Average case local to global and applications

Thuy-Duong Vuong

Based on joint works with Yeganeh Alimohammadi, Nima Anari, Vishesh Jain, Yang P. Liu, Frederic Koehler, Huy Tuan Pham, Kirankumar Shiragur

Sampling from distributions

Density function $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$, $\mathbb{P}_{\mu}(x) = \mu(x)/\sum_{y} \mu(y) \propto \mu(x)$

Approximate sampling: sample from $\hat{\mu}$ s.t.

$$d_{TV}(\mu, \hat{\mu}) = \frac{1}{2} \sum_{x} \left| \mathbb{P}_{\mu}(x) - \mathbb{P}_{\widehat{\mu}}(x) \right| < 1/poly(n)$$

Counting: compute partition function $\sum_{y} \mu(y)$

Approximate sampling ⇔ approximate counting

Sampling from distributions

Density function $\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$, $\mathbb{P}_{\mu}(x) = \mu(x) / \sum_{y} \mu(y) \propto \mu(x)$

Approximate sampling: sample from $\hat{\mu}$ s.t.

$$d_{TV}(\mu, \hat{\mu}) = \frac{1}{2} \sum_{x} \left| \mathbb{P}_{\mu}(x) - \mathbb{P}_{\widehat{\mu}}(x) \right| < 1/poly(n)$$

Counting: compute partition function $\sum_{y} \mu(y)$

Approximate sampling ⇔ approximate counting

Spin system:
$$Q^n \equiv \binom{[n] \times Q}{n}$$

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: p-spin system
- Application: spanning trees and strongly Rayleigh distributions

Multi-steps down-up walk for $\mu: \binom{\lfloor n \rfloor}{k} \to \mathbb{R}_{\geq 0}$

$$P = D_{k \to (k-\ell)} U_{(k-\ell) \to k}$$

Glauber dynamics: $P = D_{n \to (n-1)} U_{(n-1) \to n}$

Variance/entropy contraction vs. mixing time

Variance contraction

•
$$\chi^2(\nu P||\mu P) \le (1-\rho_{\chi^2})\chi^2(\nu||\mu)$$

$\bullet \ \rho_{\chi^2} = 1 - \lambda_2(P)$

Entropy contraction

• $\mathcal{D}_{KL}(\nu P||\mu P) \leq (1-\rho_{KL})\mathcal{D}_{KL}(\nu||\mu)$

123
$$P = D_{k \to (k-\ell)} U_{(k-\ell) \to k}$$

Variance/entropy contraction vs. mixing time

Variance contraction

•
$$\chi^2(\nu P||\mu P) \le (1 - \rho_{\chi^2})\chi^2(\nu||\mu)$$

•
$$T_{mix} \le \rho_{\chi^2}^{-1} \log (\min \mu(x))^{-1} \approx \rho_{\chi^2}^{-1} n$$

•
$$\rho_{\chi^2} = 1 - \lambda_2(P)$$

Entropy contraction

- $\mathcal{D}_{KL}(\nu P||\mu P) \leq (1-\rho_{KL})\mathcal{D}_{KL}(\nu||\mu)$
- $T_{mix} \le \rho_{KL}^{-1} \log \log \left(\min \mu(x) \right)^{-1} \approx \rho_{KL}^{-1} \log n$

Entropy contraction implies variance contraction: $\rho_{\chi^2} \ge \rho_{KL} \ge 0$

Typically for Glauber dynamics: $\rho_{\chi^2} \approx \rho_{KL} = \frac{1}{n}$

but $\log \min \mu(x)^{-1} \approx n$. Bounding $\rho_{KL} \Rightarrow$ quadratic improvement on T_{mix}

It is hard to bound ρ_{KL} !

