Something about log-supermodular distributions

Shuji Kijima (Shiga University)

Shiga
(滋賀)

1. Tutte polynomial

--- As an introduction of log-supermodular

Tutte polynomial -- as an introduction of log-supemodular

The Tutte polynomial of a graph $G=(V, E)$ is given by

$$
T_{G}(x, y):=\sum_{A \in 2^{E}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

for $x, y \in \mathbb{R}$ where $r(A)=\max \{|F| \mid F \subseteq A$ is a forest (cycle free) $\}$, i.e., rank function of the graphic matroid (a.k.a. cycle matroid).

Tutte polynomial contains a lot of information on G :

$T_{G}(1,1)=$ \#spanning trees of G
$T_{G}(2,1)=$ \#forests of G
$T_{G}(1,2)=$ \#spanning subgraphs of G
$H_{q}=\{(x, y) \mid(x-1)(y-1)=q\}$: part. func. Potts model w/q-states
$T_{G}(x, 0)$: chromatic polynomial
$T_{G}(2,0)=$ \#acyclic orientation

inapproximable in polynomial time
[Goldberg \& Jerrum '08]

Tutte polynomial as a partition function if $x>1$ and $y>1$

$$
T_{G}(x, y):=\sum_{A \in 2^{E}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

Tutte poly. is regarded as the partition fnc. (normalizing const.) of ...

Tutte polynomial as a partition function if $x>1$ and $y>1$

$$
T_{G}(x, y):=\sum_{A \in 2^{E}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

Tutte poly. is regarded as the partition fnc. (normalizing const.) of ... a distribution π_{G} over 2^{E}, given by

$$
\pi_{G}(X):=\frac{1}{T_{G}(x, y)}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

for $X \in 2^{E}$,
when $x>1$ and $y>1$.

Tutte polynomial as a partition function if $x>1$ and $y>1$

$$
T_{G}(x, y):=\sum_{A \in 2^{E}}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}
$$

Tutte poly. is regarded as the partition fnc. (normalizing const.) of ...
a distribution π_{G} over 2^{E}, given by

$$
\pi_{G}(X):=\frac{1}{T_{G}(x, y)}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

for $X \in 2^{E}$,
when $x>1$ and $y>1$. Furthermore,
$\checkmark \pi_{G}$ is log-supermodular if $(x-1)(y-1) \geq 1$,
$\checkmark \pi_{G}$ is log-submodular if $(x-1)(y-1) \leq 1$
log-supermodular: $\pi_{G}(X) \pi_{G}(Y) \leq \pi_{G}(X \cup Y) \pi_{G}(X \cap Y)$
log-submodular: $\pi_{G}(X) \pi_{G}(Y) \geq \pi_{G}(X \cup Y) \pi_{G}(Y \cap Y)$

Tutte plane

p.m.f.

$$
\pi_{G}(X):=\frac{1}{T_{G}(x, y)}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

$$
\text { where } x>1 \text { and } y>1 \text {. }
$$

inapproximable in polynomial time
[Goldberg \& Jerrum '08]
\square Why log-supermodular?
\checkmark Seemingly "Tractable"
$>$ Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
$>$ \#ldeal, \#stable matching
\square What we (or I) know?
\checkmark Log-concave?

A challenge: FPRAS or not

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.
\square Why log-supermodular?
\checkmark Seemingly "Tractable"
$>$ Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
> \#Ideal, \#stable matching
\square What we (or I) know?
\checkmark Log-concave?
J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on
Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.

Tractable 1: Log-supermodular and monotone coupling

A set function $g: 2^{N} \rightarrow \mathbb{R}_{>0}$ is log-supermodular if

$$
g(X) g(Y) \leq g(X \cup Y) g(X \cap Y)
$$

holds for any $X, Y \in 2^{N}$, where $N=\{1,2, \ldots, n\}$.
Define a transition from $X \in 2^{N}$ to $X^{\prime} \in 2^{N}$ as follows

1. Choose $i \in N$ u.a.r.
2. Let $X^{\prime}=\left\{\begin{array}{cc}X \cup\{i\} & \text { w.p. } \frac{g(X \cup\{i\})}{g(X \cup\{i\})+g(X \backslash\{i\})}, \\ X \backslash\{i\} & \text { otherwise. }\end{array}\right.$

Prop. (cf. FKG ineq.)
The Markov chain admits a natural monotone coupling if (and only if) g is log-supermodular

Log-supermodularity is "iff condition" for a monotone CFTP

A naïve CFTP requires simulation from all the states (2^{N}, in our case).
If the Markov chain is stochastically monotone, then two chains (from Max. and Min.) are sufficient for the CFTP algorithm.
J. G. Propp, D. B. Wilson, Exact sampling with coupled Markov chains and applications to statistical mechanics, Random Struct. Algorithms, 9(1-2), 223-252, 1996.

