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Sampling from distributions

Density function u: ([Z]) - Ryo, Py (x) = p(x)/ Xy u(y) x u(x)
Approximate sampling: sample from fi s.t.
1
dry (1, ) = 25| P, () = Pa()] < 1/poly(n)
Counting: compute partition function »;,, u(y)

Approximate sampling & approximate counting
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Overview

1. Background
* Functional inequality and mixing time
* Local to global: an inductive approach to prove functional inequality
* Building blocks: entropic/spectral independence

2. Average-case local to global
* Definition
* Application: p-spin system
* Application: spanning trees and strongly Rayleigh distributions



P = Do k-)Uk—0)>k

Glauber dynamics: P = Dy, (n—1)Un—1)-n



Variance/entropy contraction vs. mixing time

Variance contraction Entropy contraction
* X2(vP||uP) < (1= p2)x*(vlIw) * D (VP||puP) < (1 — pgr) D (vVII)
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P = Dysk-o)U-0)-k



Variance/entropy contraction vs. mixing time

Variance contraction Entropy contraction
* X2(vP||uP) < (1= p2)x*(vlIw) * D (VP||puP) < (1 — pgr) D (vVII)
* Tynix < pyt log (minp(x)) ™ ~ plin * Tix < pxi loglog (minu(x))™" = pg; logn

* p)(z =1 _AZ(P)

Entropy contraction implies variance contraction: Py2 2 pPxkL 20

Typically for Glauber dynamics: p,2 = py, = 1

n

but log min u(x)~! =~ n. Bounding pg; = quadratic improvement on T,,,;,

It is hard to bound pg; !



Overview

1. Background
* Functional inequality and mixing time
 Local to global: an inductive approach to prove functional inequality



Local-to-global

K- <[Z]> = Ry

u is reducible i.e. conditionals u(. [S): (k[—nI]SI) — R, ,0f 4 has same property as u

u(S'[S) xu(Ss'us)

Local-to-global (variation of [Alev-Lau—ST0C’21])

Entropy contraction

Vi : ’I}KL{“HI‘[) E (l f F}'L-}I)KL“J"I_JQ_’[&_“||j}.f_}k_,[k_“}



Local-to-global

Local-to-global (variation of [Alev-Lau—ST0C’21])

Entropy contraction Vv : Dgr(v||p) = (1 + k) DL (v Dk (k—) | |t Di— (k—1))
Inductive hypothesis on u(. |i): ([’i]l{l‘}) = Rso, u(S|i) o< u(S)

Dir(v ()| u(-2)) = (1 + ye—1)Dr (v(-1) De—1) - (k—e—1) || £ D (k—1) - (k—-1))



Local-to-global

D;._,1(S): sample i € S uniformly

vD;_,1(i) = marginal ofi < Ps_, [i € S] = v(i)
Local-to-global

Entropy contraction Vi : Dt (][1) = (1 + 1) Pie.(vDrs (ko |1 Dr s 0

Inductive hypothesis on u(. |i): ([’i]f{li}) - R, u(S]i) < u(S)
Dir(v(:|9)]|p(-19)) = (1 + yr—1)Pre (v (-|£) Dk—1)— (k—e—1) [1D(k—1)— (k—2-1))

> (@) (DkL 1) (-18) — (14+9—1) DL (v (1) D1y (k—e—) 1D (1) s (k—e-1))) = O



Local-to-global

Dk—>1

H: ([Z]> = Ry

D;._,1(S): sample i € S uniformly ®

7 11 ™

%-entropic independence < Vv: Dy (v||lu) = akDy; (0
vD;_,1(i) = marginal ofi < Ps_, [i € S] = v(i)

Local-to-global

Entropy contraction Vv : Dk (v||pn) = (1 + 7%) Dk (v Dg—s k—0) || Di— (k—¢))

Inductive hypothesis on u(. |i): ([’;‘(]}{1"}) - Rsq, u(S]i) o u(S)
Dxr(v(-))]|n(-19)) = (1 + y—1) Pre (v (- |£) Dig—1)— (k—e—1) | B D (k—1) - (k—£-1))