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: p-spin system
- Application: spanning trees and strongly Rayleigh distributions

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

 μ is reducible i.e. conditionals $\mu(.|S): \binom{[n]}{k-|S|} \to \mathbb{R}_{\geq 0}$ of μ has same property as μ $\mu(S'|S) \propto \mu(S' \cup S)$

Local-to-global (variation of [Alev-Lau—STOC'21])

Entropy contraction

$$\forall \nu : \mathcal{D}_{\mathrm{KL}}(\nu||\mu) \ge (1+\gamma_k)\mathcal{D}_{\mathrm{KL}}(\nu D_{k\to(k-\ell)}||\mu D_{k\to(k-\ell)})$$

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

Local-to-global (variation of [Alev-Lau—STOC'21])

```
Entropy contraction \forall \nu: \mathcal{D}_{\mathrm{KL}}(\nu||\mu) \geq (1+\gamma_k)\mathcal{D}_{\mathrm{KL}}(\nu D_{k\to(k-\ell)}||\mu D_{k\to(k-\ell)}) Inductive hypothesis on \mu(. | i): \binom{[n]\setminus\{i\}}{k-1} \to \mathbb{R}_{\geq 0}, \mu(S|i) \propto \mu(S) \mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)||\mu(\cdot|i)) \geq (1+\gamma_{k-1})\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)D_{(k-1)\to(k-\ell-1)}||\mu D_{(k-1)\to(k-\ell-1)})
```

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

 $D_{k\to 1}(S)$: sample $i\in S$ uniformly

$$\nu D_{k\to 1}(i) = \text{marginal of } i \propto \mathbb{P}_{S\sim \nu}[i \in S] = \nu(i)$$

Local-to-global

Entropy contraction
$$\forall \nu : \mathcal{D}_{\mathrm{KL}}(\nu||\mu) \geq (1+\gamma_k)\mathcal{D}_{\mathrm{KL}}(\nu D_{k\to(k-\ell)}||\mu D_{k\to(k-\ell)})$$
 Inductive hypothesis on $\mu(.|i): \binom{\lfloor n\rfloor\setminus\{i\}}{k-1} \to \mathbb{R}_{\geq 0}, \mu(S|i) \propto \mu(S)$

$$\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)||\mu(\cdot|i)) \ge (1 + \gamma_{k-1})\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)D_{(k-1)\to(k-\ell-1)}||\mu D_{(k-1)\to(k-\ell-1)})$$

$$\sum_{i} \nu(i)(\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)||\mu(\cdot|i)) - (1 + \gamma_{k-1})\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)D_{(k-1)\to(k-\ell-1)}||\mu D_{(k-1)\to(k-\ell-1)})) \ge 0$$

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

 $D_{k\to 1}(S)$: sample $i\in S$ uniformly

 $\frac{1}{\alpha}\text{-entropic independence} \Leftrightarrow \forall \nu: \ \mathcal{D}_{KL}(\nu||\mu) \geq \alpha k \mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1})$ $\nu D_{k\to 1}(i) = \text{marginal of } i \propto \mathbb{P}_{S\sim \nu}[i \in S] = \nu(i)$

Local-to-global

Entropy contraction
$$\forall \nu: \mathcal{D}_{\mathrm{KL}}(\nu||\mu) \geq (1+\gamma_k) \mathcal{D}_{\mathrm{KL}}(\nu D_{k\to(k-\ell)}||\mu D_{k\to(k-\ell)})$$
 Inductive hypothesis on $\mu(.|i): \binom{[n]\backslash\{i\}}{k-1} \to \mathbb{R}_{\geq 0}, \mu(S|i) \propto \mu(S)$
$$\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)||\mu(\cdot|i)) \geq (1+\gamma_{k-1}) \mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)D_{(k-1)\to(k-\ell-1)}||\mu D_{(k-1)\to(k-\ell-1)})$$

$$\sum_{i} \nu(i) (\mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)||\mu(\cdot|i)) - (1+\gamma_{k-1}) \mathcal{D}_{\mathrm{KL}}(\nu(\cdot|i)D_{(k-1)\to(k-\ell-1)}||\mu D_{(k-1)\to(k-\ell-1)})) \geq 0$$

$$\mathcal{D}_{\mathrm{KL}}(\nu||\mu) + \gamma_{k-1} \mathcal{D}_{\mathrm{KL}}(\nu D_{k\to1}||\mu D_{k\to1}) \geq (1+\gamma_{k-1}) D_{\mathrm{KL}}(\nu D_{k\to(k-\ell)}||\mu D_{k\to(k-\ell)})$$

