Sampling Proper Colorings on Line Graphs Using $(1 + o(1))\Delta$ Colors

Chihao Zhang

Shanghai Jiao Tong University

Joint work with Yulin Wang (SJTU) and Zihan Zhang (SJTU \rightarrow NII)

Sept. 4th, 2023 @ Shonan Meeting

Color List $L = \{ \bigcirc \bigcirc \bigcirc \}$

Color List $L = \{ \bigcirc \bigcirc \bigcirc \}$

Color List $L = \{ \bigcirc \bigcirc \bigcirc \}$

. . .

Color List $L = \{ \bigcirc \bigcirc \bigcirc \}$

. . .

Line graph
$$\widehat{G} = (\widehat{V}, \widehat{E})$$

 $\widehat{V} = E(G)$
 $\widehat{E} = \{\{e, e'\} : |e \cap e'| = 1\}$

proper edge coloring on $G \iff$ proper vertex coloring on \widehat{G}

Color List $L = \{ \bigcirc \bigcirc \bigcirc \}$

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

$$G = \begin{bmatrix} 1 & -2 \\ -2 & -2 \\ -2 & -2 \\ -2 & -2 \\ 3 & -4 \end{bmatrix}$$

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

Glauber dynamics

- Pick a uniform vertex $v \in V$ and a legal color c
- Color *v* to *c*

(q: number of colors; Δ : maximum degree)

Conjecture: The chain is rapidly mixing when $q \ge \Delta + 2$

Condition for rapid mixing

•
$$q > \left(\frac{11}{6} - \epsilon\right) \Delta$$
 in general [CDMPP'19

• $q > \frac{10}{6} \Delta$ for line graphs [ALOG'21]

• $q > (1 + o(1))\Delta$ for line graphs [this work]

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma : V \to [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma : V \to [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma: V \rightarrow [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma : V \to [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

 $\{(v_1, \bullet), (v_2, \bullet), (v_3, \bullet)\}$

 $\{(v_1, \bullet), (v_2, \bullet), (v_3, \bullet)\}$

 $\{(v_1, \bullet), (v_2, \bullet), (v_3, \bullet)\}$

 $\{(v_1, \bullet), (v_2, \bullet), (v_3, \bullet)\}$

 $\{(v_1, \bullet), (v_2, \bullet), (v_3, \bullet)\}$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma: V \to [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma: V \rightarrow [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

The simplicial complex \mathscr{C} is the subset closure of the collection of proper colorings

Let $L = [q] = \{1, 2, ..., q\}$ and |V| = n

The universe $U = V \times [q] = \{(v, c) \mid v \in V, c \in [q]\}$

A proper coloring $\sigma: V \rightarrow [q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

The simplicial complex \mathscr{C} is the subset closure of the collection of proper colorings

collection of all partial colorings

More Notations on C

More Notations on 8

where exactly *k* vertices are colored

• For every $1 \le k \le n$, $\mathscr{C}(k)$ is the collection of partial colorings

More Notations on \mathscr{C}

- For every $1 \le k \le n$, $\mathscr{C}(k)$ is the collection of partial colorings where exactly *k* vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

More Notations on \mathscr{C}

- For every $1 \le k \le n$, $\mathscr{C}(k)$ is the collection of partial colorings where exactly *k* vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

More Notations on \mathscr{C}

- For every $1 \le k \le n$, $\mathscr{C}(k)$ is the collection of partial colorings where exactly *k* vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

 \mathscr{C}_{τ} : proper colorings on

consistent with
Let $\mathscr C$ be the simplicial complex for proper colorings of G

Let \mathscr{C} be the simplicial complex for proper colorings of G

The state space for the local chain P is $V \times [q]$

Let \mathscr{C} be the simplicial complex for proper colorings of G

The state space for the local chain P is $V \times [q]$

Standing at (v_1, c_1) ...

- Pick $v_2 \in V \setminus \{v_1\}$ uniformly at random
- Move from (v_1, c_1) to (v_2, c_2)

• Pick c_2 with probability $\sim \#$ of colorings with $v_1 \rightarrow c_1, v_2 \rightarrow c_2$

Let \mathscr{C} be the simplicial complex for proper colorings of G

The state space for the local chain P is $V \times [q]$

Standing at (v_1, c_1) ...

- Pick $v_2 \in V \setminus \{v_1\}$ uniformly at random
- Move from (v_1, c_1) to (v_2, c_2)

Similarly define P_{τ} for each \mathscr{C}_{τ} ...

