Sampling Proper Colorings on Line Graphs Using $(1+o(1)) \Delta$ Colors

Chihao Zhang

Shanghai Jiao Tong University

Sept. 4th, 2023 @ Shonan Meeting
Joint work with Yulin Wang (SJTU) and Zihan Zhang (SJTU \rightarrow NII)

Proper Edge Colorings

Proper Edge Colorings

$$
\text { Color List } L=\{\bigcirc \bigcirc\}
$$

Proper Edge Colorings

Color List $L=\{\bigcirc \bigcirc\}$

Proper Edge Colorings

Color List $L=\{\bigcirc \bigcirc\}$

Proper Edge Colorings

$$
\text { Color List } L=\{\bigcirc \bigcirc\}
$$

$$
\begin{aligned}
& \text { Line graph } \widehat{G}=(\widehat{V}, \widehat{E}) \\
& \widehat{\widehat{V}}=E(G) \\
& \widehat{E}=\left\{\left\{e, e^{\prime}\right\}:\left|e \cap e^{\prime}\right|=1\right\}
\end{aligned}
$$

Proper Edge Colorings

Color List $L=\{\bigcirc \bigcirc\}$

$$
\begin{aligned}
& \text { Line graph } \widehat{G}=(\widehat{V}, \widehat{E}) \\
& \begin{array}{l}
\widehat{V}=E(G) \\
\widehat{E}=\left\{\left\{e, e^{\prime}\right\}:\left|e \cap e^{\prime}\right|=1\right\}
\end{array}
\end{aligned}
$$

proper edge coloring on $G \Longleftrightarrow$ proper vertex coloring on \widehat{G}

Sampling Proper Colorings

Sampling Proper Colorings

Glauber dynamics

- Pick a uniform vertex $v \in V$ and a legal color c
- Color v to c

Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```

 Color List $L=\{\bigcirc \bigcirc\}$

Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Color List $L=\{\bigcirc\}$

Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Color List $L=\{\bigcirc \bigcirc\}$

Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Color List $L=\{\bigcirc \bigcirc\}$

Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex v\inV and a legal color c
- Color v to c
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex v}\=V\mathrm{ and a legal color c
- Color v to c
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Sampling Proper Colorings

```
Glauber dynamics
- Pick a uniform vertex \(v \in V\) and a legal color \(c\)
- Color \(v\) to \(c\)
```


Sampling Proper Colorings

Glauber dynamics

- Pick a uniform vertex $v \in V$ and a legal color c
- Color v to c

(q : number of colors; Δ : maximum degree)
Conjecture: The chain is rapidly mixing when $q \geq \Delta+2$

Condition for rapid mixing

- $q>\left(\frac{11}{6}-\epsilon\right) \Delta$ in general [CDMPP'19]
- $q>\frac{10}{6} \Delta$ for line graphs [ALOG'21]
- $q>(1+o(1)) \Delta$ for line graphs [this work]

Proper Colorings as Simplicial Complex

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$
The universe

$$
U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}
$$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$
The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

Color List $L=\{\bigcirc \bigcirc\}$
The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

Color List $L=\{\bigcirc \bigcirc\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

The simplicial complex \mathscr{C} is the subset closure of the collection of proper colorings

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$$
\mathscr{C}=\begin{aligned}
& \text { Subset } \\
& \text { Closure }
\end{aligned}\left\{\begin{array}{l}
\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\} \\
\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\} \\
\left.\hline \bigcirc),\left(v_{3}, \bigcirc\right)\right\} \\
\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}
\end{array}\right\}
$$

Proper Colorings as Simplicial Complex

Let $L=[q]=\{1,2, \ldots, q\}$ and $|V|=n$

The universe
$U=V \times[q]=\{(v, c) \mid v \in V, c \in[q]\}$

A proper coloring $\sigma: V \rightarrow[q]$ can be encoded by the set $\{(v, \sigma(v)) \mid v \in V\} \subseteq U$