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: p-spin system
- Application: spanning trees and strongly Rayleigh distributions

Entropic independence

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

 $D_{k\to 1}(S)$: sample $i \in S$ uniformly

 $\frac{1}{\alpha}$ -entropic independence $\Leftrightarrow \forall \nu: \mathcal{D}_{KL}(\nu||\mu) \geq \alpha k \mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1})$

Thm: If $\mu_S = \mu(.|S)$ are $\frac{1}{\alpha}$ -entropic independence $\forall S$

- \Rightarrow entropy contraction of $D_{k \to (k-\ell)}$
- ⇒ optimal bound for modified Log-Sobolev constant and mixing time of downup walks

Spectral independence

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

 $D_{k\to 1}(S)$: sample $i \in S$ uniformly

 $\frac{1}{\alpha}$ -spectral independence $\Leftrightarrow \forall \nu: \mathcal{D}_{\chi^2}(\nu||\mu) \geq \alpha k \mathcal{D}_{\chi^2}(\nu D_{k\to 1}||\mu D_{k\to 1})$

Thm: If $\mu_S = \mu(.|S)$ are $\frac{1}{\alpha}$ -spectral independence $\forall S$

- \Rightarrow variance contraction of $D_{k \to (k-\ell)}$
- ⇒ optimal bound for spectral gap/Poincare constant of down-up walks

What if $\mu(.|S)$ is not entropically independent for some S?

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: pspin
- Application: spanning trees and strongly Rayleigh distributions

Average local-to-global

Thm [Alimohammadi-Anari-Shiragur-V'21,Anari-Liu-V'22]: If $\mu_T = \mu(.|T)$ are $(k-|T|)(1-\rho(T))$ - spectral independence $\forall T$

$$(1 - \rho(T))\mathcal{D}_{KL}(\nu||\mu_T) \ge \mathcal{D}_{KL}(\nu D_{k\to 1}||\mu_T D_{k\to 1})$$

Harmonic mean:

$$\begin{split} \gamma_T &= \mathbb{E}_{e_1,\dots,e_{|T|}\sim \, permutation(T)} \left[\left(\rho(\emptyset) \rho(\{e_1\}) \dots \rho\big(\, \{e_1,\dots,e_{|T|-1}\} \big) \right)^{-1} \right]^{-1} \\ \text{Then for } \kappa &= \min\{ \gamma_T | T \in {[n] \choose \ell} \} \\ &\qquad \qquad (1-\kappa) \mathcal{D}_{KL}(\nu||\mu) \geq \mathcal{D}_{KL}(\nu D_{k \to (k-\ell)}||\mu D_{k \to (k-\ell)}) \end{split}$$

Average local to global

Intuition:

For each fixed set $T \in {[n] \choose \ell}$ and s, If for average $S \in {T \choose s}$, μ_S is entropically independent then $D_{k \to (k-\ell)}$ has good entropy contraction

Average local to global

Intuition:

```
For each fixed set T \in \binom{[n]}{\ell} and s,
```

If for average $S \in \binom{T}{S}$, μ_S is entropically independent then $D_{k \to (k-\ell)}$ has good entropy contraction?

Not true!

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: p-spin
- Application: spanning trees and strongly Rayleigh distributions

Spin system

n vertices, each assigned spin +1 or -1.

