established the following theorem:

® The local walk on % is irreducible

1
e For a family of matrices {N = [ch(l)xcg(l)} and a 5
1
— alﬂ <. N Id
T oa+ 1
@ E [HXNX] 5 HN— aHNz F—Iﬂx stationa;; distr. of PXAI
AT — n© stationary distr. of P

1 - — I, = diag(z,) |
Then P — (2——)17T <, N |- ll=dagn _ TJ

04
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1. Pick N, = A _1d recovers Oppenheim’s original trickle-down theorem

2. The constraints achieve equality if we pick

e N=P —alrn'

1
o For a family of matrices {Nx S IR%(I)X%(I)} and a >

I T 2
‘N:P—(z——)lﬂ' 1
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MTD on Spin System

Suppose a family of matrices {M_} satisfies

|
o Foreveryr € €(n—2):1LP,—2nn] <M, < EHT
e For every 7 € 6(n — k) with kK > 2 such that € _ is connected:
k—1 k—1 »
M_ < [I,and E [M ] =M, ———MII"'M,
3k —1 X~ k—2

Then for every z € €(n — 2): 1,(P,) < /Il(H_lMT)



Our Construction of M.

For each color ¢, there is a matrix M

M_ is a block-diagonal matrix with
each M on its diagonal

In our construction, M is only supported on those (uc, vc) with u ~ v



The Base Case

goal: f=o0(A)
Assume each vertex v has deg(v) + f colors

The base case is when 7 € €(n — 2)

We can directly compute P, — 217 — —=

and pick M¢ so that its nonzero entries 11, 11
are approximately g
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k—1
The inductive constraintis E [M_, ] < M; — P M-I ME

e We decompose M into a diagonal part and off-diagonal part

M = k_%(. + TLBS

off-diagonal diagonal
» For each clique i, define A¢" 1 ’ 2
(supported only on the clique) and
letAf L= ZATC’i. 4 o\ 3
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The constraint becomes to

tU{x}

(k— 2)TLBC — (k — DE, [HTU o

| - 21893

Goal: Upper bound by a diagonal matrix so that it becomes to
a scalar inequality
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- ¢ is random color in &,
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ATC’i(uc, vc) = the expectation of (|L7| - |LJ| — |L; N LYJ| )‘1

- ¢ is random color in &,

For some decreasing {d;, ||,
We define (e;cluding u)

: x 4ASTIZIAS is too large
A (uc,ve)
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o Define A" = P E [AC” ] sothat | =0

Ty tU{x}

Afc’i(uc, vc) = the expectation of (|L7| - |LJ| —|LI N L] )_1

- ¢ is random color in €,

For some decreasing {a;, }.;x,

We define (excluding u)
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. C,l C,l
o Define A" = — [A Oix }] so that .—
AS(uc,vc) ~ the expectation of (|LZ| - |L%| — |[LCNLS|)™!

- ¢ is random color in €,
- L7 is the color list of u after pinning ¢

For some decreasing {a;, }.;x,

# of proper pairs of colors on u

. excluding and v under boundary o
we define xcuing
. x 4ASTIZIAS is too large
C.l ( )

~ «, - the expectation of (|L’| - | L | — |L,f,f'ﬂLf\)_1

~ «, - the expectation of ((|L| - |L/] )~ !'+remainder)

A%' ~ the expectation of

- (diag(( 12,17 D) Aaj - diag({|L,|"}) + remainder

trivially bound

Bound by the spectrum of K, by row sum



The Scalar Constraints

The system reduces to a set of scalar constraints

(h—=1)b, —h-b,_, zclb,%+%h2“, D <h<H

e

R R S e S S R e T‘ﬁ

Proposition. For any 1/2 < a < 1, the system has solution when
ﬁ > cH*log” H for some constant ¢ > 0. _I

e e e A

———
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Conclusions

® The matrix trickle-down theorem provides a new way to
utilize the graph structure when analyzing Glauber dynamics

® Our analyze generalizes to those local graphs with large

minimum eigenvalue (e.g., K, has eigenvalues —1 and n — 1).
What if the graph is locally bipartite?

e A graph of maximum degree d is edge colorable once g > d + 1
(Vizing's theorem). Our result only applies when g > (2 + o(1))d

the single-site Glauber dynamics is irreducible only when g > 2d