• Pick c_2 with probability $\sim \#$ of colorings with $v_1 \rightarrow c_1, v_2 \rightarrow c_2$

Local Expander

If for all $0 \le k \le n - 2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_2(P_{\tau}) \le \gamma_k$.

Local Expander

If for all $0 \le k \le n - 2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_2(P_{\tau}) \le \gamma_k$.

Global Expander [Alev & Lau 2020] $\lambda_2(P_{\text{Glauber}}) \le 1 - \frac{1}{n} \prod_{k=0}^{n-2} (1 - \gamma_k)$

Local Expander

If for all $0 \le k \le n - 2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_2(P_{\tau}) \leq \gamma_k$.

Global Expander [Alev & Lau 2020] $\lambda_2(P_{\text{Glauber}}) \le 1 - \frac{1}{n} \prod_{k=0}^{n-2} (1 - \gamma_k)$

Theorem. If $q > (1 + o(1))\Delta$, then for each $\tau \in \mathscr{C}(k), \lambda_2(P_{\tau}) \leq \frac{C}{n-k}$

Local Expander

If for all $0 \le k \le n - 2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_2(P_{\tau}) \leq \gamma_k$.

Global Expander [Alev & Lau 2020] $\lambda_2(P_{\text{Glauber}}) \le 1 - \frac{1}{n} \prod_{k=0}^{n-2} (1 - \gamma_k)$

Theorem. If $q > (1 + o(1))\Delta$, then for each $\tau \in \mathscr{C}(k), \lambda_2(P_{\tau}) \leq \frac{C}{n-k}$

Local Expander

If for all $0 \le k \le n - 2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_2(P_{\tau}) \le \gamma_k$.

Global Expander [Alev & Lau 2020] $\lambda_2(P_{\text{Glauber}}) \le 1 - \frac{1}{n} \prod_{k=0}^{n-2} (1 - \gamma_k)$

Theorem. If $q > (1 + o(1))\Delta$, then for each $\tau \in \mathscr{C}(k), \lambda_2(P_{\tau}) \leq \frac{C}{n-k}$

The Glauber dynamics mixes rapidly on line graphs when $q > (1 + o(1))\Delta$

Matrix Trickle-Down Theorem

Abdolazimi, Liu and Oveis Gharan established the following theorem:

- The local walk on \mathscr{C} is irreducible

$$P_x - \alpha \mathbf{1} \pi_x^{\mathsf{T}} \leq_{\pi}$$

•
$$\mathbf{E}_{x \sim \pi} \left[\Pi_x N_x \right] \leq \Pi N - \alpha \Pi N^2$$

Then $P - \left(2 - \frac{1}{\alpha} \right) \mathbf{1} \pi^{\mathsf{T}} \leq_{\pi} N$

• For a family of matrices $\{N_x \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\}$ and $\alpha \ge \frac{1}{2}$ $\pi_x N_x \leq \pi_x \frac{1}{2\alpha + 1} \text{Id}$

- π_x stationary distr. of P_x
- π stationary distr. of P
- $\Pi_x = \text{diag}(\pi_x)$
- $\Pi = \text{diag}(\pi)$

1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem

1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem

2. The constraints achieve equality if we pick

1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem

2. The constraints achieve equality if we pick

•
$$N_x = P_x - \alpha \mathbf{1} \pi^{\mathsf{T}}$$

- 2. The constraints achieve equality if we pick

•
$$N_x = P_x - \alpha \mathbf{1} \pi^{\mathsf{T}}$$

• $N = P - (2 - \frac{1}{\alpha}) \mathbf{1} \pi^{\mathsf{T}}$

1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem

- 1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem
- 2. The constraints achieve equality if we pick

•
$$N_x = P_x - \alpha \mathbf{1} \pi^{\mathsf{T}}$$

• $N = P - (2 - \frac{1}{\alpha}) \mathbf{1} \pi^{\mathsf{T}}$

• For a family of matrices
$$\{N_x \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\}$$
 and $\alpha \ge \frac{1}{2}$
 $P_x - \alpha \mathbf{1} \pi_x^\top \leq_{\pi_x} N_x \leq_{\pi_x} \frac{1}{2\alpha + 1} \operatorname{Id}$
• $\underset{x \sim \pi}{\mathbf{E}} \left[\Pi_x N_x\right] \leq \Pi N - \alpha \Pi N^2$
Then $P - \left(2 - \frac{1}{\alpha}\right) \mathbf{1} \pi^\top \leq_{\pi} N$

