Reversible random walks on *dynamic* graphs

Nobutaka Shimizu (Tokyo Institute of Technology) *Takeharu Shiraga

(Chuo University)

NII Shonan Meeting: MCMC 2.0

6th Sep. 2023

Contents

Nobutaka Shimizu, Takeharu Shiraga, **Reversible random walks on dynamic graphs** *Random Structures & Algorithms*, 2023

Main topic. Time-inhomogeneous Markov chain

Notation and Main result

Previous work

Idea of proof

Other topic

- \checkmark V: Set of *n* vertices
- ✓ $P \in [0,1]^{V \times V}$: Transition matrix on V

At each discrete time step t = 1, 2, ...,

the walker moves from x to y with probability P(x, y)

Referred to as the **random walk according to P**

✓ i.e., time-homogeneous Markov chain

- \checkmark V: Set of *n* vertices
- ✓ $P \in [0,1]^{V \times V}$: Transition matrix on V

Random walk according to P.

A sequence of random variables X_0, X_1, X_2, \dots s.t.

$$\Pr\left(\begin{array}{c|c} X_{t} = x_{t} \\ X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t-1} = x_{t-1} \\ x_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t-1} \\ X_{t-1} = x_{t-1} \\ x_{t-1} \end{array}\right)$$
holds for all $t = 1, 2, \dots$ and $(x_{0}, \dots, x_{t}) \in V^{t+1}$
(where $\Pr(X_{0} = x_{0}, \dots, X_{t-1} = x_{t-1}) > 0$)

✓ i.e., time-homogeneous Markov chain

Notation: Random walk according to $(P_t)_{t \ge 1}$

 \checkmark V: Set of *n* vertices

✓ $(P_t)_{t \ge 1} = (P_1, P_2, ...)$: <u>Sequence of transition matrices</u> on V

At each discrete time step t = 1, 2, ...,

the walker moves from x to y with probability $P_t(x, y)$

Referred to as the **random walk according to** $(P_t)_{t \ge 1}$

- ✓ i.e., time-**in**homogeneous Markov chain
 - > Transition matrix at time t is P_t

Notation: Random walk according to $(P_t)_{t \ge 1}$

- ✓ *V*: Set of *n* vertices
- ✓ $(P_t)_{t \ge 1} = (P_1, P_2, ...)$: <u>Sequence of transition matrices</u> on *V*

Random walk according to $(P_t)_{t \ge 1}$.

A sequence of random variables X_0, X_1, X_2, \dots s.t.

$$\Pr\left(\begin{array}{c|c} X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t} = x_{t} \\ X_{t-1} = x_{t-1} \end{array}\right) = \Pr\left(\begin{array}{c} X_{t-1} = x_{t-1} \\ P_{t}(x_{t-1}, x_{t}) \end{array}\right)$$
holds for all $t = 1, 2, ...$ and $(x_{0}, ..., x_{t}) \in V^{t+1}$
(where $\Pr(X_{0} = x_{0}, ..., X_{t-1} = x_{t-1}) > 0$)

- ✓ i.e., time-inhomogeneous Markov chain
 - > Transition matrix at time t is P_t

Hitting time

Hitting time $t_{hit} \coloneqq \max_{x,y \in V} \mathbf{E}_x[\min\{t \ge 0 \mid X_t = y\}]$

✓ The expected # of steps for the walker to move from x to y (considering the worst-case pair of vertices x and y)

Hitting time

Hitting time $t_{hit} \coloneqq \max_{x,y \in V} \mathbf{E}_x[\min\{t \ge 0 \mid X_t = y\}]$

 ✓ The expected # of steps for the walker to move from x to y (considering the worst-case pair of vertices x and y)

Write $t_{hit}(P)$ as the HT of the RW according to P

i.e., HT of a RW with a time-invariant transition matrix

✓ There is much previous work

Write $t_{hit}((P_t)_{t\geq 1})$ as the HT of the RW according to $(P_t)_{t\geq 1}$

i.e., HT of a RW with time-varying transition matrices

✓ Not much is known (This work)

Main result (Hitting time)

✓ We give an upper bound on HT of a RW with <u>time-varying</u> transition matrices in terms of HTs of <u>time-invariant</u> ones:

