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1. Tutte polynomial

--- As an introduction of log-supermodular
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Tutte polynomial -- as an introduction of log-supemodular

Tutte polynomial contains a lot of information on 𝐺: 

𝑇𝐺 1,1 = #spanning trees of 𝐺

𝑇𝐺 2,1 = #forests of 𝐺

𝑇𝐺 1,2 = #spanning subgraphs of 𝐺

𝐻𝑞 = 𝑥, 𝑦 𝑥 − 1 𝑦 − 1 = 𝑞 : part. func. Potts model w/ q-states

-------

𝑇𝐺 𝑥, 0 : chromatic polynomial

𝑇𝐺 2,0 = #acyclic orientation

The Tutte polynomial of a graph 𝐺 = 𝑉, 𝐸 is given by 

𝑇𝐺 𝑥, 𝑦 ≔ 

𝐴∈2𝐸

𝑥 − 1 𝑟 𝐸 −𝑟 𝐴 𝑦 − 1 𝐴 −𝑟 𝐴

for 𝑥, 𝑦 ∈ ℝ where 𝑟 𝐴 = max 𝐹 𝐹 ⊆ 𝐴 is a forest (cycle free) , 

i.e., rank function of the graphic matroid (a.k.a. cycle matroid).  



(1,1)
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(1,2)

(2,1)

x

y
Tutte plane: The domain of the Tutte poly.

# forests (# ind. sets)

# spanning trees (# bases)

3states Potts

𝑥 − 1 𝑦 − 1 = 1

inapproximable in polynomial time 

[Goldberg & Jerrum ‘08]



5

Tutte polynomial as a partition function

𝑇𝐺 𝑥, 𝑦 ≔ 

𝐴∈2𝐸

𝑥 − 1 𝑟 𝐸 −𝑟 𝐴 𝑦 − 1 𝐴 −𝑟 𝐴

This term is positive for each 𝐴 ∈ 2𝐸

if 𝑥 > 1 and 𝑦 > 1

Tutte poly. is regarded as the partition fnc. (normalizing const.) of …
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Tutte polynomial as a partition function

a distribution 𝜋𝐺 over 2𝐸, given by 

𝜋𝐺 𝑋 ≔
1

𝑇𝐺 𝑥, 𝑦
𝑥 − 1 𝑟 𝐸 −𝑟 𝑋 𝑦 − 1 𝑋 −𝑟 𝑋

for 𝑋 ∈ 2𝐸, 

when 𝑥 > 1 and 𝑦 > 1. 

𝑇𝐺 𝑥, 𝑦 ≔ 

𝐴∈2𝐸

𝑥 − 1 𝑟 𝐸 −𝑟 𝐴 𝑦 − 1 𝐴 −𝑟 𝐴

Tutte poly. is regarded as the partition fnc. (normalizing const.) of …

This term is positive for each 𝐴 ∈ 2𝐸

if 𝑥 > 1 and 𝑦 > 1
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Tutte polynomial as a partition function

a distribution 𝜋𝐺 over 2𝐸, given by 

𝜋𝐺 𝑋 ≔
1

𝑇𝐺 𝑥, 𝑦
𝑥 − 1 𝑟 𝐸 −𝑟 𝑋 𝑦 − 1 𝑋 −𝑟 𝑋

for 𝑋 ∈ 2𝐸, 

when 𝑥 > 1 and 𝑦 > 1. Furthermore,  

✓ 𝜋𝐺  is log-supermodular if 𝑥 − 1 𝑦 − 1 ≥ 1, 

✓ 𝜋𝐺  is log-submodular if 𝑥 − 1 𝑦 − 1 ≤ 1

log-supermodular: 𝜋𝐺 𝑋 𝜋𝐺 𝑌 ≤ 𝜋𝐺 𝑋 ∪ 𝑌 𝜋𝐺 𝑋 ∩ 𝑌

log-submodular: 𝜋𝐺 𝑋 𝜋𝐺 𝑌 ≥ 𝜋𝐺 𝑋 ∪ 𝑌 𝜋𝐺 𝑌 ∩ 𝑌

𝑇𝐺 𝑥, 𝑦 ≔ 

𝐴∈2𝐸

𝑥 − 1 𝑟 𝐸 −𝑟 𝐴 𝑦 − 1 𝐴 −𝑟 𝐴

Tutte poly. is regarded as the partition fnc. (normalizing const.) of …

This term is positive for each 𝐴 ∈ 2𝐸

if 𝑥 > 1 and 𝑦 > 1
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(1,2)

(2,1)

x

y
Tutte plane

# forests (# ind. sets)

# spanning trees (# bases)

3states Potts

𝑥 − 1 𝑦 − 1 = 1

inapproximable in polynomial time 

[Goldberg & Jerrum ‘08]

p.m.f.