Distribution over configurations $\sigma \in \{-1,1\}^n$

Density function:

$$\mu$$
: $\{-1,1\}^n \to \mathbb{R}_{\geq 0}$

Gibbs measure: $\mu(\sigma) = \exp(H(\sigma))$

Spin system

n vertices, each assigned spin +1 or -1.

Density function:

$$\mu$$
: $\{-1,1\}^n \to \mathbb{R}_{\geq 0}$

Ising model: pairwise interaction (graph edges)

$$H(\sigma) = \frac{\beta}{\sqrt{n}} \sum_{i \le j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$

P-spin: interaction between *p* vertices (hypergraph edges)

$$H(\sigma) = \sum_{p,i_1,\dots,i_p} \frac{\beta_p}{\frac{(p-1)}{n-2}} J_{i1,\dots,i_p} \sigma_1 \dots \sigma_p + \sum_i h_i \sigma_i$$

Spin system

n vertices, each assigned spin +1 or -1.

Density function:

$$\mu$$
: $\{-1,1\}^n \to \mathbb{R}_{\geq 0}$

SK Ising model: pairwise interaction (graph edges)

$$H(\sigma) = \frac{\beta}{\sqrt{n}} \sum_{i,j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$

P-spin: interaction between *p* vertices (hypergraph edges)

$$H(\sigma) = \sum_{p,i_1,\dots,i_p} \frac{\beta_p}{\frac{(p-1)}{n}} J_{i1,\dots,i_p} \sigma_1 \dots \sigma_p + \sum_i h_i \sigma_i$$
Gaussians $\mathcal{N}(0,1)$

Glauber dynamics on p-spin

- Warmup, p=2: if $0 \le \beta \le \epsilon$, optimal $O_{\beta}(n \log n)$ mixing of Glauber dynamics
- If $\sum_p \sqrt{p^3 \log p} \, \beta_p \le \epsilon$. Let $\beta = \sum_p \sqrt{2^p p^3 \log p} \, \beta_p$, optimal $O_\beta(n \log n)$ mixing of Glauber dynamics [Anari-Jain-Koehler-Pham-V'23]
 - [Adhikari, Brennecke, Xu, Yau'22] spectral gap $\geq \Omega_{\beta}\left(\frac{1}{n}\right) \Rightarrow O_{\beta}(n^2 \log n)$ mixing

Thm [Anari-Jain-Koehler-Pham-V'23]: $\epsilon = \theta(1)$. $\mu(\sigma) = \exp(H(\sigma))$. If $\beta = \max_{\sigma \in \{\pm 1\}^n} \left| |\nabla^2 H(\sigma)| \right|_{op} \le \epsilon$ then μ^{hom} is $(1 + O(\beta))$ -entropically independent

Thm [Anari-Jain-Koehler-Pham-V'23]: $\epsilon = \theta(1). \mu(\sigma) = \exp(H(\sigma)).$ If $\beta = \max_{\sigma \in \{\pm 1\}^n} \left| |\nabla^2 H(\sigma)| \right|_{op} \le \epsilon$ then μ^{hom} is $(1 + O(\beta))$ -entropically independent

Conditionals of $\mu^{hom} \equiv \text{pinnings of } \mu$: $\mu(. | \sigma_S = \tau)$ $\mu^{hom}(. | \sigma_S = \tau) \text{ is } (1 + O(\beta)) \text{-entropically independent}$ Thm [Anari-Jain-Koehler-Pham-V'23]: $\epsilon = \theta(1).\mu(\sigma) = \exp(H(\sigma)).$ If $\beta = \max_{\sigma \in \{\pm 1\}^n} \left| |\nabla^2 H(\sigma)| \right|_{op} \le \epsilon$ then μ^{hom} is $(1 + O(\beta))$ -entropically independent