<u>Thm.1 (Hitting time)</u>. Suppose $(P_t)_{t \ge 1}$ satisfies the following:

- ✓ All $P_1, P_2, ...$ are irreducible, reversible, and lazy
- ✓ All $P_1, P_2, ...$ have the same stationary distribution π

Then, there is a constant C > 0 s.t.

$$\begin{split} t_{\rm hit} \big((P_t)_{t \ge 1} \big) &\leq C \max_{t \ge 1} t_{\rm hit} (P_t) \\ &= C \max\{ t_{\rm hit} (P_1), t_{\rm hit} (P_2), t_{\rm hit} (P_3), \dots \}. \end{split}$$

 $t_{\text{hit}}((P_t)_{t\geq 1})$: HT of the RW according to $(P_t)_{t\geq 1}$, i.e., HT of the RW with timevarying transition matrices (P_t at time t) $t_{hit}(P_1)$: HT of the RW according to P_1 , i.e., HT of the RW with the time-invariant transition matrix (P_1 at all times)

Contents

10

Notation and Main result

Previous work

Idea of proof

Other topic

<u>Thm.1 (Hitting time)</u>. Suppose $(P_t)_{t \ge 1}$ satisfies the following:

- ✓ All $P_1, P_2, ...$ are irreducible, reversible, and lazy
- ✓ All $P_1, P_2, ...$ have the same stationary distribution π

Then, there is a constant C > 0 s.t.

 $\begin{aligned} t_{\rm hit} \big((P_t)_{t \ge 1} \big) &\leq C \max_{t \ge 1} t_{\rm hit} (P_t) \\ &= C \max\{ t_{\rm hit} (P_1), t_{\rm hit} (P_2), t_{\rm hit} (P_3), \dots \}. \end{aligned}$

Previous work: lazy simple RW on a (*static*) graph 11

✓ G: n-vertex graph \succ V(G): Vertex set of G \succ E(G): Edge set of G

→ deg(G, x): Degree of vertex $x \in V(G)$

 $\frac{Lazy \ simple \ random \ walk \ on \ (static) \ G}{P(x,y)}:= \begin{cases} \frac{1}{2 \deg(G,x)} & (if \{x,y\} \in E(G)) \\ \frac{1}{2} & (if x = y) \\ 0 & (otherwise) \end{cases}$ At time t, the walker 1/6 1/2 1/6 1/2 1/6 1/2 1/6 1/2 1/6 1/2 1/6 1/6 1/2 1/6 1/

For any connected graph G, let P be the transition matrix ofthe lazy simple RW on G. Then,There exists a tight

$$t_{\rm hit}(P) = O(n^3).$$
 exam

example (Lollipop graph)

[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

Previous work: lazy simple RW on a *dynamic* graph 12

 \checkmark G₁, G₂, ... : Sequence of edge-changing *n*-vertex graphs

 $\frac{Lazy \ simple \ random \ walk \ on \ G_1, G_2, \dots}{\text{moves from } x \ to \ y \ w.p. \ P_t(x, y) \ defined \ as \ follows:}$ $P_t(x, y) \coloneqq \begin{cases} \frac{1}{2 \deg(G_t, x)} & (\text{if } \{x, y\} \in E(G_t)) \\ \frac{1}{2} & (\text{if } x = y) \\ 0 & (\text{otherwise}) \end{cases}$

Ex. Lazy simple random walk on $G_1, G_2, ...$

Previous work: Exponential lower bound for LSRW 13

<u>Sisyphus wheel</u>. Sequence of star graphs $G_1, G_2, ...$ with $V(G_t) = \{1, ..., n\}$, where the center changes periodically in 1, ..., n - 1

For Sisyphus wheel $G_1, G_2, ..., \text{ let } P_t$ be the transition matrix of the <u>lazy simple random walk</u> on G_t . Then, $t_{\text{hit}}((P_t)_{t\geq 1}) = 2^{\Omega(n)}$. [Avin, Kouský, Lotler. ICALP 08, RS&A 18]

Ex of n = 5.