The simplicial complex \mathscr{C} is the subset closure of the collection of proper colorings

```
collection of all partial colorings
```

```
collection of all partial colorings
```


$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

Color List $L=\{\bigcirc \bigcirc\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

$\left\{\left(v_{1}, \bigcirc\right),\left(v_{2}, \bigcirc\right),\left(v_{3}, \bigcirc\right)\right\}$

More Notations on \mathscr{C}

More Notations on \mathscr{C}

- For every $1 \leq k \leq n, \mathscr{C}(k)$ is the collection of partial colorings where exactly k vertices are colored

More Notations on \mathscr{C}

- For every $1 \leq k \leq n, \mathscr{C}(k)$ is the collection of partial colorings where exactly k vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

More Notations on \mathscr{C}

- For every $1 \leq k \leq n, \mathscr{C}(k)$ is the collection of partial colorings where exactly k vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

More Notations on \mathscr{C}

- For every $1 \leq k \leq n, \mathscr{C}(k)$ is the collection of partial colorings where exactly k vertices are colored
- Let $\tau \in \mathscr{C}(k)$ be a partial coloring. \mathscr{C}_{τ} is the simplicial complex for proper colorings on uncolored vertices consistent with τ

$\mathscr{C}_{\tau}:$ proper colorings on
consistent with

The Local Chain

The Local Chain

Let \mathscr{C} be the simplicial complex for proper colorings of G

The Local Chain

Let \mathscr{C} be the simplicial complex for proper colorings of G
The state space for the local chain P is $V \times[q]$

The Local Chain

Let \mathscr{C} be the simplicial complex for proper colorings of G
The state space for the local chain P is $V \times[q]$
Standing at $\left(v_{1}, c_{1}\right) \ldots$

- Pick $v_{2} \in V \backslash\left\{v_{1}\right\}$ uniformly at random
- Pick c_{2} with probability $\sim \#$ of colorings with $v_{1} \rightarrow c_{1}, v_{2} \rightarrow c_{2}$
- Move from $\left(v_{1}, c_{1}\right)$ to $\left(v_{2}, c_{2}\right)$

The Local Chain

Let \mathscr{C} be the simplicial complex for proper colorings of G
The state space for the local chain P is $V \times[q]$
Standing at $\left(v_{1}, c_{1}\right) \ldots$

Similarly define P_{τ} for each $\mathscr{C}_{\tau} \ldots$

- Pick $v_{2} \in V \backslash\left\{v_{1}\right\}$ uniformly at random
- Pick c_{2} with probability $\sim \#$ of colorings with $v_{1} \rightarrow c_{1}, v_{2} \rightarrow c_{2}$
- Move from $\left(v_{1}, c_{1}\right)$ to $\left(v_{2}, c_{2}\right)$

The Local-to-Global Scheme

The Local-to-Global Scheme

Local Expander
If for all $0 \leq k \leq n-2$, all
$\tau \in \mathscr{C}(k)$, it holds that $\lambda_{2}\left(P_{\tau}\right) \leq \gamma_{k}$.

The Local-to-Global Scheme

Local Expander
If for all $0 \leq k \leq n-2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_{2}\left(P_{\tau}\right) \leq \gamma_{k}$.

Global Expander [Alev \& Lau 2020]

$$
\lambda_{2}\left(P_{\text {Glauber }}\right) \leq 1-\frac{1}{n} \prod_{k=0}^{n-2}\left(1-\gamma_{k}\right)
$$

The Local-to-Global Scheme

Local Expander

If for all $0 \leq k \leq n-2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_{2}\left(P_{\tau}\right) \leq \gamma_{k}$.

Theorem. If $q>(1+o(1)) \Delta$, then
for each $\tau \in \mathscr{C}(k), \lambda_{2}\left(P_{\tau}\right) \leq \frac{C}{n-k}$

Global Expander [Alev \& Lau 2020]

$$
\lambda_{2}\left(P_{\text {Glauber }}\right) \leq 1-\frac{1}{n} \prod_{k=0}^{n-2}\left(1-\gamma_{k}\right)
$$

The Local-to-Global Scheme

Local Expander

If for all $0 \leq k \leq n-2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_{2}\left(P_{\tau}\right) \leq \gamma_{k}$.