Z (i) (DxL (v (-0 (1) — (+vr—1) DL (v (1) D — 1y (k—e— 1) LD (k—1) s (k—e—1))) = 0

Dxw(V]|) 4 vk 1 Prr (v Dy || Dr 1) 2 (14+9k—1) Dxp(V D (e—oy | |- Dg— (k—1))



Overview

 Building blocks: entropic/spectral independence

2. Average-case local to global



Entropic independence

Dk—>1
[n]
ll:( I = Ry

3

D;._1(S): sample i € S uniformly

%-entropic independence < Vv: Dy (v||u) = akDy, (VD1 ||luDg 1)

Thm: If ug = u(.|S) are % -entropic independence VS
= entropy contraction of D;,_, )

= optimal bound for modified Log-Sobolev constant and mixing time of down-
up walks



Spectral independence

Dy 1
" ([:]) LR / | \

D;._1(S): sample i € S uniformly

%-spectral independence < Vv: D,2(v||u) = akD,2(vVDy_1||tDi51)

Thm: If ug = u(.|S) are % -spectral independence VS

= variance contraction of D)., )

= optimal bound for spectral gap/Poincare constant of down-up walks



What if u(.|S) is not entropically independent for some S?



Overview

1. Background
* Functional inequality and mixing time
* Local to global: an inductive approach to prove functional inequality
* Building blocks: entropic/spectral independence

2. Average-case local to global
* Definition
* Application: pspin
* Application: spanning trees and strongly Rayleigh distributions



Average local-to-global

Thm [Alimohammadi-Anari-Shiragur-V’21,Anari-Liu-V’'22] - If,UT — ,U( |T) dre (k — |T|)(1 — p(T)) -
spectral independence VT

(1 - P(T))DKL(VHMT) = Dy, (VDo llr Dic—1)
Harmonic mean:

YT = [Eel,...,e|T|~permutation(T) [(,0(@),0({61}) ,0( (e, -, elTl—l}))_ll

Then for k = min{y;|T € ([?])}
(1 —1)Dg(v|ln) = Dg; (VDk—>(k—€)||.uDk—>(k—€))

-1



Average local to global

Intuition:

For each fixed set T € ([?]) and s,

[f for average S € (D, Us is entropically independent

then Dj_,x—¢ has good entropy contraction



Average local to global

Intuition:
Fe%eaeh—ﬁ%ed—se{—’l‘—%@—&nd—s—
‘g )
[f for average S € (D, Us is entropically independent

then Dj_,x—¢ has good entropy contraction?
Not true!



Overview

1. Background
* Functional inequality and mixing time
* Local to global: an inductive approach to prove functional inequality
* Building blocks: entropic/spectral independence

2. Average-case local to global
* Definition
* Application: p-spin
* Application: spanning trees and strongly Rayleigh distributions



Spin system

n vertices, each assigned spin +1 or -1.
Distribution over configurations ¢ € {—1,1}"
Density function:

U {_1’1}71 - RZO
Gibbs measure: u(g) = exp(H (o))



Spin system

D ©
n vertices, each assigned spin +1 or -1.

Density function:
s (~1137 - R \

[sing model: pairwise interaction (graph edges)
H(o) = £2i<j]ij0'i0'j + 2 hio;
P-spin: interaction between p Vertlces (hypergraph edges)

H(o) = Zp,u 2lp (p 1)]11 Up"'Z h;o;

n 2



Spin system

D ©
n vertices, each assigned spin +1 or -1.

1
Density function: N —
w:A-1,1}1" - Ry, \
SK Ising model: pairwise interaction (graph edges) ® 3
H(o) = \/%Zi,j]ijo-io_j + 2. hio;

P-spin: interaction betwegn p vertices (hypergraph edges)




Glauber dynamics on p-spin

* Warmup, p = 2:if 0 < § < ¢, optimal Og(n log n) mixing of
Glauber dynamics

* If X, Jp3logp B, <€.Letp =), J2Pp3logp B, , optimal
0'3 (n log n) miXing of Glauber dynamiCS [Anari-Jain-Koehler-Pham-V’23]