𝜋𝐺 𝑋 ≔
1

𝑇𝐺 𝑥, 𝑦
𝑥 − 1 𝑟 𝐸 −𝑟 𝑋 𝑦 − 1 𝑋 −𝑟 𝑋

where 𝑥 > 1 and 𝑦 > 1. 



Goal of the talk
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Why log-supermodular?

✓ Seemingly “Tractable”

➢ Monotone coupling (cf. FKG ineq.), “log-concave” etc.

✓ #BIS-hard

➢ #Ideal, #stable matching

What we (or I) know?

✓ Log-concave?

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding 
submodularity hidden in symmetric difference, SIAM Journal on 
Discrete Mathematics, 34:1 (2020), 571--585.

✓ Subclass for #BIS-hard

T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to 
the minimizer set of an M♮-concave set function, Operations 
Research Letters, 49:1 (January 2021), 1--4.

A challenge:
FPRAS or not
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Tractable 1: Log-supermodular and monotone coupling
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A set function 𝑔: 2𝑁 → ℝ>0 is log-supermodular if 
𝑔 𝑋 𝑔 𝑌 ≤ 𝑔 𝑋 ∪ 𝑌 𝑔 𝑋 ∩ 𝑌

holds for any 𝑋, 𝑌 ∈ 2𝑁, where 𝑁 = 1,2,… , 𝑛 .  

Define a transition from 𝑋 ∈ 2𝑁 to 𝑋′ ∈ 2𝑁 as follows

1. Choose 𝑖 ∈ 𝑁 u.a.r. 

2. Let 𝑋′ = ቐ
𝑋 ∪ {𝑖} w. p.

𝑔 𝑋∪ 𝑖

𝑔 𝑋∪ 𝑖 +𝑔 𝑋∖ 𝑖
,

𝑋 ∖ 𝑖 otherwise.

Prop. (cf. FKG ineq.)

The Markov chain admits a natural monotone coupling if (and 
only if) 𝑔 is log-supermodular



Log-supermodularity is “iff condition” for a monotone CFTP
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Thm. [K. @HJ ‘11]

A reversible Hasse walk on a distributive lattice 

has a monotone update function

 its stationary distribution is log-supermodular

A naïve CFTP requires simulation from all the states (2𝑁, in our case). 

If the Markov chain is stochastically monotone, then two chains 
(from Max. and Min.) are sufficient for the CFTP algorithm. 

Remark. 

We have an example that a hit-and-run chain (it’s not a Hasse walk) 
admits a monotone CFTP for discretized Dirichlet distribution, which is 
not a log-supermodular distribution for some parameter [Matsui&K. `07]

J. G. Propp, D. B. Wilson, Exact sampling with coupled 
Markov chains and applications to statistical mechanics, 
Random Struct. Algorithms, 9(1-2), 223-252, 1996.



Tractable 2: Log-supermodular vs. log concave
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 Equivalently, 𝑔 is log-supermodular iff − log𝑔 is submodular, 

where a set function 𝑓: 2𝑁 → ℝ is submodular if 
𝑓 𝑋 + 𝑓 𝑌 ≥ 𝑓 𝑋 ∪ 𝑌 + 𝑓 𝑋 ∩ 𝑌

holds for any 𝑋, 𝑌 ∈ 2𝑁. 

 Submodularity is often regarded as a discrete analogue of convexity: 

✓ 𝑓 is submodular iff its Lovasz’s extension is convex.

✓ Minimization is in P, Maximization is NP-hard.

A set function 𝑔: 2𝑁 → ℝ>0 is log-supermodular if 
𝑔 𝑋 𝑔 𝑌 ≤ 𝑔 𝑋 ∪ 𝑌 𝑔 𝑋 ∩ 𝑌

holds for any 𝑋, 𝑌 ∈ 2𝑁, where 𝑁 = 1,2,… , 𝑛 .  
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• Log-supermodular is compared with log-concave:

Maximum likelihood estimation is efficiently found.  

• Log-submodular is compared with log-convex:

Maximum likelihood estimation is hard in general. 