Global Expander [Alev \& Lau 2020]

$$
\lambda_{2}\left(P_{\text {Glauber }}\right) \leq 1-\frac{1}{n} \prod_{k=0}^{n-2}\left(1-\gamma_{k}\right)
$$

Theorem. If $q>(1+o(1)) \Delta$, then
for each $\tau \in \mathscr{C}(k), \lambda_{2}\left(P_{\tau}\right) \leq \frac{C}{n-k}$

The Local-to-Global Scheme

Local Expander

If for all $0 \leq k \leq n-2$, all $\tau \in \mathscr{C}(k)$, it holds that $\lambda_{2}\left(P_{\tau}\right) \leq \gamma_{k}$.

Global Expander [Alev \& Lau 2020]

$$
\lambda_{2}\left(P_{\text {Glauber }}\right) \leq 1-\frac{1}{n} \prod_{k=0}^{n-2}\left(1-\gamma_{k}\right)
$$

Theorem. If $q>(1+o(1)) \Delta$, then for each $\tau \in \mathscr{C}(k), \lambda_{2}\left(P_{\tau}\right) \leq \frac{C}{n-k}$

The Glauber dynamics mixes rapidly on line graphs when $q>(1+o(1)) \Delta$

Matrix Trickle-Down Theorem

Abdolazimi, Liu and Oveis Gharan established the following theorem:

- The local walk on \mathscr{C} is irreducible
- For a family of matrices $\left\{N_{x} \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\right\}$ and $\alpha \geq \frac{1}{2}$

$$
P_{x}-\alpha \mathbf{1} \pi_{x}^{\top} \preceq_{\pi_{x}} N_{x} \preceq_{\pi_{x}} \frac{1}{2 \alpha+1} \mathrm{Id}
$$

- $\underset{x \sim \pi}{\mathbf{E}}\left[\Pi_{x} N_{x}\right] \leq \Pi N-\alpha \Pi N^{2}$

$$
\text { Then } P-\left(2-\frac{1}{\alpha}\right) 1 \pi^{\top} \leq_{\pi} N
$$

$-\pi_{x}$ stationary distr. of P_{x}
$-\pi$ stationary distr. of P
$-\Pi_{x}=\operatorname{diag}\left(\pi_{x}\right)$
$-\Pi=\operatorname{diag}(\pi)$

Remarks on MTD Theorem

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x} I d$ recovers Oppenheim's original trickle-down theorem

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x} I d$ recovers Oppenheim's original trickle-down theorem
2. The constraints achieve equality if we pick

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x}$ Id recovers Oppenheim's original trickle-down theorem
2. The constraints achieve equality if we pick

- $N_{x}=P_{x}-\alpha \mathbf{1} \pi^{\top}$

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x}$ Id recovers Oppenheim's original trickle-down theorem
2. The constraints achieve equality if we pick

- $N_{x}=P_{x}-\alpha \mathbf{1} \pi^{\top}$
- $N=P-\left(2-\frac{1}{\alpha}\right) 1 \pi^{\top}$

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x} I d$ recovers Oppenheim's original trickle-down theorem
2. The constraints achieve equality if we pick

$$
\begin{aligned}
& \text { - } N_{x}=P_{x}-\alpha \mathbf{1} \pi^{\top} \\
& \text { - } N=P-\left(2-\frac{1}{\alpha}\right) \mathbf{1} \pi^{\top}
\end{aligned}
$$

- For a family of matrices $\left\{N_{x} \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\right\}$ and $\alpha \geq \frac{1}{2}$

$$
P_{x}-\alpha \mathbf{1} \pi_{x}^{\top} \leq_{\pi_{x}} N_{x} \coprod_{\pi_{x}} \frac{1}{2 \alpha+1} \operatorname{Id}
$$