Thm. [K. @HJ '11]

A reversible Hasse walk on a distributive lattice
has a monotone update function
\Leftrightarrow its stationary distribution is log-supermodular

Remark.
We have an example that a hit-and-run chain (it's not a Hasse walk) admits a monotone CFTP for discretized Dirichlet distribution, which is not a log-supermodular distribution for some parameter [Matsui\&K. `07]

Tractable 2: Log-supermodular vs. log concave

A set function $g: 2^{N} \rightarrow \mathbb{R}_{>0}$ is log-supermodular if

$$
g(X) g(Y) \leq g(X \cup Y) g(X \cap Y)
$$

holds for any $X, Y \in 2^{N}$, where $N=\{1,2, \ldots, n\}$.
\square Equivalently, g is log-supermodular iff $-\log g$ is submodular, where a set function $f: 2^{N} \rightarrow \mathbb{R}$ is submodular if

$$
f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y)
$$

holds for any $X, Y \in 2^{N}$.
\square Submodularity is often regarded as a discrete analogue of convexity:
$\checkmark f$ is submodular iff its Lovasz's extension is convex.
\checkmark Minimization is in P, Maximization is NP-hard.

Continuous fncs.

f is supermodular
$\Leftrightarrow-f$ is submodular

$$
\begin{aligned}
& f \text { is concave } \\
& \Leftrightarrow-f \text { is convex }
\end{aligned}
$$

- Log-supermodular is compared with log-concave: Maximum likelihood estimation is efficiently found.
- Log-submodular is compated with log-convex: Maximum likelihood estinhation is hard in general.

Log-supermodular distributions
> Ferromagnetic Ising
> Tutte polynomial
$>$ FKG inequality
Q. Is there an efficient algorithm to sample from logsupermodular distribution?

Log-concave distributions
$>$ Gaussian distribution

Possible to sample from logconcave distribution, efficiently.

Goal of the talk
\square Why log-supermodular?
\checkmark Seemingly "Tractable"
> Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
$>$ \#Ideal, \#stable matching
\square What we (or I) know?

\checkmark Log-concave?
J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on
Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.

Intractable: What is \#BIS? \#BIS is a counting problm

Prob. \#BIS

Given $G=(U, V ; E)$ Bipartite graph.
Count the number of Independent Sets, where $X \subseteq U \cup V$ is an independent set if $\{x, y\} \notin E$ for any $x, y \in X$.
\#BIS is conjectured to be located between \#SAT-hard (no FPRAS unless RP=NP) and FPRASable under AP-reduction.

M. E. Dyer, L. A. Goldberg, M. Jerrum, An
approximation trichotomy for Boolean \#CSP,
J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.

- Classification of \#P-hard problems

Intractable: What is \#IDEALS?

Prob. \#BIS

Given $G=(U, V ; E)$ Bipartite graph.
Count the number of Independent Sets, where $X \subseteq U \cup V$ is an independent set if $\{x, y\} \notin E$ for any $x, y \in X$.

Prob. \#IDEALS

Given $\mathcal{P}=(N, \preccurlyeq)$ partially ordered set (poset).
Count the number of ideals, where $X \subseteq N$ is an ideal if $x \in X$ and $y \preccurlyeq x$ then $y \in X$.

Thm.

Simply we say
"\#IDEALS is \#BIS-hard"
\#BIS has an FPRAS iff \#IDEALS has an FPRAS.

Proof sketch: "\#IDEALS is \#BIS-hard"

If \#IDEALS has an FPRAS then \#BIS has an FPRAS.
Proof sketch.

- If \#IDEALS has an FPRAS then so does \#MaxBIS. Idea: Suppose $\left(A_{1}, B_{1}\right) \subseteq(U, V)$ and $\left(A_{2}, B_{2}\right) \subseteq(U, V)$ are respectively maximum independent sets of $G=(U, V ; E)$. Then, both $\left(A_{1} \cap A_{2}, B_{1} \cup B_{2}\right)$ and $\left(A_{1} \cup A_{2}, B_{1} \cap B_{2}\right)$ are max. ind. set., meaning that it forms a distributive lattice w/appropriate meet/join. In fact, the representing poset is found in a polynomial time by Dulmage-Mendelsohn decomp.
\square If \#MaxBIS has an FPRAS then so does \#BIS. Idea: By a Cook reduction (many-to-many).