- 1. Pick $N_x = \lambda_x Id$ recovers Oppenheim's original trickle-down theorem
- 2. The constraints achieve equality if we pick

•
$$N_x = P_x - \alpha \mathbf{1} \pi^{\mathsf{T}}$$

• $N = P - (2 - \frac{1}{\alpha})\mathbf{1} \pi^{\mathsf{T}}$

Then **E** $\left[\Pi_x N_x\right] = \Pi N - \alpha \Pi N^2$ $x \sim \pi$

• For a family of matrices
$$\{N_x \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\}$$
 and $\alpha \ge \frac{1}{2}$
 $P_x - \alpha \mathbf{1} \pi_x^\top \leq_{\pi_x} N_x \leq_{\pi_x} \frac{1}{2\alpha + 1} \operatorname{Id}$
• $\underset{x \sim \pi}{\mathbf{E}} \left[\Pi_x N_x\right] \leq \Pi N - \alpha \Pi N^2$
Then $P - \left(2 - \frac{1}{\alpha}\right) \mathbf{1} \pi^\top \leq_{\pi} N$

MTD on Spin System

- Suppose a family of matrices $\{M_{\tau}\}$ satisfies
 - For every $\tau \in \mathscr{C}(n-2)$: Π_{τ}
 - For every $\tau \in \mathscr{C}(n-k)$ with k > 2 such that \mathscr{C}_{τ} is connected: $M_{\tau} \leq \frac{k-1}{3k-1} \prod_{\tau} \text{ and } \mathbf{E}_{x \sim \pi} [N]$
 - Then for every $\tau \in \mathscr{C}(n-2)$: $\lambda_2(P_{\tau}) \leq \lambda_1(\Pi^{-1}M_{\tau})$

$$_{\tau}P_{\tau} - 2\pi_{\tau}\pi_{\tau}^{\top} \leq M_{\tau} \leq \frac{1}{5}\Pi_{\tau}$$

$$A_{\tau \cup \{x\}}] \leq M_{\tau} - \frac{k-1}{k-2} M_{\tau} \Pi_{\tau}^{-1} M_{\tau}$$

Our Construction of M_{τ}

For each color c, there is a matrix M_{τ}^{c}

M_{τ} is a block-diagonal matrix with each M_{τ}^c on its diagonal

In our construction, M_{τ}^c is only supported on those (*uc*, *vc*) with $u \sim v$

The Base Case

Assume each vertex v has $deg(v) + \beta$ colors

The base case is when $\tau \in \mathscr{C}(n-2)$

We can directly compute $P_{\tau} - 2\mathbf{1}\pi_{\tau}^{\top}$ and pick M_{τ}^c so that its nonzero entries are approximately

goal: $\beta = o(\Delta)$

- $\Pi_{\tau} \begin{bmatrix} \frac{1}{\beta^2} & \frac{1}{\beta} \\ 1 & 1 \end{bmatrix}$ $eta \quad eta^2$

The inductive constraint is $\mathop{\mathbf{E}}_{x \sim \pi_{\tau}} [M_{\tau \cup \{x\}}^c] \leq M_{\tau}^c - \frac{k-1}{k-2} M_{\tau}^c \Pi_{\tau}^{-1} M_{\tau}^c$

- We decompose M_{τ}^c into a diagonal part and off-diagonal part $M_{\tau}^{c} = \frac{1}{k - 1} (A_{\tau}^{c} + \Pi_{\tau} B_{\tau}^{c})$ off-diagonal

The inductive constraint is $\underset{x \sim \pi_{\tau}}{\mathbf{E}} [M_{\tau \cup \{x\}}^c] \leq M_{\tau}^c - \frac{k-1}{k-2} M_{\tau}^c \Pi_{\tau}^{-1} M_{\tau}^c$

diagonal

- We decompose M_{τ}^c into a diagonal part and off-diagonal part

$$M_{\tau}^{c} = \frac{1}{k-1} (A_{\tau}^{c})$$

off-diagonal

• For each clique *i*, define $A_{\tau}^{c,i}$ (supported only on the clique) and $\operatorname{let} A_{\tau}^{c} := \sum A_{\tau}^{c,i}.$

The inductive constraint is $\mathop{\mathbf{E}}_{x \sim \pi_{\tau}} [M_{\tau \cup \{x\}}^c] \leq M_{\tau}^c - \frac{k-1}{k-2} M_{\tau}^c \Pi_{\tau}^{-1} M_{\tau}^c$

diagonal

- We decompose M_{τ}^c into a diagonal part and off-diagonal part

$$M_{\tau}^{c} = \frac{1}{k-1} (A_{\tau}^{c})$$

off-diagonal

• For each clique *i*, define $A_{\tau}^{c,i}$ (supported only on the clique) and $\operatorname{let} A_{\tau}^{c} := \sum A_{\tau}^{c,i}.$