- $\underset{x \sim \pi}{\mathbf{E}}\left[\Pi_{x} N_{x}\right] \leq \Pi N-\alpha \Pi N^{2}$ Then $P-\left(2-\frac{1}{\alpha}\right) \mathbf{1} \pi^{\top} \leq_{\pi} N$

Remarks on MTD Theorem

1. Pick $N_{x}=\lambda_{x} I d$ recovers Oppenheim's original trickle-down theorem
2. The constraints achieve equality if we pick

- $N_{x}=P_{x}-\alpha \mathbf{1} \pi^{\top}$
- $N=P-\left(2-\frac{1}{\alpha}\right) 1 \pi^{\top}$

Then $\underset{x \sim \pi}{\mathbf{E}}\left[\Pi_{x} N_{x}\right]=\Pi N-\alpha \Pi N^{2}$

- For a family of matrices $\left\{N_{x} \in \mathbb{R}^{\mathscr{C}(1) \times \mathscr{C}(1)}\right\}$ and $\alpha \geq \frac{1}{2}$

$$
P_{x}-\alpha \mathbf{1} \pi_{x}^{\top} \leq_{\pi_{x}} N_{x} \leq_{\pi_{x}} \frac{1}{2 \alpha+1} \mathrm{Id}
$$

- $\underset{x \sim \pi}{\mathbf{E}}\left[\Pi_{x} N_{x}\right] \leq \Pi N-\alpha \Pi N^{2}$ Then $P-\left(2-\frac{1}{\alpha}\right) \mathbf{1} \pi^{\top} \leq_{\pi} N$

MTD on Spin System

Suppose a family of matrices $\left\{M_{\tau}\right\}$ satisfies

- For every $\tau \in \mathscr{C}(n-2)$: $\Pi_{\tau} P_{\tau}-2 \pi_{\tau} \pi_{\tau}^{\top} \leq M_{\tau} \leq \frac{1}{5} \Pi_{\tau}$
- For every $\tau \in \mathscr{C}(n-k)$ with $k>2$ such that \mathscr{C}_{τ} is connected:

$$
M_{\tau} \leq \frac{k-1}{3 k-1} \Pi_{\tau} \text { and } \underset{x \sim \pi_{\tau}}{\mathbf{E}}\left[M_{\tau \cup\{x\}}\right] \leq M_{\tau}-\frac{k-1}{k-2} M_{\tau} \Pi_{\tau}^{-1} M_{\tau}
$$

Then for every $\tau \in \mathscr{C}(n-2)$: $\lambda_{2}\left(P_{\tau}\right) \leq \lambda_{1}\left(\Pi^{-1} M_{\tau}\right)$

Our Construction of M_{τ}

For each color c, there is a matrix M_{τ}^{c}
M_{τ} is a block-diagonal matrix with each M_{τ}^{c} on its diagonal

In our construction, M_{τ}^{c} is only supported on those ($u c, v c$) with $u \sim v$

The Base Case

$$
\text { goal: } \beta=o(\Delta)
$$

Assume each vertex v has $\operatorname{deg}(v)+\beta$ colors

The base case is when $\tau \in \mathscr{C}(n-2)$

We can directly compute $P_{\tau}-21 \pi_{\tau}^{\top}$ and pick M_{τ}^{c} so that its nonzero entries are approximately

$$
\Pi_{\tau}\left[\begin{array}{cc}
\frac{1}{\beta^{2}} & -\frac{1}{\beta} \\
-\frac{1}{\beta} & \frac{1}{\beta^{2}}
\end{array}\right]
$$

The Induction Step

The Induction Step

The inductive constraint is $\underset{x \sim \tau_{\tau}}{\mathbf{E}}\left[M_{\tau \cup\{x\}}^{c}\right] \leq M_{\tau}^{c}-\frac{k-1}{k-2} M_{\tau}^{c} \Pi_{\tau}^{-1} M_{\tau}^{c}$