The walker must stay n - 2 consecutive steps to reach the vertex n

Previous work: Upper bound for lazy simple RW 14

∀sequence of connected graphs $G_1, G_2, ...$ with an <u>invariant</u> <u>degree distribution</u>, let P_t be the transition matrix of lazy simple walk on G_t . Then,

$$t_{\rm hit}\big((P_t)_{t\geq 1}\big)=O\big(n^3\log n\big).$$

[Sauerwald, Zanetti. ICALP 19]

- ✓ In general, there exists a sequence of graphs s.t. HT is exponential (Sisyphus wheel)
- \checkmark If the degree distribution is invariant, HT is polynomial

We can apply Thm.1 for <u>lazy simple RW</u> on $G_1, G_2, ...$ with <u>time-invariant degree distribution</u>!

- ✓ P_t (Transition matrix of LSRW on G_t) is irreducible, reversible and lazy (if G_t is connected)
- ✓ Stationary distribution of P_t is $\frac{\deg(G_t, x)}{2|E(G_t)|}$
 - Stationary distribution is invariant if degree dist. is !

<u>Thm.1 (Hitting time)</u>. Suppose $(P_t)_{t \ge 1}$ satisfies the following:

- ✓ All $P_1, P_2, ...$ are irreducible, reversible, and lazy
- ✓ All $P_1, P_2, ...$ have the same stationary distribution π

Then, there is a constant C > 0 s.t. $t_{\text{hit}}((P_t)_{t \ge 1}) \le C \max_{t \ge 1} t_{\text{hit}}(P_t)$ = $C \max\{t_{\text{hit}}(P_1), t_{\text{hit}}(P_2), t_{\text{hit}}(P_3), ...\}$

Application of Theorem 1: Lazy simple RW

<u>Corollary of Thm.1</u>. \forall sequence of connected graphs $(G_t)_{t\geq 1}$ with an <u>invariant degree distribution</u>, let P_t be the transition matrix of the <u>lazy simple RW</u> on G_t . Then, $t_{\text{hit}}((P_t)_{t\geq 1}) = O(\mathbf{n}^3)$.

✓ Improves $O(n^3 \log n)$ bound of the previous work!

[Sauerwald, Zanetti. ICALP 19]

Remark.

HT of LSRW on G_1

✓
$$t_{\text{hit}}(P_1) = O(n^3), t_{\text{hit}}(P_2) = O(n^3), ...$$

[Aleliunas et al. 79] (previous work on static graphs)

<u>Thm.1.</u> Suppose all $P_1, P_2, ...$ are irreducible, reversible, lazy, and have the same stationary distribution π . Then, $t_{\text{hit}}((P_t)_{t\geq 1}) \leq C \max\{t_{\text{hit}}(P_1), t_{\text{hit}}(P_2), ...\}$.

HT of LSRW on G_2

Other example: lazy Metropolis walk

For any <u>connected</u> graph *G*, let *P* be the transition matrix of the <u>lazy Metropolis walk</u> on *G*. Then, $t_{hit}(P) = O(n^2)$. [Nonaka, Ono, Sadakane, Yamashita. Theoretical Compt. Sci. 10]

- ✓ Using local degree information achieves $O(n^2)$ hitting time
- ✓ There are no previous studies about dynamic cases

Application of Theorem 1: Lazy Metropolis walk 18

<u>Cor. of Thm.1</u>. \forall sequence of connected graphs $(G_t)_{t\geq 1}$, let P_t be the transition matrix of the <u>lazy Metropolis W</u> on G_t . Then, $t_{\text{hit}}((P_t)_{t\geq 1}) = O(n^2)$.

Remark. Same bound as the static graph! i.e., LMW is **robust** for edge-changes

- ✓ Stationary distribution of LMW is the uniform distribution $(\pi(x) = 1/n \text{ for any graph})$
 - Stationary distribution is invariant for any graphs!

✓
$$t_{\text{hit}}(P_1) = O(n^2), t_{\text{hit}}(P_2) = O(n^2), ...$$

HT of LMW on G_1 HT of LMW on G_2

[Nonaka et al. 10] (previous work on static graphs)

<u>Thm.1</u>. Suppose all $P_1, P_2, ...$ are irreducible, reversible, lazy, and have the same stationary distribution π . Then, $t_{\text{hit}}((P_t)_{t\geq 1}) \leq C \max\{t_{\text{hit}}(P_1), t_{\text{hit}}(P_2), ...\}$.