Conditionals of
$$\mu^{hom} \equiv \text{pinnings of } \mu: \mu(. | \sigma_S = \tau) = \exp(H_{S,\tau}(\sigma))$$

$$\beta_{S,\tau} = \max_{\sigma_{S^c} \in \{\pm 1\}^n} \left| |\nabla^2 H_{S,\tau}(\sigma_{S^c})| \right|_{op} \leq \beta$$

 $\mu^{hom}(. | \sigma_S = \tau)$ is $(1 + O(\beta))$ -entropically independent $\Rightarrow \tilde{O}(n^{1+O(\beta)})$ mixing time

Thm [Anari-Jain-Koehler-Pham-V'23]: $\epsilon = \theta(1).\mu(\sigma) = \exp(H(\sigma)).$ If $\beta = \max_{\sigma \in \{\pm 1\}^n} \left| |\nabla^2 H(\sigma)| \right|_{op} \le \epsilon$ then μ^{hom} is $(1 + O(\beta))$ -entropically independent

Conditionals of
$$\mu^{hom} \equiv \text{pinnings of } \mu: \mu(. | \sigma_S = \tau) = \exp(H_{S,\tau}(\sigma))$$

$$\beta_{S,\tau} = \max_{\sigma_S c \in \{\pm 1\}^n} \left| \left| \nabla^2 H_{S,\tau}(\sigma_{S^c}) \right| \right|_{op} \leq \beta$$

$$p = 2: H_{S,\tau}(\sigma) = \frac{\beta}{\sqrt{n}} \sum_{i,j \in S^c} J_{ij} \sigma_i \sigma_j + \sum_i h'_i \sigma_i$$

$$\beta_{S,\tau} \leq \beta \sqrt{\frac{|S^c|}{n}} \Rightarrow \tilde{O}(n) \text{ mixing time}$$

Conditionals of
$$\mu^{hom} \equiv \text{pinnings of } \mu$$
: $\mu(.|\sigma_S = \tau) = \exp(H_{S,\tau}(\sigma))$

$$\beta_{S,\tau} = \max_{\sigma_{S^c} \in \{\pm 1\}^n} \left| \left| \nabla^2 H_{S,\tau}(\sigma_{S^c}) \right| \right|_{op} \leq \beta$$

$$p = 3 : H_{S,\tau}(\sigma) = \frac{\beta_3}{n} \left(\sum_{i,j,k \in S^c} J_{ijk} \sigma_i \sigma_j + \sum_{i,j \in S^c,k \in S} J_{ijk} \sigma_i \sigma_j \tau_k \right) + \sum_i h'_i \sigma_i$$
Hope: $\beta_{S,\tau} \leq \beta \sqrt{\frac{|S^c|}{n}}$. But, there are bad pinnings! E.g. $S^c = \{1,2\}$

$$H_{S,\tau}(\sigma) = \frac{\beta_3}{n} \sum_{k \in S} J_{12k} \tau_k \sigma_i \sigma_j$$

Conditionals of
$$\mu^{hom} \equiv \text{pinnings of } \mu$$
: $\mu(.|\sigma_S = \tau) = \exp(H_{S,\tau}(\sigma))$

$$\beta_{S,\tau} = \max_{\sigma_{S^c} \in \{\pm 1\}^n} \left| \left| \nabla^2 H_{S,\tau}(\sigma_{S^c}) \right| \right|_{op} \leq \beta$$

$$p = 3: H_{S,\tau}(\sigma) = \frac{\beta_3}{n} \left(\sum_{i,j,k \in S^c} J_{ijk} \sigma_i \sigma_j + \sum_{i,j \in S^c,k \in S} J_{ijk} \sigma_i \sigma_j \tau_k \right) + \sum_i h'_i \sigma_i$$
Hope: $\beta_{S,\tau} \leq \beta \sqrt{\frac{|S^c|}{n}}$. But, there are bad pinnings! E.g. $S^c = \{1,2\}$

$$H_{S,(sign(J_{12k}))_k}(\sigma) = \frac{\beta_3}{n} \sum_{k \in S} \left| J_{12k} \right| \sigma_i \sigma_j \text{ thus } \beta_{S,\tau} \approx \beta_3 = \theta(1)$$