The Induction Step

The inductive constraint is $\underset{x \sim \pi_{\tau}}{\mathbf{E}}\left[M_{\tau \cup\{x\}}^{c}\right] \leq M_{\tau}^{c}-\frac{k-1}{k-2} M_{\tau}^{c} \Pi_{\tau}^{-1} M_{\tau}^{c}$

- We decompose M_{τ}^{c} into a diagonal part and off-diagonal part

$$
M_{\tau}^{c}=\frac{1}{k-1}\left(A_{\tau}^{c}+\Pi_{\tau} B_{\tau}^{c}\right)
$$

The Induction Step

The inductive constraint is $\underset{x \sim \pi_{\tau}}{\mathbf{E}}\left[M_{\tau \cup\{x\}}^{c}\right] \leq M_{\tau}^{c}-\frac{k-1}{k-2} M_{\tau}^{c} \Pi_{\tau}^{-1} M_{\tau}^{c}$

- We decompose M_{τ}^{c} into a diagonal part and off-diagonal part

$$
M_{\tau}^{c}=\frac{1}{k-1}\left(A_{\tau}^{c}+\prod_{\tau} B_{\tau}^{c}\right)
$$

- For each clique i, define $A_{\tau}^{c, i}$
(supported only on the clique) and let $A_{\tau}^{c}:=\sum_{i} A_{\tau}^{c, i}$.

The Induction Step

The inductive constraint is $\underset{x \sim \tau_{\tau}}{\mathbf{E}}\left[M_{\tau \cup\{x\}}^{c}\right] \leq M_{\tau}^{c}-\frac{k-1}{k-2} M_{\tau}^{c} \Pi_{\tau}^{-1} M_{\tau}^{c}$

- We decompose M_{τ}^{c} into a diagonal part and off-diagonal part

$$
M_{\tau}^{c}=\frac{1}{k-1}\left(A_{\tau}^{c}+\prod_{\tau} B_{\tau}^{c}\right)
$$

- For each clique i, define $A_{\tau}^{c, i}$ (supported only on the clique) and let $A_{\tau}^{c}:=\sum_{i} A_{\tau}^{c, i}$.

The constraint becomes to

The constraint becomes to

$$
\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)
$$

The constraint becomes to
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$
\leq a diagonal matrix

The constraint becomes to

$$
\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)
$$

\leq a diagonal matrix

$$
(k-2) \Pi_{\tau} B_{\tau}^{c}-(k-1) \mathbf{E}_{x}\left[\Pi_{\tau \cup\{x\}} B_{\tau \cup(x)}^{c}\right]-2 \Pi_{\tau}\left(B_{\tau}^{c}\right)^{2}
$$

The constraint becomes to

$$
\begin{aligned}
& \sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right) \\
& \leq \text { a diagonal matrix }
\end{aligned}
$$

$$
(k-2) \Pi_{\tau} B_{\tau}^{c}-(k-1) \mathbf{E}_{x}\left[\Pi_{\tau \cup\{x\}} B_{\tau \cup(x)}^{c}\right]-2 \Pi_{\tau}\left(B_{\tau}^{c}\right)^{2}
$$

Goal: Upper bound by a diagonal matrix so that it becomes to a scalar inequality
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau \cup(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c_{i}, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau v(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$

- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup(x)}^{c, i}\right]$ so that $\square=0$
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau v(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i \Pi_{\tau}^{-1} A_{\tau}^{c, i}}\right)$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau v(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
(excluding u)
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau v(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ (excluding u)
\# of proper pairs of colors on u and v under boundary σ
$\sum_{i}\left((k-1) \cdot \mathbf{E}_{x}\left[A_{\tau v(x)}^{c, i}\right]-(k-2) \cdot A_{\tau}^{c, i}+4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}\right)$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ (excluding u)
\# of proper pairs of colors on u and v under boundary σ
$4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
\# of proper pairs of colors on u (excluding u) and v under boundary σ \times