Proof sketch: "\#BIS is \#IDEALS-hard"

Conversely, if \#BIS has an FPRAS then \#IDEALS has an FPRAS.
Proof sketch.

- If \#BIS has an FPRAS then so does \#MaxBIS.

Idea: Let G^{\prime} be a graph adding a pendant to every vertex in G. Then, ind. sets of G are bijective to max. ind. sets of G^{\prime}.

- If \#MaxBIS has an FPRAS then so does \#IDEALS.

Idea: As given $\mathcal{P}=(N, \preccurlyeq)$, let $G=(U, V ; E)$ be given by $|U|=$ $|V|=|N|$ and $\left\{u_{i}, v_{j}\right\} \in E$ if $i \leqslant j$. Then max. ind. sets of G are bijective to ideals of \mathcal{P}.

Prob. \#IDEALS

Given $\mathcal{P}=(N, \preccurlyeq)$ partially ordered set (poset). Count the number of ideals, where $X \subseteq N$ is an ideal if $x \in X$ and $y \preccurlyeq x$ then $y \in X$.

Let $\mathcal{J}(\mathcal{P})=\{X \subseteq V \mid X$ is an ideal of $\mathcal{P}\} . \quad \mathcal{P}=(\{1,2,3,4\}, \preccurlyeq)$
$\checkmark \mathcal{J}(\mathcal{P})$ forms a distributive lattice w.r.t. U and \cap.
\checkmark Any finite distributive lattice is isomorphic to the set family of ideals of a poset (Birkhoff's representation theorem).

An ideal

Not an ideal

$\mathcal{J}(\mathcal{P})$

Intractable: log-supermodular is \#BIS-hard
Prop. (representation by minimizers of a submodular fncs.)
As given a finite poset $\mathcal{P}=(N, \preccurlyeq)$, let $f: 2^{N} \rightarrow \mathbb{R}$ be given by $f(X)=\mid\{i \in X \mid \exists j$ such that $j<i$ and $j \notin X\} \mid$
for $X \in 2^{N}$. Then f is submodular, and

$$
f(X)\left\{\begin{array}{lc}
=0 & \text { if } X \in \mathcal{J}(\mathcal{P}) \\
\geq 1 & \text { otherwise }
\end{array}\right.
$$

holds for $X \in 2^{N}$.
Let $g(X)=2^{-(n+1) f(X)}$ for $X \in 2^{N}$, where $n=|N|$.
Notice that g is \log-supermodular. Then

$$
|\mathcal{J}(\mathcal{P})| \leq C \leq|\mathcal{J}(\mathcal{P})|+\frac{1}{2}
$$

$$
g(X)\left\{\begin{array}{cc}
=1 & \text { if } X \in \mathcal{J}(\mathcal{P}) \\
\leq \frac{1}{2^{n+1}} & \text { otherwise }
\end{array}\right.
$$

where recall $C=\sum_{X \in 2^{N}} g(X)$. Thus $[C\rfloor=|\mathcal{I}(\mathcal{P})|$.
\Rightarrow If we have an FPRAS for C we have an FPRAS for $|\mathcal{J}(\mathcal{P})|$.

Intermediate

- So far, we have seen that sampling from logsupermodular distribution is \#BIS-hard, which is conjectured between \#SAT (no FPRAS unless $R P=N P$) and FPRASable.
M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean \#CSP, J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.
- Why is it hard to sample from log-supermodular?
=> Two Hints(?)

1. Bad example for the simple Markov chain
2. log-supermodularity is not invariant under "transformation of variables".

Bad example for the simple Markov chain

Let $g: 2^{N} \rightarrow \mathbb{R}_{>0}$ be a logsupermodular fnc.