The inductive constraint is $\mathop{\mathbf{E}}_{x \sim \pi_{\tau}} [M_{\tau \cup \{x\}}^c] \leq M_{\tau}^c - \frac{k-1}{k-2} M_{\tau}^c \Pi_{\tau}^{-1} M_{\tau}^c$

diagonal

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-1) \right) = 0$$

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-1) \right) \right)$$

 \leq a diagonal matrix

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-1) \right) \right)$$

 \leq a diagonal matrix

$$(k-2)\Pi_{\tau}B_{\tau}^{c}-(k-1)\mathbf{E}_{x}\left[\Pi_{\tau\cup\{x\}}B_{\tau}^{c}\right]$$

 $(k-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$

 $B^c_{\tau\cup\{x\}}\Big| - 2\Pi_\tau(B^c_\tau)^2\Big|$

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-1) \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] \right) \right)$$
$$\leq \text{a diagonal matrix}$$
$$(k-2) \Pi_{\tau} B_{\tau}^{c} - (k-1) \mathbf{E}_{x} \left[\Pi_{\tau \cup \{x\}} B_{\tau}^{c,i} \right]$$

Goal: Upper bound by a diagonal matrix so that it becomes to a scalar inequality

 $(k-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$

$$\mathbf{B}_{\tau\cup\{x\}}^c\right] - 2\Pi_{\tau}(B_{\tau}^c)^2$$

 $\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i} \Pi_{\tau}^{-1} A_{\tau}^{c,i} \right)$

 $\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i} \Pi_{\tau}^{-1} A_{\tau}^{c,i} \right)$

• Define $A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \begin{bmatrix} A_{\tau \cup \{x\}}^{c,i} \end{bmatrix}$ so that $\mathbf{E}_{\tau \cup \{x\}} = 0$

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k$$

• Define $A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_x \left[A_{\tau \cup \{x\}}^{c,i} \right]$ so that $\mathbf{E}_x = 0$

 $A_{\tau}^{c,i}(uc,vc) \approx$ the expectation of $(|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$

 $(-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i})$
$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k$$

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$

$A_{\tau}^{c,i}(uc,vc) \approx \text{the expectation of } (|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$

- σ is random color in \mathscr{C}_{τ}
- L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

 $(-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i})$

x_{x} so that = 0

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k$$

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$

$A_{\tau}^{c,i}(uc,vc) \approx$ the expectation of $(|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$

- σ is random color in \mathscr{C}_{τ}
- L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

 $(-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i})$

x_{x} so that = 0

of proper pairs of colors on u and v under boundary σ

$$\sum_{i} \left((k-1) \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right] - (k$$

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$

$A_{\tau}^{c,i}(uc,vc) \approx$ the expectation of $(|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$

- σ is random color in \mathscr{C}_{τ}
- L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

 $4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$ is too large

 $(-2) \cdot A_{\tau}^{c,i} + 4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i})$

$|_{x}$ so that = 0

of proper pairs of colors on *u* and v under boundary σ

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$
 so that $\mathbf{I} = 0$

$A_{\tau}^{c,i}(uc,vc) \approx$ the expectation of $(|L_u^{\sigma}| \cdot |L_v^{\sigma}| - |L_u^{\sigma} \cap L_v^{\sigma}|)^{-1}$

- σ is random color in ${\mathscr C}_{ au}$

- L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

of proper pairs of colors on uand v under boundary σ

$4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$ is too large

For some decreasing $\{a_h\}_{1 \le h \le \Delta}$, we define

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$
 so that $\mathbf{I} = 0$

$A_{\tau}^{c,i}(uc,vc) \approx$ the expectation of $(|L_u^{\sigma}| \cdot |L_v^{\sigma}| - |L_u^{\sigma} \cap L_v^{\sigma}|)^{-1}$

- σ is random color in $\mathscr{C}_{ au}$

- L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

of proper pairs of colors on uand v under boundary σ

$4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$ is too large

For some decreasing $\{a_h\}_{1 < h < \Delta}$, we define

$A^{c,i}_{\tau}(uc,vc)$ $\approx a_h \cdot$ the expectation of $(|L_u^{\sigma}| \cdot |L_v^{\sigma}| - |L_u^{\sigma} \cap L_v^{\sigma}|)^{-1}$