Contents

19

Notation and Main result

Previous works

Idea of proof

Other topic

 $\checkmark \tau_y \coloneqq \min\{t \ge 0 \mid X_t = y\}$: **Hitting time to y** (random variable)

Remark. Hitting time $t_{hit} = \max_{x,y \in V} \mathbf{E}_x[\tau_y]$ from definition

<u>Hitting time lemma</u>. Suppose $(P_t)_{t\geq 1}$ satisfies the following: \checkmark All $P_1, P_2, ...$ are irreducible and reversible \checkmark All $P_1, P_2, ...$ have the same stationary distribution π Then, for any $w \in V$ and $T \geq 0$,

$$\Pr_{\pi}(\tau_w > T) \le \left(1 - \frac{1}{\max_{t \ge 1} t_{\text{hit}}(P_t)}\right)^T$$

✓ For the walker <u>starting from the stationary distribution</u>, the hitting time to a vertex decreases exponentially

$$\checkmark \tau_y \coloneqq \min\{t \ge 0 \mid X_t = y\}$$
: **Hitting time to y** (random variable)

<u>Hitting time lemma.</u> Suppose all $P_1, P_2, ...$ are irreducible, reversible, and have the same stationary distribution π . Then, for any $w \in V$ and $T \ge 0$, $\Pr_{\pi}(\tau_w > T) \le \left(1 - \frac{1}{\max_{t>1} t_{\text{hit}}(P_t)}\right)^T.$

➢ HTL implies that "Hitting time from stationary E_π[τ_w]" is bounded by max t_{hit}(P_t): $E_{\pi}[τ_w] \leq \sum_{T=0}^{\infty} \left(1 - \frac{1}{\max_{t \geq 1} t_{hit}(P_t)}\right)^T = \max_{t \geq 1} t_{hit}(P_t).$

Proof of hitting time lemma (1/3)

✓ $D_w \in \{0,1\}^{V \times V}$: diagonal matrix where $D_w(x,x) = \mathbf{1}_{x \neq w}$ ➤ **Key observation**. τ_w can be expressed in terms of D_w :

$$\Pr_{x}(\tau_{w} > T, X_{T} = y) = \Pr_{x}\left(\bigwedge_{t=0}^{T} \{X_{t} \neq w\}, X_{T} = y\right)$$

$$= \left(\prod_{t=1}^{T} D_{w}P_{t}D_{w}\right)(x, y).$$
"Transitions that exclude reaching w"
$$D_{w} = \left(\bigvee_{t=1}^{W} 1 \bigcup_{t=1}^{W} w D_{w}PD_{w} = \left(\bigcup_{t=1}^{W} 0 \bigcup_{t=1}^{W} w D_{w}PD_{w}\right)(x, y)\right)$$
Identity matrix
$$P \text{ except that}$$
its w-th row and column are set to 0

Proof of Hitting time lemma (2/3)

Courant-Fischer-Weyl Min-max theorem

✓ $\rho(A)$: the spectral radius of A

Proof of Hitting time lemma (3/3)

✓ The following lemma, a basic consequence of the *Perron-Frobenius theorem*, concludes the proof:

Lem. Suppose *P* is irreducible & reversible. Then, $\forall w \in V$, the spectral radius $\rho(D_w P D_w)$ of $D_w P D_w$ is bounded by $1 - \frac{1}{t_{hit}(P)}$. [Aldous, Fill 02]

$$\Pr_{\pi}(\tau_{w} > T) \le \prod_{t=1}^{T} \rho(D_{w}P_{t}D_{w}) \le \prod_{t=1}^{T} \left(1 - \frac{1}{t_{\text{hit}}(P_{t})}\right).$$

Hitting time lemma. Suppose all P₁, P₂, ... are irreducible, and have the same

stationary distribution
$$\pi$$
. Then, $\Pr_{\pi}(\tau_w > T) \le \left(1 - \frac{1}{\max_{t \ge 1} t_{\text{hit}}(P_t)}\right)^T$

Proof overview:

Time taken for a walker

 $t_{\rm hit}((P_t)_{t\geq 1}) \leq$

to converge π (from the worst initial pos.)