𝑓 is concave 

⇔ −𝑓 is convex 

𝑓 is supermodular

⇔ −𝑓 is submodular 

Set fncs. Continuous fncs.

Possible to sample from log-
concave distribution, efficiently. 

Q. Is there an efficient 
algorithm to sample from log-
supermodular distribution?

Log-concave distributions

➢ Gaussian distribution

Log-supermodular distributions

➢ Ferromagnetic Ising

➢ Tutte polynomial

➢ FKG inequality
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✓ Seemingly “Tractable”
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✓ #BIS-hard

➢ #Ideal, #stable matching

What we (or I) know?

✓ Log-concave?

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding 
submodularity hidden in symmetric difference, SIAM Journal on 
Discrete Mathematics, 34:1 (2020), 571--585.

✓ Subclass for #BIS-hard

T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to 
the minimizer set of an M♮-concave set function, Operations 
Research Letters, 49:1 (January 2021), 1--4.

A challenge:
FPRAS or not



Intractable: What is #BIS? #BIS is a counting problm
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Prob. #BIS

Given 𝐺 = 𝑈, 𝑉; 𝐸  Bipartite graph. 

Count the number of Independent Sets, where

𝑋 ⊆ 𝑈 ∪ 𝑉 is an independent set if {𝑥, 𝑦} ∉ 𝐸 for any 𝑥, 𝑦 ∈ 𝑋. 

#BIS is conjectured to be located between #SAT-hard (no FPRAS 
unless RP=NP) and FPRASable under AP-reduction.   

Approximation-
preserving reduction

“hard”

“easy”

#SAT (No FPRAS unless RP≠NP)

#BIS

FPRAS/FPTAS
(incld. #BipMatch, Ising, #0-1Knapsack,etc.) 

Fully Polynomial-time 
Randomized  Approximation 
Scheme

M. E. Dyer, L. A. Goldberg, M. Jerrum, An 
approximation trichotomy for Boolean #CSP, 
J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.

Classification of #P-hard 
problems#IDEALS, #StableMatchings



Intractable: What is #IDEALS? 
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Prob. #IDEALS

Given 𝒫 = 𝑁,≼  partially ordered set (poset). 

Count the number of ideals, where 

𝑋 ⊆ 𝑁 is an ideal if 𝑥 ∈ 𝑋 and 𝑦 ≼ 𝑥 then 𝑦 ∈ 𝑋. 

M. E. Dyer, L. A. Goldberg, C. S. Greenhill, M. Jerrum, 
The relative complexity of approximate counting 
problems, Algorithmica 38(3), 471-500, 2004

Thm. 

#BIS has an FPRAS iff #IDEALS has an FPRAS.

Prob. #BIS

Given 𝐺 = 𝑈, 𝑉; 𝐸  Bipartite graph. 

Count the number of Independent Sets, where 

𝑋 ⊆ 𝑈 ∪ 𝑉 is an independent set if {𝑥, 𝑦} ∉ 𝐸 for any 𝑥, 𝑦 ∈ 𝑋. 

Simply we say
“#IDEALS is #BIS-hard”



Proof sketch: “#IDEALS is #BIS-hard”
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SKIPthis slide

If #IDEALS has an FPRAS then #BIS has an FPRAS. 

Proof sketch.

 If #IDEALS has an FPRAS then so does #MaxBIS. 

Idea: Suppose 𝐴1, 𝐵1 ⊆ 𝑈,𝑉 and 𝐴2, 𝐵2 ⊆ 𝑈,𝑉 are 
respectively maximum independent sets of 𝐺 = 𝑈, 𝑉; 𝐸 . Then, 
both 𝐴1 ∩ 𝐴2, 𝐵1 ∪ 𝐵2 and 𝐴1 ∪ 𝐴2, 𝐵1 ∩ 𝐵2 are max. ind.
set.,  meaning that it forms a distributive lattice w/appropriate 
meet/join. In fact, the representing poset is found in a polynomial 
time by Dulmage-Mendelsohn decomp. 

 If #MaxBIS has an FPRAS then so does #BIS. 

Idea: By a Cook reduction (many-to-many).

Cf. M. E. Dyer, L. A. Goldberg, C. S. Greenhill, M. Jerrum, The relative complexity 
of approximate counting problems, Algorithmica 38(3): 471-500 (2004)



Proof sketch: “#BIS is #IDEALS-hard”
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Conversely, if #BIS has an FPRAS then #IDEALS has an FPRAS.