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$
 so that $\mathbf{I} = 0$

$A_{\tau}^{c,i}(uc, vc) \approx$ the expectation of $(|L_u^{\sigma}| \cdot |L_v^{\sigma}| - |L_u^{\sigma} \cap L_v^{\sigma}|)^{-1}$

- σ is random color in \mathscr{C}_{τ} - L_u^{σ} is the color list of *u* after pinning σ (excluding *u*)

of proper pairs of colors on u and *v* under boundary σ

 $4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$ is too large

For some decreasing $\{a_h\}_{1 \le h \le \Delta}$, we define

$A_{\tau}^{c,i}(uc, vc)$ $\approx a_{h} \cdot \text{the expectation of } (|L_{u}^{\sigma}| \cdot |I_{u}^{\sigma}|)$

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$
 so that $\mathbf{I} = 0$
 $A_{\tau}^{c,i}(uc, vc) \approx$ the expectation of $(|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$
 $\stackrel{\circ}{}\sigma$ is random color in \mathscr{C}_{τ}
 $\stackrel{\circ}{}L_{u}^{\sigma}$ is the color list of u after pinning σ
(excluding u)
 $4A_{\tau}^{c,i}\Pi_{\tau}^{-1}A_{\tau}^{c,i}$ is too large

$$L_v^{\sigma}| - |L_u^{\sigma} \cap L_v^{\sigma}|)^{-1}$$

$\approx a_h \cdot \text{the expectation of } ((|L_u^{\sigma}| \cdot |L_v^{\sigma}|)^{-1} + \text{remainder})$

For some decreasing $\{a_h\}_{1 < h < \Delta}$, we define

 $A^{c,i}_{\tau}(uc,vc)$ $\approx a_h \cdot$ the expectation of $(|L_u^{\sigma}| \cdot |$ $\approx a_h \cdot$ the expectation of $((|L_u^{\sigma}| \cdot |L_v^{\sigma}|)^{-1} + \text{remainder})$ $A_{\tau}^{c,l} \approx$ the expectation of $a_h \cdot$

Bound by the spectrum of K_{Λ}

• Define
$$A_{\tau}^{c,i} = \frac{k-1}{k-2} \cdot \mathbf{E}_{x} \left[A_{\tau \cup \{x\}}^{c,i} \right]$$
 so that $\mathbf{I} = 0$
 $A_{\tau}^{c,i}(uc, vc) \approx$ the expectation of $(|L_{u}^{\sigma}| \cdot |L_{v}^{\sigma}| - |L_{u}^{\sigma} \cap L_{v}^{\sigma}|)^{-1}$
 $\stackrel{\circ \sigma \text{ is random color in } \mathscr{C}_{\tau}}{\stackrel{\circ L_{u}^{\sigma} \text{ is the color list of } u \text{ after pinning } \sigma}{(\text{excluding } u)}}$
of proper pairs of colors on u
and v under boundary σ

$$L_v^{\sigma} | - | L_u^{\sigma} \cap L_v^{\sigma} |)^{-1}$$

$diag(\{|L_u|^{-1}\}) \cdot Adj \cdot diag(\{|L_u|^{-1}\}) + remainder$

trivially bound by row sum

The Scalar Constraints

The system reduces to a set of scalar constraints

$$\begin{cases} b_1 \leq \frac{1}{\beta^2} \\ (h-1)b_h - h \cdot b_{h-1} \geq C_1 b_h^2 + \frac{C_2}{\beta^2} h^{2\alpha}, & 2 \leq h \leq H \end{cases}$$

Proposition. For any $1/2 \le \alpha \le 1$, the system has solution when $\beta \ge cH^{\alpha} \log^2 H$ for some constant c > 0.

• The matrix trickle-down theorem provides a new way to

utilize the graph structure when analyzing Glauber dynamics

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_n has eigenvalues −1 and n − 1). What if the graph is locally bipartite?

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_n has eigenvalues −1 and n − 1). What if the graph is locally bipartite?
- A graph of maximum degree *d* is edge colorable once $q \ge d + 1$ (Vizing's theorem). Our result only applies when $q \ge (2 + o(1))d$

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_n has eigenvalues -1 and n - 1). What if the graph is locally bipartite?
- A graph of maximum degree d is edge colorable once $q \ge d+1$ (Vizing's theorem). Our result only applies when $q \ge (2 + o(1))d$

the single-site Glauber dynamics is irreducible only when $q \geq 2d$