 $+ \max_{t \ge 1} t_{\text{hit}}(P_t)$

Hitting time lemma:

 $\mathbf{E}_{\pi}(\tau_w) \leq \max_{t>1} t_{\mathrm{hit}}(P_t) \,.$

✓ Mixing time bound for time-inhomogeneous Markov chain

✓ For time-homogeneous MC, the following is well-known:

<u>**Thm.</u>** Suppose *P* is irreducible, reversible and lazy. Then, $t_{\text{mix}}^{(\infty)}(P) \leq Ct_{\text{hit}}(P).$ [Levin, Peres, Wilmer. 08]</u>

Key tool 2: Mixing time \leq Hitting time

<u>Thm.2 (Mixing time)</u>. Suppose $(P_t)_{t \ge 1}$ satisfies the following:

- ✓ All $P_1, P_2, ...$ are irreducible, reversible and lazy
- ✓ All $P_1, P_2, ...$ have the same stationary distribution π

Then, there is a constant C > 0 s.t.

$$t_{\min}^{(\infty)}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\operatorname{hit}}(P_t).$$

$$(\ell_{\infty}(\pi))$$
 -) Mixing time $t_{\min}^{(\infty)}((P_t)_{t\geq 1})$.

$$\begin{split} t_{\min}^{(\infty)} \big((P_t)_{t \ge 1} \big) \\ &\coloneqq \min \left\{ t \ge 0 : \max_{s \ge 0, x, y \in V} \left| \frac{(P_{s+1} P_{s+2} \cdots P_{s+t})(x, y)}{\pi(y)} - 1 \right| \le \frac{1}{2} \right\} \end{split}$$

Remark.

✓ The following bound of $t_{\min}^{(\infty)}((P_t)_{t \ge 1})$ has been shown:

Suppose all $P_1, P_2, ...$ are irreducible, aperiodic, reversible, and have the same stationary distribution π . Then, \exists constant C s.t.

$$t_{\min}^{(\infty)}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} \left(\frac{\log \pi_{\min}^{-1}}{1-\lambda_{\star}(P_t)}\right).$$

[Saloff-Coste, Zúñiga. Stochastic Processes and their Applications 07]

 $\lambda_{\star}(P)$: 2nd largest eigenvalue in absolute value of P

- ✓ For some cases (e.g., LSRW on expander graphs), this gives a better bound than our bound of $\max_{t \ge 1} t_{hit}(P_t)$
- ✓ However, **there exists bad examples** (e.g, LSRW on cycles) where this bound gets $\max_{t \ge 1} t_{hit}(P_t) \log n$

Proof outline for Theorem 2 (Mixing time)

For a probability vector $\mu \in [0,1]^V$, let $\Delta^{(\pi)}(\mu) \coloneqq \left\| \frac{\mu}{\pi} - \mathbf{1} \right\|_{2,\pi}^2 = \sum_{x,y} \pi(x) \left(\frac{\mu(x)}{\pi(x)} - 1 \right)^2.$ $\Delta^{(\pi)}(\mu P) \leq \Delta^{(\pi)}(\mu) \left(1 - \frac{\Delta^{(\pi)}(\mu)}{t_{\text{hit}}(P)}\right).$ Lem. μP gets closer to π than μ in terms of $t_{\rm hit}(P)$ (dist. after one step) Applying repeatedly For $T \ge C \max_{t\ge 1} t_{\text{hit}}(P_t)$, $\Delta^{(\pi)}(\mu P_1 \cdots P_T) \le \frac{1}{2}$. Lem. $\ell_2(\pi)$ -norm $\rightarrow \ell_{\infty}(\pi)$ -norm **<u>Thm.2.</u>** For $T \ge C \max_{t \ge 1} t_{\text{hit}}(P_t)$, $\max_{s \ge 0, x, y \in V} \left| \frac{(P_{s+1} \cdots P_{s+T})(x, y)}{\pi(y)} - 1 \right| \le \frac{1}{2}$.