- [Adhikari, Brennecke, Xu, Yau'22] spectral gap = () 2) = 0z (n? log n) mixin
B\, B g 8



Thm [Anari-Jain-Koehler-Pham-V’23]: € = 6(1).u(o) = exp(H(0)).
If f = maXO.E{il}n“VZH(O')”Op < € then

phom jg (1 + O(E))-entropically independent



Thm [Anari-Jain-Koehler-Pham-V’23]. € = 9(1) ‘Ll(O') = eXp (H (O'))

Ifpg = maxae{il}nHVZH(a)Hop < € then p"o™ is (1 + O(B))-entropically
independent

Conditionals of u*°™ = pinnings of u: u(. |og = 1)

uhom( |as = 1) is (1 + 0(B))-entropically independent



Thm [Anari-Jain-Koehler-Pham-V’23]. € = 0(1) ‘Ll(O') = eXp (H (O'))

Ifpg = maxae{il}nHVZH(a)Hop < € then p"o™ is (1 + O(B))-entropically
independent

Conditionals of u"°™ = pinnings of u: u(. |os = 1) = exp(Hs .(0))

— 2
o=, max |IVHs (os)l| <p

uhom(los = 1) is (1 + O(ﬁ))-entropically independent

= 0(n'*°(A)) mixing time



Thm [Anari-Jain-Koehler-Pham-V’23]. € = 0(1) ‘Ll(O') = eXp (H (O'))
Ifpg = maxae{il}nHVZH(a)Hop < € then p"o™ is (1 + O(B))-entropically
independent

hom —

= pinnings of p: u(. |os = 1) = exp(Hs.(0))

— 2
o=, max |IVHs (os)l| <p

Conditionals of u

B ’
p = 2:Hg,(0) = \/_ﬁzi,jESC]ijo-iO-j + X hio;

Bs: < ,8 L2 N O (n) mixing time



Conditionals of "™ = pinnings of u: u(.|os = 1) = exp(Hs ;(0))

Bsx = Gscrg{aixl}n ||VZHS,T(O-SC)”OP <p
p = 3: Hs,r(U) =5 (Zi,j,kescjijkﬂiﬂj + Zi,jESC,kes]iijinTk) + X h'io;
Hope: fs; < ,8 . But, there are bad pinnings! E.g. ¢ = {1,2}

B
HS,T(U) = 73 ZkeS]leTk 0;0j



hom —

Conditionals of u = pinnings of u: u(. |og = v) = exp(Hs ;(0))

= 2 c <

Bs,t Gscrg{aixl}n ||V Hg (o5 )”Op <p
B :

p = 3: Hs,r(U) = =2 (Zi,j,kescjijkﬂiﬂj + Zi,jESC,kes]iijinTk) + X hio;

Hope: fs; < ,8 . But, there are bad pinnings! E.g. S¢ = {1,2}

B
HS,(Sign(jlzk))k(O-) = 73 2ikes |12k o;0; thus fs; = B3 = 6(1)



hom —

Conditionals of u = pinnings of u: u(. |og = v) = exp(Hs ;(0))

IBS,T = aScrg{aixl}" ||V2HS,T(0-SC)”OP <p

B
p=3:Hs.(0) = — (Zi,j,kescjijkﬂigj + Zi,jegC,kesfijk“inTk) + 210,

Hope: fs; < ,8 . But, there are bad pinnings! E.g. S¢ = {1,2}

HS,(Sign(jlzk))k(O-) = % 2ikes |12k o;0; thus fs; = B3 = 6(1)

But, “most” pinnings are good!



Overview

2. Average-case local to global

* Application: spanning trees and strongly Rayleigh distributions



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

To find one spanning tree, need Q(|E|) time.
= need Q(|E]|) time to sample.

[Anari-Liu-OveisGharan-Vinzant-Vuong'21] O(IEIlogZ |E|) using up-down walk

1> <‘




Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

Can we produce sample in sublinear time after preprocessing?



Sampling random spanning trees

1
spanning—trees

Given G, output spanning tree T with probability "

Can we produce sample in sublinear time after preprocessing?