Proof sketch. 

 If #BIS has an FPRAS then so does #MaxBIS. 

Idea: Let 𝐺′ be a graph adding a pendant to every vertex in 𝐺.  
Then, ind. sets of 𝐺 are bijective to max. ind. sets of 𝐺′.  

 If #MaxBIS has an FPRAS then so does #IDEALS. 

Idea: As given 𝒫 = 𝑁,≼ , let 𝐺 = 𝑈, 𝑉; 𝐸 be given by 𝑈 =

𝑉 = 𝑁 and 𝑢𝑖 , 𝑣𝑗 ∈ 𝐸 if 𝑖 ≼ 𝑗. Then max. ind. sets of 𝐺 are 

bijective to ideals of 𝒫.

SKIPthis slide

Cf. M. E. Dyer, L. A. Goldberg, C. S. Greenhill, M. Jerrum, The relative complexity 
of approximate counting problems, Algorithmica 38(3): 471-500 (2004)



20Prob. #IDEALS

Given 𝒫 = 𝑁,≼  partially ordered set (poset). 

Count the number of ideals, where

𝑋 ⊆ 𝑁 is an ideal if 𝑥 ∈ 𝑋 and 𝑦 ≼ 𝑥 then 𝑦 ∈ 𝑋. 

Let ℐ 𝒫 = 𝑋 ⊆ 𝑉 𝑋 is an ideal of 𝒫 . 

✓ ℐ 𝒫 forms a distributive lattice w.r.t. ∪ and ∩.  

✓ Any finite distributive lattice is isomorphic to the set family 
of ideals of a poset (Birkhoff’s representation theorem). 

1 2

3 4

1 2

3 4

Not an idealAn ideal

∅

{2} {1}

{1,2} {1,3}

{1,2,3} {1,2,4}

{1,2,3,4}

ℐ 𝒫

1 2

3 4

𝒫 = ( 1,2,3,4 , ≼)



Intractable: log-supermodular is #BIS-hard
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Prop. (representation by minimizers of a submodular fncs.)

As given a finite poset 𝒫 = 𝑁,≼ , let 𝑓: 2𝑁 → ℝ be given by  
𝑓 𝑋 = 𝑖 ∈ 𝑋 ∃𝑗 such that 𝑗 ≺ 𝑖 and 𝑗 ∉ 𝑋

for 𝑋 ∈ 2𝑁. Then  𝑓 is submodular, and 

𝑓 𝑋 ቊ
= 0 if 𝑋 ∈ ℐ 𝒫
≥ 1 otherwise

holds for 𝑋 ∈ 2𝑁. 

Let 𝑔 𝑋 = 2− 𝑛+1 𝑓(𝑋) for 𝑋 ∈ 2𝑁, where 𝑛 = 𝑁 .

Notice that 𝑔 is log-supermodular. Then 

ℐ 𝒫 ≤ 𝐶 ≤ ℐ 𝒫 +
1

2
where recall 𝐶 = σ𝑋∈2𝑁 𝑔 𝑋 . Thus 𝐶 = ℐ 𝒫 .

⇒ If we have an FPRAS for 𝐶 we have an FPRAS for  ℐ 𝒫 . 

𝑔 𝑋 ቐ
= 1 if 𝑋 ∈ ℐ 𝒫

≤
1

2𝑛+1
otherwise



Intermediate 

◼ So far, we have seen that sampling from log-
supermodular distribution is #BIS-hard, which is 
conjectured between #SAT (no FPRAS unless 
RP=NP) and FPRASable.  

◼ Why is it hard to sample from log-supermodular? 

=> Two Hints(?) 

1. Bad example for the simple Markov chain

2. log-supermodularity is not invariant under 
“transformation of variables”. 

22

M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean #CSP, 
J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.



Bad example for the simple Markov chain
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A transition from 𝑋 to 𝑋′ is defined as follows

1. Choose 𝑖 ∈ 𝑁 u.a.r. 

2. Let 𝑋′ = ቐ
𝑋 ∪ {𝑖} w. p.

𝑔 𝑋∪ 𝑖

𝑔 𝑋∪ 𝑖 +𝑔 𝑋∖ 𝑖
,

𝑋 ∖ 𝑖 otherwise.