Key technical lemma

For $f \in \mathbb{R}^{V}$, let $\mathcal{E}_{P,\pi}(f) \coloneqq \mathcal{E}_{P,\pi}(f,f) = \frac{1}{2} \sum_{x,y \in V} \pi(x)P(x,y)(f(x) - f(y))^{2}$ $= \langle f, f \rangle_{\pi} - \langle f, Pf \rangle_{\pi}.$ (Dirichlet form)

 $\langle f, g \rangle_{\pi} \coloneqq \sum_{x \in V} \pi(x) f(x) g(x)$: π -inner product

Key technical lemma (Proof, 1/3)

Lem. For any irreducible & reversible *P*, $\mathcal{E}_{P,\pi}\left(\frac{\mu}{\pi}\right) \geq \frac{\Delta^{(\pi)}(\mu)^2}{t_{\text{hit}}(P)}.$

$$\checkmark \text{ Let } g(x) \coloneqq \left\| \frac{\mu}{\pi} \right\|_{\infty} - \frac{\mu(x)}{\pi(x)}. \qquad \succ \left\| \frac{\mu}{\pi} \right\|_{\infty} = \max_{x \in V} \frac{\mu(x)}{\pi(x)}$$

✓ The proof consists of the following three statements:

1.
$$\mathcal{E}_{P,\pi}\left(\frac{\mu}{\pi}\right) = \langle g,g \rangle_{\pi} - \langle Pg,g \rangle_{\pi}$$

2. $\langle Pg,g \rangle_{\pi} \leq \left(1 - \frac{1}{t_{\mathrm{hit}}(P)}\right) \langle g,g \rangle_{\pi}.$

3. $\langle g, g \rangle_{\pi} \geq \Delta^{(2,\pi)}(\mu)^2$

Key technical lemma (Proof, 2/3)

$$\checkmark g(x) \coloneqq \left\|\frac{\mu}{\pi}\right\|_{\infty} - \frac{\mu(x)}{\pi(x)}.$$

$$I. \text{ Since } \frac{\mu(x)}{\pi(x)} - \frac{\mu(y)}{\pi(y)} = g(y) - g(x),$$

$$\varepsilon_{P,\pi}\left(\frac{\mu}{\pi}\right) = \varepsilon_{P,\pi}(g) = \langle g, g \rangle_{\pi} - \langle Pg, g \rangle_{\pi}.$$

2. Let $w \in V$ be a vertex s.t. $\frac{\mu(w)}{\pi(w)} = \left\|\frac{\mu}{\pi}\right\|_{\infty}$. Then, g(w) = 0 and $\langle Pg, g \rangle_{\pi} = \langle D_w P D_w g, g \rangle_{\pi} \le \rho (D_w P D_w) \langle g, g \rangle_{\pi}$ $\le \left(1 - \frac{1}{t_{\text{hit}}(P)}\right) \langle g, g \rangle_{\pi}.$

 D_w : Identity matrix except that its (w, w)-entry is 0

$$\underline{\text{Lem.}} \rho(D_w P D_w) \le 1 - \frac{1}{t_{\text{hit}}(P)}.$$

Key technical lemma (Proof, 3/3)

$$\checkmark g(x) \coloneqq \left\|\frac{\mu}{\pi}\right\|_{\infty} - \frac{\mu(x)}{\pi(x)}.$$

3. From

$$\begin{split} \Delta^{(\pi)}(\mu) &= \sum_{x \in V} \pi(x) \left(\frac{\mu(x)}{\pi(x)} - 1 \right)^2 = \sum_{x \in V} \pi(x) \left(\frac{\mu(x)}{\pi(x)} \right)^2 - 1 \le \left\| \frac{\mu}{\pi} \right\|_{\infty} - 1, \\ \langle g, g \rangle_{\pi} &= \sum_{x \in V} \pi(x) \left(\left\| \frac{\mu}{\pi} \right\|_{\infty} - \frac{\mu(x)}{\pi(x)} \right)^2 \\ &= \left\| \frac{\mu}{\pi} \right\|_{\infty}^2 + \sum_{x \in V} \pi(x) \left(\frac{\mu(x)}{\pi(x)} \right)^2 - 2 \left\| \frac{\mu}{\pi} \right\|_{\infty} \\ &\ge \left(\left\| \frac{\mu}{\pi} \right\|_{\infty} - 1 \right)^2 \ge \Delta^{(\pi)}(\mu)^2. \qquad \sum_{x \in V} \pi(x) \left(\frac{\mu(x)}{\pi(x)} \right)^2 \ge 1 \end{split}$$