Conditionals of
$$\mu^{hom} \equiv \text{pinnings of } \mu: \mu(. | \sigma_S = \tau) = \exp(H_{S,\tau}(\sigma))$$

$$\beta_{S,\tau} = \max_{\sigma_{S^c} \in \{\pm 1\}^n} \left| \left| \nabla^2 H_{S,\tau}(\sigma_{S^c}) \right| \right|_{op} \leq \beta$$

$$p = 3: H_{S,\tau}(\sigma) = \frac{\beta_3}{n} \left(\sum_{i,j,k \in S^c} J_{ijk} \sigma_i \sigma_j + \sum_{i,j \in S^c,k \in S} J_{ijk} \sigma_i \sigma_j \tau_k \right) + \sum_i h'_i \sigma_i$$

Hope:
$$\beta_{S,\tau} \leq \beta \sqrt{\frac{|S^c|}{n}}$$
. But, there are bad pinnings! E.g. $S^c = \{1,2\}$

$$H_{S,(sign(J_{12k}))_k}(\sigma) = \frac{\beta_3}{n} \sum_{k \in S} |J_{12k}| \sigma_i \sigma_j \text{ thus } \beta_{S,\tau} \approx \beta_3 = \theta(1)$$

But, "most" pinnings are good!

Overview

1. Background

- Functional inequality and mixing time
- Local to global: an inductive approach to prove functional inequality
- Building blocks: entropic/spectral independence

2. Average-case local to global

- Definition
- Application: p-spin system
- Application: spanning trees and strongly Rayleigh distributions

Sampling random spanning trees

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

To find one spanning tree, need $\Omega(|E|)$ time.

 \Rightarrow need $\Omega(|E|)$ time to sample.

[Anari-Liu-OveisGharan-Vinzant-Vuong'21] $O(|E|\log^2|E|)$ using up-down walk

Sampling random spanning trees

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

Can we produce sample in sublinear time after preprocessing?

Sampling random spanning trees

Given G, output spanning tree T with probability $\frac{1}{\#spanning-trees}$

Can we produce sample in sublinear time after preprocessing?

[Anari-Liu-V--FOCS'22]: sample in $O(|V| \log^2 |V|)$ time after $O(|E| \log^2 |V|)$ preprocessing

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T+e

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T+e

Up-down walk \equiv down-up walk on the complement $\bar{\mu}$: $\binom{[n]}{n-k} \to \mathbb{R}_{\geq 0}$ defined by $\bar{\mu}([n] \setminus S) = \mu(S)$

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T + e. Update $T \leftarrow T + e f$

Key points:

- Can implement 1 and 2 in $O(\log |V|)$ -time using link-cut tree
- If \exists bridge edge, need $\theta(|E| \log |E|)$ time to converge

Repeat for sufficiently many times. Take tree T

- 1. Add an edge e
- 2. Remove an edge f uniformly at random from the unique circle in T + e. Update $T \leftarrow T + e f$

Key points:

- Can implement 1 and 2 in $O(\log |V|)$ -time using link-cut tree
- If \exists bridge, need $\theta(|E| \log |E|)$ time to mix
- If all edges have same marginal, mixes in $O(|V| \log |V|)$ time

Isotropic transformation

Goal: make all edges/elements having the same marginal.

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$

Let $p_e = Pr_{\mu}[e \in T]$. Replace edge e with $t_e = \lceil \frac{np_e}{k} \rceil$ parallel edges e'.