A transition from X to X^{\prime} is defined as follows

1. Choose $i \in N$ u.a.r.
2. Let $X^{\prime}=\left\{\begin{array}{cc}X \cup\{i\} & \text { w. p. } \frac{g(X \cup\{i\})}{g(X \cup\{i\})+g(X \backslash\{i\})}, \\ X \backslash\{i\} & \text { otherwise. }\end{array}\right.$

The mixing time of the $M C \geq 2^{\frac{n}{2}}$
The log-supermodular function for a poset $\mathcal{P}=(N, \preccurlyeq)$

$$
g(X)\left\{\begin{array}{cc}
=1 & \text { if } X \in \mathcal{J}(\mathcal{P}) \\
\leq \frac{1}{2^{n+1}} & \text { otherwise }
\end{array}\right.
$$

\mathcal{P}

$\mathcal{J}(\mathcal{P})$

Intermediate

- So far, we have seen that sampling from logsupermodular distribution is \#BIS-hard, which is conjectured between \#SAT (no FPRAS unless $R P=N P$) and FPRASable.
M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean \#CSP, J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.
- Why is it hard to sample from log-supermodular?
=> Two Hints(?)

1. Bad example for the simple Markov chain
2. log-supermodularity is not invariant under "transformation of variables".
\square Why log-supermodular?
\checkmark Seemingly "Tractable"
> Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
> \#Ideal, \#stable matching
\square What we (or I) know?
\checkmark Log-concave?

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.

FINDING SUBMODULARITY HIDDEN IN SYMMETRIC DIFFERENCE*

JUNPEI NAKASHIMA ${ }^{\dagger}$, YUKIKO YAMAUCHI ${ }^{\dagger}$, SHUJI KIJIMA ${ }^{\dagger}$, AND MASAFUMI YAMASHITA ${ }^{\dagger}$

Abstract. A set function f on a finite set V is subrnodular if $f(X)+f(Y) \geq f(X \cup Y)+f(X \cap Y)$ for any pair $X, Y \subseteq V$. The symmefric difference transformation (SD-transformation) of f by a canonical set $S \subseteq V$ is a set function g given by $g(X)=f(X \Delta S)$ for $X \subseteq V$, where $X \Delta$ $S=(X \backslash S) \cup(S \backslash X)$ denoten the symmetric difference between X and S. Submodularity and
$>$ e.g., minimization is in P, maximization is NP-hard
submodular, although it requires exponentially many oracle calls in general.
Key words. submodular functions, symmetric difference

Convex functions

Def. Convex function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \geq f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})
$$

holds for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$.

Convex functions

Def. Convex function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \geq f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})
$$

holds for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$.

Convex functions

Def. Convex function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \geq f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})
$$

holds for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$.

Exercises

Ex. 1.

$$
f(x, y)=2 x^{2}+2 x y+5 y^{2}
$$

Is the function f convex?

Exercises

Ex. 1.

$$
f(x, y)=2 x^{2}+2 x y+5 y^{2}
$$

Is the function f convex?
Answer.
Let

$$
\begin{aligned}
& x:=s+2 t \\
& y:=s-t
\end{aligned}
$$

Then,

$$
\begin{aligned}
g(s, t) & =f(s+2 t, s-t) \\
& =2(s+2 t)^{2}+2(s+2 t)(s-t)+5(s-t)^{2} \\
& =\left(2 s^{2}+8 s t+8 t^{2}\right)+\left(2 s^{2}+2 s t-4 t^{2}\right)+\left(5 s^{2}-10 s t+5 t^{2}\right) \\
& =9 s^{2}+9 t^{2}
\end{aligned}
$$

Now, it is easy to observe that $g(s, t)$ is convex.

Exercises

Ex. 2.

$$
f(x, y)=x^{2}+4 x y+3 y^{2}
$$

Is the function f convex?

Exercises

Ex. 2.

$$
f(x, y)=x^{2}+4 x y+3 y^{2}
$$

Is the function f convex?
Answer.
Let

$$
\begin{aligned}
& x:=s+3 t \\
& y:=s-t .
\end{aligned}
$$

Then,

$$
\begin{aligned}
g(s, t) & =f(s+3 t, s-t) \\
& =(s+3 t)^{2}+4(s+3 t)(s-t)+3(s-t)^{2} \\
& =\left(s^{2}+6 s t+9 t^{2}\right)+\left(4 s^{2}+8 s t-12 t^{2}\right)+\left(3 s^{2}-6 s t+3 t^{2}\right) \\
& =8 s^{2}+8 s t
\end{aligned}
$$

$g(s, t)$ is not convex, that is confirmed by
e.f., $g(1,-2)=8-16=-8, g(-1,2)=8-16=-8$,
$g\left(\frac{1}{2}(1,-2)+\frac{1}{2}(-1,2)\right)=g(0,0)=0>\frac{1}{2} g(1,-2)+\frac{1}{2} g(-1,2)$.