Contents

Notation and Main result

Previous work

Idea of proof

Other topic

✓ We also studied other parameters of a random walk according to $(P_t)_{t \ge 1}$:

Cover time

- \succ Hitting and cover times of k-independent walkers
- Coalescing time

Cover time

Cover time
$$t_{cov} := \max_{x \in V} \mathbf{E}_x [\min\{t \ge 0 \mid \{X_0, X_1, \dots, X_t\} = V\}]$$

 ✓ The expected # of steps for the walker to <u>visit all vertices</u> (from the worst initial position)

Write $t_{cov}(P)$ as the CT of the RW according to P

i.e., CT of a RW with a time-invariant transition matrix

✓ There is much previous work

Write $t_{cov}((P_t)_{t\geq 1})$ as the CT of the RW according to $(P_t)_{t\geq 1}$

i.e., CT of a RW with <u>time-varying</u> transition matrices
✓ Not much is known

 \checkmark There is much previous work for time-invariant P, e.g.,

For any <u>connected</u> graph G, let P be the transition matrix of the lazy simple RW on G. Then,

 $t_{\rm cov}(P) = O(n^3).$

There exists a tight

example (Lollipop graph)

[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

For any <u>connected</u> graph G, let P be the transition matrix of the lazy Metropolis walk on G. Then, There exists a tight

$$t_{\rm cov}(P) = O(n^2 \log n).$$

example (glitter star)

[Nonaka, Ono, Sadakane, Yamashita. Theoretical Compt. Sci. 10]

For any irreducible P, $t_{cov}(P) \leq t_{hit}(P) \log n$.

[Matthews. Annals of Proability 88]

Result (Cover time)

Thm.3 (Cover time). Suppose $(P_t)_{t \ge 1}$ satisfies the following: \checkmark All $P_1, P_2, ...$ are irreducible, reversible, and lazy \checkmark All $P_1, P_2, ...$ have the same stationary distribution π Then, there is a constant C > 0 s.t.

 $t_{\rm cov}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\rm hit}(P_t) \log n.$

- ✓ Multiplying $\max_{t \ge 1} t_{hit}(P_t)$ by $O(\log n)$ is sufficient to cover all vertices (even for the time-inhomogeneous case)
- ✓ Theorem 3 gives tight bounds for some cases
 - Lazy Metropolis walk

Application of Theorem 3: Lazy Metropolis walk 37

<u>Cor. of Thm.3</u>. \forall sequence of connected graphs $(G_t)_{t \ge 1}$, let P_t be the transition matrix of the <u>lazy Metropolis W</u> on G_t . Then, $t_{cov}((P_t)_{t \ge 1}) = O(n^2 \log n).$

Remark. Same bound as the static graph! i.e., LMW is **robust** for edge-changes

- ✓ Stationary distribution of LMW is the uniform distribution $(\pi(x) = 1/n \text{ for any graph})$
 - Stationary distribution is invariant for any graphs!

✓
$$t_{\text{hit}}(P_1) = O(n^2), t_{\text{hit}}(P_2) = O(n^2), ...$$

HT of LMW on G_1 HT of LMW on G_2

[Nonaka et al. 10] (previous work on static graphs)

<u>Thm.3</u>. Suppose all $P_1, P_2, ...$ are irreducible, reversible, lazy, and have the same stationary distribution π . Then, $t_{cov}((P_t)_{t\geq 1}) \leq C \max_{t>1} t_{hit}(P_t) \log n$.

We can assume the initial position $\sim \pi$ from Thm. 2

$$\checkmark \tau_{\rm cov} \coloneqq \min\{t \ge 0 \mid \{X_0, \dots, X_t\} = V\}$$

$$\checkmark \tau_y \coloneqq \min\{t \ge 0 \mid X_t = y\}$$

$$\frac{\text{Thm 2 (Mixing time).}}{t_{\min}^{(\infty)}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\text{hit}}(P_t).}$$

For $T = \max_{t \ge 1} t_{hit}(P_t) \log n$, Union bound + HTL implies $\Pr_{\pi}(\tau_{cov} > Ti) = \Pr_{\pi}\left(\bigcup_{w \in V} \{\tau_w > Ti\}\right) \le n\left(1 - \frac{1}{\max_{t \ge 1} t_{hit}(P_t)}\right)^{Ti}$ $\le n^{-(i-1)}.$ Hitting time lemma.