$4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large

For some decreasing $\left\{a_{h}\right\}_{1 \leq h \leq \Delta}$, we define

- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x]}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
(excluding u)
\# of proper pairs of colors on u and v under boundary σ
$4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large

For some decreasing $\left\{a_{h}\right\}_{1 \leq h \leq \Delta}$, we define

$A_{\tau}^{c, i}(u c, v c)$

- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x]}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- σ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
\# of proper pairs of colors on u
(excluding u)
and v under boundary σ
- $4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large
$\approx a_{h} \cdot$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup(x)}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
$-\sigma$ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
(excluding u)
\# of proper pairs of colors on u and v under boundary σ
- $4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large
$A_{\tau}^{c, i}(u c, v c)$
$\approx a_{h} \cdot$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
$\approx a_{h} \cdot$ the expectation of $\left(\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|\right)^{-1}+\right.$ remainder $)$
- Define $A_{\tau}^{c, i}=\frac{k-1}{k-2} \cdot \mathbf{E}_{x}\left[A_{\tau \cup\{x\}}^{c, i}\right]$ so that $\square=0$
$A_{\tau}^{c, i}(u c, v c) \approx$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
$-\sigma$ is random color in \mathscr{C}_{τ}
- L_{u}^{σ} is the color list of u after pinning σ
(excluding u)
\# of proper pairs of colors on u and v under boundary σ

2 $4 A_{\tau}^{c, i} \Pi_{\tau}^{-1} A_{\tau}^{c, i}$ is too large
$A_{\tau}^{c, i}(u c, v c)$
$\approx a_{h} \cdot$ the expectation of $\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|-\left|L_{u}^{\sigma} \cap L_{v}^{\sigma}\right|\right)^{-1}$
$\approx a_{h} \cdot$ the expectation of $\left(\left(\left|L_{u}^{\sigma}\right| \cdot\left|L_{v}^{\sigma}\right|\right)^{-1}+\right.$ remainder $)$
$A_{\tau}^{c, i} \approx$ the expectation of

$$
a_{h} \cdot\left(\operatorname{diag}\left(\left\{\left|L_{u}\right|^{-1}\right\}\right) \cdot \operatorname{Adj} \cdot \operatorname{diag}\left(\left\{\left|L_{u}\right|^{-1}\right\}\right)+\text { remainder }\right)
$$

The Scalar Constraints

The system reduces to a set of scalar constraints

$$
\left\{\begin{array}{l}
b_{1} \leq \frac{1}{\beta^{2}} \\
(h-1) b_{h}-h \cdot b_{h-1} \geq C_{1} b_{h}^{2}+\frac{C_{2}}{\beta^{2}} h^{2 \alpha}, \quad 2 \leq h \leq H
\end{array}\right.
$$

Proposition. For any $1 / 2 \leq \alpha \leq 1$, the system has solution when $\beta \geq c H^{\alpha} \log ^{2} H$ for some constant $c>0$.

Conclusions

Conclusions

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics

Conclusions

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_{n} has eigenvalues -1 and $n-1$). What if the graph is locally bipartite?

Conclusions

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_{n} has eigenvalues -1 and $n-1$). What if the graph is locally bipartite?
- A graph of maximum degree d is edge colorable once $q \geq d+1$ (Vizing's theorem). Our result only applies when $q \geq(2+o(1)) d$

Conclusions

- The matrix trickle-down theorem provides a new way to utilize the graph structure when analyzing Glauber dynamics
- Our analyze generalizes to those local graphs with large minimum eigenvalue (e.g., K_{n} has eigenvalues -1 and $n-1$). What if the graph is locally bipartite?
- A graph of maximum degree d is edge colorable once $q \geq d+1$ (Vizing's theorem). Our result only applies when $q \geq(2+o(1)) d$
the single-site Glauber dynamics is irreducible only when $q \geq 2 d$