Convexity is invariant under affine transformation

Def. Convex function

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if

$$
\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y}) \geq f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})
$$

holds for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$.

Thm. (cf. [Rockafellar])
Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine map.
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, then $g:=f \circ h$ is convex, too.
(i.e., let $h=A \boldsymbol{x}+\boldsymbol{b}$ where $A \in \mathbb{R}^{n \times n}, \boldsymbol{b} \in \mathbb{R}^{n}$,
then $g(\boldsymbol{x})=f(A \boldsymbol{x}+\boldsymbol{b})$ is a convex function.

Convexity is invariant under affine transformation

Def. Convex function
A function $f: \mathbb{R}^{n}$
Main subject

Discrete analogy?

Thm. (

Let $h: \mathbb{R}$
\Rightarrow submodular function

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is
(i.e., let $h=A \boldsymbol{x}+\boldsymbol{b}$ w $\in \mathbb{R}^{n \times n}, \boldsymbol{b} \in \mathbb{R}^{n}$,
then $g(\boldsymbol{x})=f(A \boldsymbol{x}+\boldsymbol{b})$ is a convex function.

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

What is natural for "discrete variable transformation"?
"Change origin" (+ rename)
Once assign an origin, a Boolean lattice is uniquely determined (except for the name of items).

We describe an "assignment of an origin" by a symmetric difference transformation, in the next slides.

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

$$
\text { Ex. } g:=f \circ \sigma_{(1,0,0)}
$$

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

$$
\text { Ex. } g:=f \circ \sigma_{(1,0,0)}
$$

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

$$
\text { Ex. } g:=f \circ \sigma_{(1,0,1)}
$$

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.

symmetric difference transformation

$$
\text { Ex. } g:=f \circ \sigma_{(1,0,1)}
$$

Def. SD-transformation

Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

Def. submodular function

For a set function $f:\{0,1\}^{V} \rightarrow \mathbb{R}$, let $\Phi_{f}:\{0,1\}^{V} \times\{0,1\}^{V} \rightarrow \mathbb{R}$ be given by

$$
\Phi_{f}(X, Y):=f(X)+f(Y)-f(X \cup Y)-f(X \cap Y) .
$$

- A set function f is subdmodular if $\Phi_{f}(X, Y) \geq 0$ holds for any $X, Y \in\{0,1\}^{V}$.
symmetric difference transformation When does S preserve Def. SD-transformation Let $\sigma_{s}:\{0,1\}^{V} \rightarrow\{0,1\}^{V}(S \subseteq V)$ be a SD-map given by

$$
\sigma_{s}(X):=X \oplus S \quad\left(X \in\{0,1\}^{V}\right) .
$$

The "SD-transformation of f by S " is a set function $g:\{0,1\}^{V} \rightarrow \mathbb{R}$ defined by

$$
g:=f \circ \sigma_{S} .
$$

$f(1,1,0)=2 \quad f(1,0,1)=0 \quad f(0,1$,
Question.
Let f be a submodular function.
Characterize S such that
$g:=f \circ \sigma_{S}$ is submodular.

Thm. 2 (Main Thm.)

For any $S \subseteq V$,
$\left[f \circ \sigma_{S}\right.$ is submodular $\Leftrightarrow S \in \mathcal{U}(f)$]

- So far, we have seen that sampling from logsupermodular distribution is \#BIS-hard, which is conjectured between \#SAT (no FPRAS unless $R P=N P$) and FPRASable.
M. E. Dyer, L. A. Goldberg, M. Jerrum, An approximation trichotomy for Boolean \#CSP, J. Comput. Syst. Sci., 76(3-4): 267-277, 2010.
- Why is it hard to sample from log-supermodular?
=> Two Hints(?)

1. Bad example for the simple Markov chain
2. log-supermodularity is not invariant under "transformation of variables".
"Kijima, do you know $M^{\#}$-concave set functions form a proper subclass of submodular fns."
(So, sampling from log-M ${ }^{\#}$-convex distributions may be easier than from log-supermodular distr., as I understand)

B Both Min/Maximization of an $\mathrm{M}^{\#}$-concave fn . is in P .
(It looks like a matroid rank function, but not "monotone")

Answer: Sampling from log-M ${ }^{\#}$-convex distribution is still hard.
T. Fujii and S. Kijima, Any finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, arXiv 1903.08343, 2019.
\square Why log-supermodular?
\checkmark Seemingly "Tractable"
$>$ Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
> \#Ideal, \#stable matching
\square What we (or I) know?