$$\Pr_{\pi}(\tau_w > T) \le \left(1 - \frac{1}{\max_{t \ge 1} t_{\text{hit}}(P_t)}\right)^T.$$

Hence, $\mathbf{E}_{\pi}[\tau_{\text{cov}}] = O(T).$

Corollary of Thm.3. \forall sequence of connected graphs $(G_t)_{t\geq 1}$ with an invariant degree distribution, let P_t be the transition matrix of the lazy simple RW on G_t . Then, $t_{cov}((P_t)_{t\geq 1}) = O(n^3 \log n).$

Q. Is it tight?

Time-invariant case:

Is there a bad sequence of graphs with an invariant degree dist. s.t. t_{cov}((P_t)_{t≥1}) = Ω(n³ log n)?

> There exists a tight example (Lollipop graph)

For any <u>connected</u> graph G, let P be the transition matrix of the <u>lazy simple</u> <u>RW</u> on G. Then, $t_{cov}(P) = O(n^3)$. [Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

Open problem

40

<u>Thm.3.</u> Suppose all $P_1, P_2, ...$ are irreducible, reversible, lazy, and have the same stationary distribution π . Then,

 $t_{\text{cov}}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\text{hit}}(P_t) \log n$.

<u>Conjecture</u>. Suppose all $P_1, P_2, ...$ are irreducible, reversible, lazy, and have the same stationary distribution π . Then, $t_{cov}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{cov}(P_t) \ (?)$

✓ Is it true? Or a counter-example exists?

> Do good tools like the Hitting time lemma exist?

e.g., $\Pr_{\pi}(\tau_{\rm cov} > T) \leq \cdots$

Conclusion

✓ We give an upper bound on HT of a RW with <u>time-varying</u> transition matrices, in terms of HTs of <u>time-invariant</u> ones:

<u>Thm.1 (Hitting time)</u>. Suppose $(P_t)_{t \ge 1}$ satisfies the following:

- ✓ All P_1 , P_2 , ... are irreducible, reversible, and lazy
- ✓ All $P_1, P_2, ...$ have the same stationary distribution π

Then, there is a constant C > 0 s.t.

$$t_{\text{hit}}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\text{hit}}(P_t) = C \max\{t_{\text{hit}}(P_1), t_{\text{hit}}(P_2), t_{\text{hit}}(P_3), \dots\}.$$

✓ We also give upper bounds for the mixing and cover times in terms of $\max_{t \ge 1} t_{\text{hit}}(P_t)$

Summary: Thank you for your attention!

Lazy simple RW

Graph	<i>t</i> _{hit}	t _{cov}	
\forall connected G (static)	$O(n^3)$		[Aleliunas et al. 79]
\exists connected G (static)	$\Omegaig(n^3ig)$ (Lollipop)		[Feige. 95]
\exists seq. of connected graphs $G_1, G_2,$	$2^{\Omega(n)}$ (Sisyphus wheel)		[Avin, Kouský, Lotler. 08]
\forall seq. of connected graphs $G_1, G_2,$ with <u>time-invariant degree dist</u> .	$O(n^3 \log n)$	$O(n^3 \log^2 n)$	[Sauerwald, Zanneti. 19]
	$O(n^{3})$	$O(n^3 \log n)$	[Shimizu, S. 23]

Lazy Metropolis walk

Graph	t _{hit}	t _{cov}	
\forall connected G (static)	$O(n^2)$	$O(n^2 \log n)$	[Nonaka et al. 10]
\exists connected G (static)	$\Omegaig(n^2ig)$ (e.g., path)	$\Omegaig(n^2\log nig)$ (glitter star)	
\forall seq. of connected graphs $G_1, G_2,$	$O(n^2)$	$O(n^2 \log n)$	[Shimizu, S. 23]
$t_{\text{hit}}((\boldsymbol{P}_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\text{hit}}(\boldsymbol{P}_t)$	$t_{\rm cov}((P_t)_{t\geq 1}) \leq C \max_{t\geq 1} t_{\rm hit}(P_t) \log n.$		