𝒫
ℐ 𝒫

The log-supermodular function for a poset 𝒫 = (𝑁, ≼)

𝑔 𝑋 ቐ
= 1 if 𝑋 ∈ ℐ 𝒫

≤
1

2𝑛+1
otherwise

Let 𝑔: 2𝑁 → ℝ>0 be a log-
supermodular fnc.

The mixing time 

of the MC ≥ 2
𝑛

2
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M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean #CSP, 
J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.
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Submodularity is often regarded as a discrete counter part 
of convexity, 

➢ e.g., minimization is in P, maximization is NP-hard



Convex functions
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Def. Convex function

A function 𝑓:ℝ𝑛 → ℝ is convex if 

𝜆𝑓 𝒙 + 1 − 𝜆 𝑓 𝒚 ≥ 𝑓(𝜆𝒙 + 1 − 𝜆 𝒚)

holds for any 𝒙, 𝒚 ∈ ℝ𝑛 and for any 𝜆 ∈ 0,1 . 



Convex functions
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convex

𝑓 𝑥 = 𝑥2

Def. Convex function

A function 𝑓:ℝ𝑛 → ℝ is convex if 

𝜆𝑓 𝒙 + 1 − 𝜆 𝑓 𝒚 ≥ 𝑓(𝜆𝒙 + 1 − 𝜆 𝒚)

holds for any 𝒙, 𝒚 ∈ ℝ𝑛 and for any 𝜆 ∈ 0,1 . 



Convex functions
29

convex Non-convex

𝑓 𝑥 = 𝑥2

𝑓 𝑥 = 1 − exp −
𝑥2

2
 

Def. Convex function

A function 𝑓:ℝ𝑛 → ℝ is convex if 

𝜆𝑓 𝒙 + 1 − 𝜆 𝑓 𝒚 ≥ 𝑓(𝜆𝒙 + 1 − 𝜆 𝒚)

holds for any 𝒙, 𝒚 ∈ ℝ𝑛 and for any 𝜆 ∈ 0,1 . 



Exercises
30

Ex. 1.
𝑓 𝑥, 𝑦 = 2𝑥2 + 2𝑥𝑦 + 5𝑦2

Is the function 𝑓 convex? 



Exercises
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Ex. 1.
𝑓 𝑥, 𝑦 = 2𝑥2 + 2𝑥𝑦 + 5𝑦2

Is the function 𝑓 convex? 

Answer.

Let
𝑥 ≔ 𝑠 + 2𝑡
𝑦 ≔ 𝑠 − 𝑡.

Then,
𝑔 𝑠, 𝑡 = 𝑓(𝑠 + 2𝑡, 𝑠 − 𝑡)

= 2 𝑠 + 2𝑡 2 + 2 𝑠 + 2𝑡 𝑠 − 𝑡 + 5 𝑠 − 𝑡 2

= 2𝑠2 + 8𝑠𝑡 + 8𝑡2 + 2𝑠2 + 2𝑠𝑡 − 4𝑡2 + 5𝑠2 − 10𝑠𝑡 + 5𝑡2

= 9𝑠2 + 9𝑡2.

Now, it is easy to observe that 𝑔(𝑠, 𝑡) is convex. 



Exercises
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Ex. 2.
𝑓 𝑥, 𝑦 = 𝑥2 + 4𝑥𝑦 + 3𝑦2

Is the function 𝑓 convex?



Exercises
33

Ex. 2.
𝑓 𝑥, 𝑦 = 𝑥2 + 4𝑥𝑦 + 3𝑦2

Is the function 𝑓 convex?

Answer.

Let 
𝑥 ≔ 𝑠 + 3𝑡
𝑦 ≔ 𝑠 − 𝑡.

Then, 
𝑔 𝑠, 𝑡 = 𝑓(𝑠 + 3𝑡, 𝑠 − 𝑡)

= 𝑠 + 3𝑡 2 + 4 𝑠 + 3𝑡 𝑠 − 𝑡 + 3 𝑠 − 𝑡 2

= 𝑠2 + 6𝑠𝑡 + 9𝑡2 + 4𝑠2 + 8𝑠𝑡 − 12𝑡2 + 3𝑠2 − 6𝑠𝑡 + 3𝑡2

= 8𝑠2 + 8𝑠𝑡

𝑔(𝑠, 𝑡) is not convex, that is confirmed by 

e.g., 𝑔 1,−2 = 8 − 16 = −8, 𝑔 −1,2 = 8 − 16 = −8, 

𝑔
1

2
(1, −2) +

1

2
(−1,2) = 𝑔 0,0 = 0 >

1

2
𝑔 1, −2 +

1

2
𝑔 −1,2 .



