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Condition for rapid mixing 

( : number of colors; : maximum degree)q Δ

Conjecture: The chain is rapidly 
mixing when q ≥ Δ + 2

•  in general [CDMPP’19]q > ( 11
6

− ϵ) Δ

•  for line graphs [ALOG’21]q >
10
6

Δ

•  for line graphs [this work]q > (1 + o(1))Δ
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Let  be the simplicial complex for proper colorings of 𝒞 G

The state space for the local chain  is P V × [q]

Standing at …(v1, c1)

• Pick  uniformly at randomv2 ∈ V∖{v1}

• Pick  with probability ~ # of colorings with c2 v1 → c1, v2 → c2

• Move from  to (v1, c1) (v2, c2)

Similarly define  
for each …

Pτ
𝒞τ
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The Local-to-Global Scheme

If for all , all 
, it holds that .
0 ≤ k ≤ n − 2

τ ∈ 𝒞(k) λ2(Pτ) ≤ γk

Local Expander

Global Expander

λ2(PGlauber) ≤ 1 −
1
n

n−2

∏
k=0

(1 − γk)

[Alev & Lau 2020]

Theorem. If , then 

for each , 

q > (1 + o(1))Δ
τ ∈ 𝒞(k) λ2(Pτ) ≤

C
n − k

The Glauber dynamics mixes rapidly on 
line graphs when q > (1 + o(1))Δ



Matrix Trickle-Down Theorem
Abdolazimi, Liu and Oveis Gharan established the following theorem:

• The local walk on  is irreducible𝒞

• For a family of matrices  and {Nx ∈ ℝ𝒞(1)×𝒞(1)} α ≥
1
2

Px − α1π⊤
x ⪯πx

Nx ⪯πx

1
2α + 1

𝙸𝚍

• E
x∼π

[ΠxNx] ⪯ ΠN − αΠN2

Then P − (2 −
1
α )1π⊤ ⪯π N

-  stationary distr. of   

-  stationary distr. of  

-  

-

πx Px

π P
Πx = diag(πx)
Π = diag(π)
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Remarks on MTD Theorem
1. Pick  recovers Oppenheim’s original trickle-down theoremNx = λx𝙸𝚍

2. The constraints achieve equality if we pick 

• Nx = Px − α1π⊤

• N = P − (2 −
1
α

)1π⊤

Then E
x∼π

[ΠxNx] = ΠN − αΠN2



MTD on Spin System
Suppose a family of matrices  satisfies{Mτ}

• For every : τ ∈ 𝒞(n − 2) ΠτPτ − 2πτπ⊤
τ ⪯ Mτ ⪯

1
5

Πτ

• For every  with  such that  is connected:τ ∈ 𝒞(n − k) k > 2 𝒞τ

 and Mτ ⪯
k − 1

3k − 1
Πτ E

x∼πτ

[Mτ∪{x}] ⪯ Mτ −
k − 1
k − 2

MτΠ−1
τ Mτ

Then for every : τ ∈ 𝒞(n − 2) λ2(Pτ) ≤ λ1(Π−1Mτ)



Our Construction of Mτ

Mτ =[ ⋱ ]
For each color , there is a matrix c Mc

τ

 is a block-diagonal matrix with 
each  on its diagonal
Mτ

Mc
τ

In our construction,  is only supported on those  with Mc
τ (uc, vc) u ∼ v



The Base Case

The base case is when τ ∈ 𝒞(n − 2)

Assume each vertex  has  colorsv deg(v) + β
goal: β = o(Δ)

We can directly compute  
and pick  so that its nonzero entries 
are approximately

Pτ − 21π⊤
τ

Mc
τ Πτ

1
β2 − 1

β

− 1
β

1
β2
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∑
i

((k − 1) ⋅ Ex [Ac,i
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 a diagonal matrix⪯

(k − 2)ΠτBc
τ − (k − 1)Ex [Πτ∪{x}Bc

τ∪{x}] − 2Πτ(Bc
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Goal: Upper bound        by a diagonal matrix so that it becomes to 
a scalar inequality





∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )



∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )

• Define  so that       Ac,i
τ =

k − 1
k − 2

⋅ Ex [Ac,i
τ∪{x}] = 0



∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )

• Define  so that       Ac,i
τ =

k − 1
k − 2

⋅ Ex [Ac,i
τ∪{x}] = 0

the expectation of Ac,i
τ (uc, vc) ≈ ( |Lσ

u | ⋅ |Lσ
v | − |Lσ

u ∩ Lσ
v | )−1



∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )

• Define  so that       Ac,i
τ =

k − 1
k − 2

⋅ Ex [Ac,i
τ∪{x}] = 0

the expectation of Ac,i
τ (uc, vc) ≈ ( |Lσ

u | ⋅ |Lσ
v | − |Lσ

u ∩ Lσ
v | )−1

-  is random color in  
-  is the color list of  after pinning    
(excluding )

σ 𝒞τ
Lσ

u u σ
u



∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )

• Define  so that       Ac,i
τ =

k − 1
k − 2

⋅ Ex [Ac,i
τ∪{x}] = 0

the expectation of Ac,i
τ (uc, vc) ≈ ( |Lσ

u | ⋅ |Lσ
v | − |Lσ

u ∩ Lσ
v | )−1

-  is random color in  
-  is the color list of  after pinning    
(excluding )

σ 𝒞τ
Lσ

u u σ
u

# of proper pairs of colors on  
and  under boundary 

u
v σ



∑
i

((k − 1) ⋅ Ex [Ac,i
τ∪{x}] − (k − 2) ⋅ Ac,i

τ + 4Ac,i
τ Π−1

τ Ac,i
τ )

 is too large4Ac,i
τ Π−1

τ Ac,i
τ

• Define  so that       Ac,i
τ =

k − 1
k − 2

⋅ Ex [Ac,i
τ∪{x}] = 0

the expectation of Ac,i
τ (uc, vc) ≈ ( |Lσ

u | ⋅ |Lσ
v | − |Lσ

u ∩ Lσ
v | )−1

-  is random color in  
-  is the color list of  after pinning    
(excluding )

σ 𝒞τ
Lσ

u u σ
u

# of proper pairs of colors on  
and  under boundary 

u
v σ







For some decreasing , 
we define

{ah}1≤h≤Δ



 
the expectation of 

Ac,i
τ (uc, vc)

≈ ah ⋅ ( |Lσ
u | ⋅ |Lσ

v | − |Lσ
u ∩ Lσ

v | )−1

For some decreasing , 
we define

{ah}1≤h≤Δ



 
the expectation of 

Ac,i
τ (uc, vc)

≈ ah ⋅ ( |Lσ
u | ⋅ |Lσ

v | − |Lσ
u ∩ Lσ

v | )−1

the expectation of ( + )≈ ah ⋅ ( |Lσ
u | ⋅ |Lσ

v | )−1 𝚛𝚎𝚖𝚊𝚒𝚗𝚍𝚎𝚛

For some decreasing , 
we define

{ah}1≤h≤Δ



 
the expectation of 

Ac,i
τ (uc, vc)

≈ ah ⋅ ( |Lσ
u | ⋅ |Lσ

v | − |Lσ
u ∩ Lσ

v | )−1

the expectation of ( + )≈ ah ⋅ ( |Lσ
u | ⋅ |Lσ

v | )−1 𝚛𝚎𝚖𝚊𝚒𝚗𝚍𝚎𝚛

For some decreasing , 
we define

{ah}1≤h≤Δ

 the expectation of 
                                                                                      

≈
ah ⋅ (diag({ |Lu |−1 }) ⋅ 𝙰𝚍𝚓 ⋅ diag({ |Lu |−1 }) + 𝚛𝚎𝚖𝚊𝚒𝚗𝚍𝚎𝚛)

Bound by the spectrum of KΔ
trivially bound 

by row sum

Ac,i
τ



The Scalar Constraints

The system reduces to a set of scalar constraints

b1 ≤ 1
β2

(h − 1)bh − h ⋅ bh−1 ≥ C1b2
h + C2

β2 h2α, 2 ≤ h ≤ H

Proposition. For any  the system has solution when 
 for some constant .

1/2 ≤ α ≤ 1,
β ≥ cHα log2 H c > 0
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Conclusions
• The matrix trickle-down theorem provides a new way to 

utilize the graph structure when analyzing Glauber dynamics

• Our analyze generalizes to those local graphs with large 
minimum eigenvalue (e.g.,  has eigenvalues  and ). 
What if the graph is locally bipartite? 

Kn −1 n − 1

• A graph of maximum degree  is edge colorable once  
(Vizing's theorem). Our result only applies when 

d q ≥ d + 1
q ≥ (2 + o(1))d

the single-site Glauber dynamics is irreducible only when q ≥ 2d