\checkmark Log-concave?
J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on
Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.

Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function

Tomohito Fujii, Shuji Kijima*
Graduate School of Information Science and Electronic Engineering, Kyushu University, Japan

ARTICLE INFO

Article history:
Received 4 May 2020
Received in revised form 31 August 2020
Accepted 28 October 2020
Available online 3 November 2020

Keywords:

$\mathrm{M}^{\mathbf{4}}$-concave
Valuated matroid
Submodular
Distributive lattice

Abstract

M^{\sharp}-concavity is a key concept in discrete convex analysis. For set functions, the class of M^{z}-concavity is a proper subclass of submodularity. It is a well-known fact that the set of minimizers of a submodular function forms a distributive lattice, where every finite distributive lattice is possible to appear. It is a natural question whether every finite distributive lattice appears as the minimizer set of an M^{\natural}-concave set function. This paper affirmatively answers the question.

© 2020 Elsevier B.V.All rights reserved.

1. Introduction

Proposition 2 (See e.g., [9]). Given a finite poset $\mathcal{P}=(N, \preccurlyeq)$, let

Formal Definition of $f(1 / 2)$

Let $\mathcal{P}=(N, \preccurlyeq)$ be a poset and $N:=\{1,2, \ldots, n\}$.
We define a weighted bipartite graph $G:=(U, V ; E)$ as follows.
The vertex set is given by the union of $U:=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V:=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
The edge set $E:=\left\{\left\{u_{i}, v_{j}\right\}: u_{i} \in U, v_{j} \in V\right.$ and $j<i$ on $\left.\mathcal{P}\right\}$.
The edge weight $w: E \rightarrow \mathbb{Z}_{\geq 0}$ is given by

$$
w\left(\left\{u_{i}, v_{j}\right\}\right)=\max \{|X|-1: X \subseteq N \text { is a chain between } j \text { and } i\} .
$$

Formal Definition of $f(2 / 2)$

We define a set function $f: 2^{N} \rightarrow \mathbb{R}$ by

$$
f(X)=\max \left\{\sum_{e \in M} w(e): M \text { is a matching between } U_{X} \text { and } V_{\bar{X}}\right\}
$$

where $U_{X}:=\left\{u_{i} \in U: i \in X\right\}$ and $V_{\bar{X}}:=\left\{v_{i} \in V: i \notin X\right\}$.

Thm.

f is $\mathrm{M}^{\#}$-concave, and its minimizer set is $\mathcal{J}(\mathcal{P})$.

Cor.

If we have an efficient sampler from log- $\mathrm{M}^{\#}$-convex distribution, then we have an FPRAS for \#IDEALS, and hence for \#BIS.

\square Why log-supermodular?

\checkmark Seemingly "Tractable"
$>$ Monotone coupling (cf. FKG ineq.), "log-concave" etc.
\checkmark \#BIS-hard
$>$ \#Ideal, \#stable matching
\square What we (or I) know?
\checkmark Log-concave?

A challenge: FPRAS or not

J. Nakashima, Y. Yamauchi, S. Kijima and M. Yamashita, Finding submodularity hidden in symmetric difference, SIAM Journal on Discrete Mathematics, 34:1 (2020), 571--585.
\checkmark Subclass for \#BIS-hard
T. Fujii and S. Kijima, Every finite distributive lattice is isomorphic to the minimizer set of an M^{\natural}-concave set function, Operations Research Letters, 49:1 (January 2021), 1--4.

For efficient sampling from an arbitrary log-supermodular distribution, \#BIS needs to have an FPRAS.

Some people conjecture that \#BIS is located between \#SAT (no FPRAS, in general) and FPRASable.
\checkmark Bad News: sampling from $\log -\mathrm{M}^{\#}$-concave distribution is still \#BIS-hard.
\checkmark Good News: \#BIS (\#IDEALS, precisely) is restricted to log-M ${ }^{\#}$-concave distribution, from log-supermodular distribution.

Good News? Recent development

N. Anari, K. Liu, S. O. Gharan, C. Vinzant, Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid, STOC '19.

Provides an FPRAS for $T_{G}(2,1)\left(T_{M}(1,1)\right.$ and $T_{M}(2,1)$, in fact $)$

Tutte plane

inapproximable in polynomial time
[Goldberg \& Jerrum '08]

The end

Thank you for the attention.