Convexity is invariant under affine transformation
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Thm. (cf. [Rockafellar])

Let ℎ:ℝ𝑛 → ℝ𝑛 be an affine map. 

If 𝑓:ℝ𝑛 → ℝ is convex, then 𝑔 ≔ 𝑓 ∘ ℎ is convex, too. 

(i.e., let ℎ = 𝐴𝒙 + 𝒃 where 𝐴 ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ𝑛, 

then 𝑔 𝒙 = 𝑓(𝐴𝒙 + 𝒃) is a convex function.

Def. Convex function

A function 𝑓:ℝ𝑛 → ℝ is convex if 

𝜆𝑓 𝒙 + 1 − 𝜆 𝑓 𝒚 ≥ 𝑓(𝜆𝒙 + 1 − 𝜆 𝒚)

holds for any 𝒙, 𝒚 ∈ ℝ𝑛 and for any 𝜆 ∈ 0,1 . 



Convexity is invariant under affine transformation
35

Thm. (cf. [Rockafellar])

Let ℎ:ℝ𝑛 → ℝ𝑛 be an affine map. 

If 𝑓:ℝ𝑛 → ℝ is convex, then 𝑔 ≔ 𝑓 ∘ ℎ is convex, too. 

(i.e., let ℎ = 𝐴𝒙 + 𝒃 where 𝐴 ∈ ℝ𝑛×𝑛, 𝒃 ∈ ℝ𝑛, 

then 𝑔 𝒙 = 𝑓(𝐴𝒙 + 𝒃) is a convex function.

Def. Convex function

A function 𝑓:ℝ𝑛 → ℝ is convex if 

𝜆𝑓 𝒙 + 1 − 𝜆 𝑓 𝒚 ≥ 𝑓(𝜆𝒙 + 1 − 𝜆 𝒚)

holds for any 𝒙, 𝒚 ∈ ℝ𝑛 and for any 𝜆 ∈ 0,1 . Discrete analogy?

submodular function

Main subject
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

𝑓 1,1,1 = 1

𝑓 1,1,0 = 2 𝑓 1,0,1 = 0 𝑓 0,1,1 = 2

𝑓 0,1,0 = 1𝑓 1,0,0 = 1 𝑓 0,0,1 = 1

𝑓 0,0,0 = 0

What is natural for “discrete 
variable transformation”?

“Change origin” (+ rename)

Once assign an origin, a Boolean 
lattice is uniquely determined  
(except for the name of items). 

We describe an “assignment of 
an origin” by a symmetric 
difference transformation, in the 
next slides. 
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

𝑓 1,1,1 = 1

𝑓 1,1,0 = 2 𝑓 1,0,1 = 0 𝑓 0,1,1 = 2

𝑓 0,1,0 = 1𝑓 1,0,0 = 1 𝑓 0,0,1 = 1

𝑓 0,0,0 = 0

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

𝑔 0,1,1 = 1

𝑔 0,1,0 = 2 𝑔 0,0,1 = 0 𝑔 1,1,1 = 2

𝑔 1,1,0 = 1𝑔 0,0,0 = 1 𝑔 1,0,1 = 1

𝑔 1,0,0 = 0

Ex. 𝑔 ≔ 𝑓 ∘ 𝜎(1,0,0)
symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

𝑔 0,1,1 = 1

𝑔 0,1,0 = 2 𝑔 0,0,1 = 0 𝑔 1,1,1 = 2

𝑔 1,1,0 = 1𝑔 0,0,0 = 1 𝑔 1,0,1 = 1

𝑔 1,0,0 = 0

Ex. 𝑔 ≔ 𝑓 ∘ 𝜎(1,0,0)

SD-transformations do not inherit submodularity, in general

symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

𝑓 1,1,1 = 1

𝑓 1,1,0 = 2 𝑓 1,0,1 = 0 𝑓 0,1,1 = 2

𝑓 0,1,0 = 1𝑓 1,0,0 = 1 𝑓 0,0,1 = 1

𝑓 0,0,0 = 0

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

𝑔 0,1,0 = 1

𝑔 0,1,1 = 2 𝑔 0,0,0 = 0 𝑔 1,1,0 = 2

𝑔 1,1,1 = 1𝑔 0,0,1 = 1 𝑔 1,0,0 = 1

𝑔 1,0,1 = 0

Ex. 𝑔 ≔ 𝑓 ∘ 𝜎(1,0,1)
symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

𝑔 0,1,0 = 1

𝑔 0,1,1 = 2 𝑔 0,0,0 = 0 𝑔 1,1,0 = 2

𝑔 1,1,1 = 1𝑔 0,0,1 = 1 𝑔 1,0,0 = 1

𝑔 1,0,1 = 0

Ex. 𝑔 ≔ 𝑓 ∘ 𝜎(1,0,1)