[Anari-Lin-v--Focs'22]: Sample in 0(|V| logz |V|) time after 0(|E| 10g2 V]
preprocessing



Up-down walk

Repeat for sufficiently many times. Take tree T
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in

T + e
S i

T

-

g SR e S



Up-down walk

Repeat for sufficiently many times. Take tree T
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in
T+e

Up-down walk = down-up walk on the complement u: (n[’f]k) - R5q
defined by i([n] \ S) = u(S)



Up-down walk

\ bridge 4
> \
Repeat for sufficiently many times. Take tree T \
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in
T+e. UpdateT «T+e—f

Key points:
* Can implement 1 and 2 in O(log |V|)-time using link-cut tree
* If 3 bridge edge, need 8(|E|log|E|) time to converge



Up-down walk

\ bridge 4
> \
Repeat for sufficiently many times. Take tree T \
1. Add an edgee

2. Remove an edge f uniformly at random from the unique circle in
T+e. UpdateT «T+e—f

Key points:

* Can implement 1 and 2 in O(log |V|)-time using link-cut tree
* If 3 bridge, need 6(|E|log|E|) time to mix

* [f all edges have same marginal, mixes in O(|V]|log|V]) time



[sotropic transformation

Goal: make all edges/elements having the same marginal.

K- ([Z]) = Ry

Letp, = Pr e € T]. Replace edge e with t, = pe

] parallel edges e’

> — >/\4




Strongly Rayleigh distributions

D;._1(S): sample i € S uniformly

Uis i—entropic independence < Vv:
Dk (V|lw) = akDgy (vDyo1|l1Dg51)

u strongly Rayleigh = 1-entropic independence
Dgr(vll) = kDgy (vDyoq|[uDko1)

Examples:
* U({spanning trees})
* Determinantal point processes:



Improved entropic independence under
uniform marginals

U: ([Z]) — R, strongly Rayleigh. When p, < O (S) Ve € [n]

Dir(V|l) = (n — k) log(n/k) Dy, (VD(n—k)—>1”liD(n—k)—>1)



Improved entropic independence under
uniform marginals

U: ([Z]) — R, strongly Rayleigh. When p, < O (S) Ve € [n]

N n _ _
Di,(V|l) = (n — k) log (E) Dy (VD(n—k)—>1”#D(n—k)—>1)

1. Dk, (V[[@) = Dy, (v|pw) = kDgp,(vDy1||tDy—1)



Improved entropic independence under
uniform marginals

k

u: ([Z]) — R, strongly Rayleigh. When p, < O (n) Ve € [n]

N n _ _
Di,(V|l) = (n — k) log (E) Dy (VD(n—k)—>1”#D(n—k)—>1)

1. Dk, (V|[@) = Dy, (v|p) = kDgp,(vDyny || Dy 1)
2. KDy, (VDgo [14Dyes) = (n = k) 10g () Doy, (WD -1 1| AD (1) 1)

Here we use the uniform marginal assumption.



Improved EI implies improved mixing time

Entropy contraction of D, _xy-4 for i and its conditionals
= Entropy contraction of D,y (n—k-1)

= Mixing time of up-down walk.
(n — k) contraction = nlogn mixing time ®

(n — k) log(%) contraction = klog n mixing time ©
k



But, not all conditionals of it has improved entropy contraction ®
i.e. exists S s.t.
n

D1, (Vs |ﬁ§) <(n—k) log (E) D1 (V§D(n—k)—>1”ﬁ§D(n—k)—>1)

A - 7
- —_ 17,55
D>




Average local to global

For each set W € ( ) and s, if for “many” S € ( w )

n—k-—1 n—s
fs has uniform marginal thus improved entropy contraction
then we still get klog n mixing time ©

“many” = w/ prob. 1 — 1/n° over uniformly chosen S



Average local to global

For each set W € ( ) and s, if for “many” S € ( w )

n—k-—1 n—s
fs has uniform marginal thus improved entropy contraction

Proof:

Compare marginals of s and UsoisT for random s’

Since u is strongly Rayleigh, marginal doesn’t change much
Use martingale argument and Bernstein ineq.
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