Strongly Rayleigh distributions

 $\begin{array}{l} D_{k \to 1}(S) \text{: sample } i \in S \text{ uniformly} \\ \mu \text{ is } \frac{1}{\alpha} \text{-entropic independence} \Leftrightarrow \forall \nu \text{:} \\ \mathcal{D}_{KL}(\nu||\mu) \geq \alpha k \mathcal{D}_{KL}(\nu D_{k \to 1}||\mu D_{k \to 1}) \\ \mu \text{ strongly Rayleigh} \Rightarrow 1 \text{-entropic independence} \\ \mathcal{D}_{KL}(\nu||\mu) \geq k \mathcal{D}_{KL}(\nu D_{k \to 1}||\mu D_{k \to 1}) \end{array}$

Examples:

- U({spanning trees})
- Determinantal point processes:

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$
 strongly Rayleigh. When $p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k)\log(n/k)\,\mathcal{D}_{KL}(\nu D_{(n-k)\to 1}||\mu D_{(n-k)\to 1})$$

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0} \text{ strongly Rayleigh. When } p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k) \log\left(\frac{n}{k}\right) \mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

$$1. \mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) = \mathcal{D}_{KL}(\nu||\mu) \geq k\mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1})$$

Improved entropic independence under uniform marginals

$$\mu: \binom{[n]}{k} \to \mathbb{R}_{\geq 0}$$
 strongly Rayleigh. When $p_e \leq \tilde{O}\left(\frac{k}{n}\right) \forall e \in [n]$

$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) \geq (n-k) \log\left(\frac{n}{k}\right) \mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

1.
$$\mathcal{D}_{KL}(\bar{\nu}||\bar{\mu}) = \mathcal{D}_{KL}(\nu||\mu) \ge k\mathcal{D}_{KL}(\nu D_k \underline{\eta}_1||\mu D_{k\to 1})$$

2.
$$k\mathcal{D}_{KL}(\nu D_{k\to 1}||\mu D_{k\to 1}) \ge (n-k)\log\left(\frac{n}{k}\right)\mathcal{D}_{KL}(\bar{\nu}D_{(n-k)\to 1}||\bar{\mu}D_{(n-k)\to 1})$$

Here we use the uniform marginal assumption.

Improved EI implies improved mixing time

Entropy contraction of $D_{(n-k)\to 1}$ for $\bar{\mu}$ and its conditionals

- \Rightarrow Entropy contraction of $D_{(n-k)\to(n-k-1)}$
- \Rightarrow Mixing time of up-down walk.
 - (n-k) contraction $\Rightarrow n \log n$ mixing time \otimes
 - $(n-k)\log(\frac{n}{k})$ contraction \Rightarrow k log n mixing time \odot

But, not all conditionals of $\bar{\mu}$ has improved entropy contraction \odot i.e. exists \bar{S} s.t.

$$\mathcal{D}_{KL}(\bar{\nu}_{\bar{S}}||\bar{\mu}_{\bar{S}}) < (n-k)\log\left(\frac{n}{k}\right)\mathcal{D}_{KL}(\bar{\nu}_{\bar{S}}D_{(n-k)\to 1}||\bar{\mu}_{\bar{S}}D_{(n-k)\to 1})$$

Average local to global

For each set $\overline{W} \in \binom{[n]}{n-k-1}$ and s, if for "many" $\overline{S} \in \binom{\overline{W}}{n-s}$ $\overline{\mu}_{\overline{S}}$ has uniform marginal thus improved entropy contraction then we still get $k \log n$ mixing time \odot "many" = w/ prob. $1 - 1/n^{10}$ over uniformly chosen \overline{S}

Average local to global

For each set $\overline{W} \in {n \choose n-k-1}$ and s, if for "many" $\overline{S} \in {\overline{W} \choose n-s}$

 $\bar{\mu}_{\bar{S}}$ has uniform marginal thus improved entropy contraction Proof:

Compare marginals of $\bar{\mu}_{\bar{S}}$ and $\bar{\mu}_{\overline{S} \cup \{s'\}}$ for random s'

Since μ is strongly Rayleigh, marginal doesn't change much Use martingale argument and Bernstein ineq.