Some SD-transformations inherit submodularity

symmetric difference transformation
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Def. submodular function
For a set function 𝑓: 0,1 𝑉 → ℝ, let Φ𝑓: 0,1

𝑉 × 0,1 𝑉 → ℝ be given by

Φ𝑓 𝑋, 𝑌 ≔ 𝑓 𝑋 + 𝑓 𝑌 − 𝑓 𝑋 ∪ 𝑌 − 𝑓 𝑋 ∩ 𝑌 .

• A set function 𝑓 is subdmodular if Φ𝑓 𝑋, 𝑌 ≥ 0 holds for any 𝑋, 𝑌 ∈ 0,1 𝑉. 

𝑓 1,1,1 = 1

𝑓 1,1,0 = 2 𝑓 1,0,1 = 0 𝑓 0,1,1 = 2

𝑓 0,1,0 = 1𝑓 1,0,0 = 1 𝑓 0,0,1 = 1

𝑓 0,0,0 = 0

Def. SD-transformation

Let 𝜎𝑠: 0,1
𝑉 → 0,1 𝑉 (𝑆 ⊆ 𝑉) be a 

SD-map given by

𝜎𝑠 𝑋 ≔ 𝑋⊕ 𝑆 𝑋 ∈ 0,1 𝑉 .

The “SD-transformation of 𝑓 by 𝑆” is a 

set function 𝑔: 0,1 𝑉 → ℝ defined by

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 .

Question. 

Let 𝑓 be a submodular function. 

Characterize 𝑆 such that 

𝑔 ≔ 𝑓 ∘ 𝜎𝑆 is submodular.

symmetric difference transformation When does 𝑺 preserve 

submodularity?



Main Result
44

Thm. 2 (Main Thm.)

For any 𝑆 ⊆ 𝑉,
𝑓 ∘ 𝜎𝑆 is submodular ⇔ 𝑆 ∈ 𝒰 𝑓

1

23

𝑓 1,1,1 = 1

𝑓 1,1,0 = 2 𝑓 1,0,1 = 0 𝑓 0,1,1 = 2

𝑓 0,1,0 = 1𝑓 1,0,0 = 1 𝑓 0,0,1 = 1

𝑓 0,0,0 = 0

Let 

𝒰 𝑓 ≔ 𝑖∈𝐼𝑈𝑖ڂ 𝐼 ⊆ 1, … , 𝑘

where 𝑈𝑖 ⊆ 𝑉 (𝑖 = 1,… , 𝑘) is con. comp.

(𝑘 is #con. comp. of 𝐺𝑓)

⇒ 𝒰 𝑓 = ∅, 2 , 1,3 , 1,2,3 .



Intermediate 

◼ So far, we have seen that sampling from log-
supermodular distribution is #BIS-hard, which is 
conjectured between #SAT (no FPRAS unless 
RP=NP) and FPRASable.  

◼ Why is it hard to sample from log-supermodular? 

=> Two Hints(?) 

1. Bad example for the simple Markov chain

2. log-supermodularity is not invariant under 
“transformation of variables”. 

45

M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean #CSP, 
J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.

Almost end



A conference…
46

Answer: Sampling from log-M#-convex distribution is still hard.

 Kazuo Murota said … 

“Kijima, do you know M#-concave set functions form a 
proper subclass of  submodular fns.” 

(So, sampling from log-M#-convex distributions may be easier than 
from log-supermodular distr., as I understand)

 Both Min/Maximization of an M#-concave fn. is in P. 

(It looks like a matroid rank function, but not “monotone”)

T. Fujii and S. Kijima, Any finite distributive lattice is isomorphic to the 
minimizer set of an M♮-concave set function, arXiv 1903.08343, 2019. 



Goal of the talk
47

Why log-supermodular?

✓ Seemingly “Tractable”

➢ Monotone coupling (cf. FKG ineq.), “log-concave” etc.

✓ #BIS-hard

➢ #Ideal, #stable matching

What we (or I) know?

✓ Log-concave?

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding 
submodularity hidden in symmetric difference, SIAM Journal on 
Discrete Mathematics, 34:1 (2020), 571--585.

✓ Subclass for #BIS-hard

T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to 
the minimizer set of an M♮-concave set function, Operations 
Research Letters, 49:1 (January 2021), 1--4.

A challenge:
FPRAS or not



48



Formal Definition of 𝑓 (1/2)

Let 𝒫 = 𝑁,≼ be a poset and 𝑁 ≔ 1,2, … , 𝑛 .

We define a weighted bipartite graph 𝐺 ≔ 𝑈,𝑉; 𝐸 as follows.

The vertex set is given by the union of 𝑈 ≔ 𝑢1, 𝑢2, … , 𝑢𝑛  and 𝑉 ≔ 𝑣1, 𝑣2, … , 𝑣𝑛 .

The edge set 𝐸 ≔ 𝑢𝑖 , 𝑣𝑗 : 𝑢𝑖 ∈ 𝑈, 𝑣𝑗 ∈ 𝑉 and 𝑗 ≺ 𝑖 on 𝒫 .

The edge weight 𝑤:𝐸 → ℤ≥0 is given by

𝑤 𝑢𝑖 , 𝑣𝑗 = max 𝑋 − 1 ∶ 𝑋 ⊆ 𝑁 is a chain between 𝑗 and 𝑖 .

𝑈
𝑢𝑖

𝑉

𝑢𝑛𝑢1

𝑣𝑛𝑣1 𝑣𝑗

𝒫

𝑖

𝑗

𝐺

Let 𝑤 𝑢𝑖 , 𝑣𝑗 be the length 

of a longest chain from 𝑖  to 𝑗.

𝑤 𝑢𝑖, 𝑣𝑗



Formal Definition of 𝑓 (2/2)

We define a set function 𝑓: 2𝑁 → ℝ by

𝑓 𝑋 = max 

𝑒∈𝑀

𝑤 𝑒 :𝑀 is a matching between 𝑈𝑋 and 𝑉ത𝑋

where 𝑈𝑋 ≔ 𝑢𝑖 ∈ 𝑈: 𝑖 ∈ 𝑋 and 𝑉ത𝑋 ≔ 𝑣𝑖 ∈ 𝑉: 𝑖 ∉ 𝑋 .

Thm. 

𝑓 is M#-concave, and its minimizer set is ℐ 𝒫 .

Cor. 

If we have an efficient sampler from log-M#-convex distribution, 
then we have an FPRAS for #IDEALS, and hence for #BIS.



Goal of the talk
51

Why log-supermodular?

✓ Seemingly “Tractable”

➢ Monotone coupling (cf. FKG ineq.), “log-concave” etc.

✓ #BIS-hard

➢ #Ideal, #stable matching

What we (or I) know?

✓ Log-concave?

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding 
submodularity hidden in symmetric difference, SIAM Journal on 
Discrete Mathematics, 34:1 (2020), 571--585.

✓ Subclass for #BIS-hard

T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to 
the minimizer set of an M♮-concave set function, Operations 
Research Letters, 49:1 (January 2021), 1--4.

A challenge:
FPRAS or not



Conclusion
52

For efficient sampling from an arbitrary log-supermodular
distribution, #BIS needs to have an FPRAS. 

Some people conjecture that #BIS is located between #SAT (no 
FPRAS, in general) and FPRASable. 

✓ Bad News: sampling from log-M#-concave distribution
is still #BIS-hard. 

✓ Good News: #BIS (#IDEALS, precisely) is restricted to 
log-M#-concave distribution, from log-supermodular
distribution. 



Good News?  Recent development
53

N. Anari, K. Liu, S. O. Gharan, C. Vinzant, Log-concave 
polynomials II: high-dimensional walks and an FPRAS for 
counting bases of a matroid, STOC ’19. 

Provides an FPRAS for 𝑇𝐺 2,1 (𝑇𝑀 1,1 and 𝑇𝑀 2,1 , in fact) 



(1,1)

54

(1,2)

(2,1)

x

y
Tutte plane

forests (ind. sets)

spanning trees (bases)

3states Potts

(x-1)(y-1) =1

inapproximable in polynomial time 

[Goldberg & Jerrum ‘08]



The end

Thank you for the attention.
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