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Notation: Random walk 3

✓ 𝑉: Set of 𝑛 vertices

✓ 𝑃 ∈ 0,1 𝑉×𝑉: Transition matrix on 𝑉

Referred to as the random walk according to 𝑷

✓ i.e., time-homogeneous Markov chain

𝑡

𝑥
𝑦

𝑃 𝑥, 𝑦
𝑉

At each discrete time step 𝑡 = 1,2,…, 

the walker moves from 𝑥 to 𝑦 with probability 𝑃 𝑥, 𝑦



We call random walk according to 𝑃

✓ i.e., time-homogeneous Markov chain

Notation: Random walk 4

✓ 𝑉: Set of 𝑛 vertices

✓ 𝑃 ∈ 0,1 𝑉×𝑉: Transition matrix on 𝑉

Random walk according to 𝑷.

A sequence of random variables 𝑋0, 𝑋1, 𝑋2, … s.t.

Pr 𝑋𝑡 = 𝑥𝑡

𝑋0 = 𝑥0,
⋮

𝑋𝑡−1 = 𝑥𝑡−1

= Pr 𝑋𝑡 = 𝑥𝑡 𝑋𝑡−1 = 𝑥𝑡−1

= 𝑃 𝑥𝑡−1, 𝑥𝑡

holds for all 𝑡 = 1,2,… and 𝑥0, … , 𝑥𝑡 ∈ 𝑉𝑡+1

(where Pr 𝑋0 = 𝑥0, … , 𝑋𝑡−1 = 𝑥𝑡−1 > 0)

(Markov property)



Notation: Random walk according to 𝑷𝒕 𝒕≥𝟏 5

✓ 𝑉: Set of 𝑛 vertices

✓ 𝑃𝑡 𝑡≥1 = 𝑃1, 𝑃2, … : Sequence of transition matrices on 𝑉

𝑡

𝑥
𝑦

𝑃𝑡 𝑥, 𝑦
𝑉

Referred to as the random walk according to 𝑷𝒕 𝒕≥𝟏

✓ i.e., time-inhomogeneous Markov chain

➢ Transition matrix at time 𝑡 is 𝑃𝑡

At each discrete time step 𝑡 = 1,2,…, 

the walker moves from 𝑥 to 𝑦 with probability 𝑷𝒕 𝒙, 𝒚



Notation: Random walk according to 𝑷𝒕 𝒕≥𝟏 6

✓ 𝑉: Set of 𝑛 vertices

✓ 𝑃𝑡 𝑡≥1 = 𝑃1, 𝑃2, … : Sequence of transition matrices on 𝑉

Referred to as the random walk according to 𝑷𝒕 𝒕≥𝟏

✓ i.e., time-inhomogeneous Markov chain

➢ Transition matrix at time 𝑡 is 𝑃𝑡

Random walk according to 𝑷𝒕 𝒕≥𝟏.

A sequence of random variables 𝑋0, 𝑋1, 𝑋2, … s.t.

Pr 𝑋𝑡 = 𝑥𝑡

𝑋0 = 𝑥0,
⋮

𝑋𝑡−1 = 𝑥𝑡−1

= Pr 𝑋𝑡 = 𝑥𝑡 𝑋𝑡−1 = 𝑥𝑡−1

= 𝑃𝑡 𝑥𝑡−1, 𝑥𝑡

holds for all 𝑡 = 1,2,… and 𝑥0, … , 𝑥𝑡 ∈ 𝑉𝑡+1
𝑃𝑡 𝑥𝑡−1, 𝑥𝑡

(where Pr 𝑋0 = 𝑥0, … , 𝑋𝑡−1 = 𝑥𝑡−1 > 0)

(Markov property)



Hitting time 7

Hitting time 𝒕𝐡𝐢𝐭 ≔ max
𝑥,𝑦∈𝑉

𝐄𝑥 min 𝑡 ≥ 0 𝑋𝑡 = 𝑦

✓ The expected # of steps for the walker to move from 𝑥 to 𝑦

(considering the worst-case pair of vertices 𝑥 and 𝑦)

𝑥

𝑦

𝑉



Hitting time 8

Hitting time 𝒕𝐡𝐢𝐭 ≔ max
𝑥,𝑦∈𝑉

𝐄𝑥 min 𝑡 ≥ 0 𝑋𝑡 = 𝑦

i.e., HT of a RW with a time-invariant transition matrix

✓ There is much previous work 

i.e., HT of a RW with time-varying transition matrices

✓ Not much is known (This work)

Write 𝑡hit 𝑃𝑡 𝑡≥1 as the HT of the RW according to 𝑃𝑡 𝑡≥1𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 HT of the RW according to 𝑃𝑡 𝑡≥1

Write 𝑡hit 𝑃 as the HT of the RW according to 𝑃𝒕𝐡𝐢𝐭 𝑷 HT of the RW according to 𝑃

✓ The expected # of steps for the walker to move from 𝑥 to 𝑦

(considering the worst-case pair of vertices 𝑥 and 𝑦)



Main result (Hitting time) 9

Thm.1 (Hitting time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible, and lazy 

✓ All 𝑷𝟏, 𝑷𝟐, … have the same stationary distribution 𝝅

Then, there is a constant 𝐶 > 0 s.t.

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕

= 𝐶max 𝑡hit 𝑃1 , 𝑡hit 𝑃2 , 𝑡hit 𝑃3 , … .

𝑡hit 𝑃𝑡 𝑡≥1 : HT of the RW according to 

𝑃𝑡 𝑡≥1, i.e., HT of the RW with time-

varying transition matrices (𝑃𝑡 at time 𝑡)

𝑡hit 𝑃1 : HT of the RW according to 𝑃1, 

i.e., HT of the RW with the time-invariant 

transition matrix (𝑃1 at all times)

✓ We give an upper bound on HT of a RW with time-varying

transition matrices in terms of HTs of time-invariant ones:
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Thm.1 (Hitting time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible, and lazy 

✓ All 𝑷𝟏, 𝑷𝟐, … have the same stationary distribution 𝝅

Then, there is a constant 𝐶 > 0 s.t.

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕

= 𝐶max 𝑡hit 𝑃1 , 𝑡hit 𝑃2 , 𝑡hit 𝑃3 , … .



Previous work: lazy simple RW on a (static) graph 11

✓ 𝐺: 𝑛-vertex graph

For any connected graph 𝐺, let 𝑃 be the transition matrix of 

the lazy simple RW on 𝐺. Then, 

𝑡hit 𝑃 = 𝑂 𝒏𝟑 .

[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

Lazy simple random walk on (static) 𝐺: At time 𝑡, the walker 

moves from 𝑥 to 𝑦 w.p. 𝑃 𝑥, 𝑦 defined as follows:

𝑃 𝑥, 𝑦 ≔

1

2deg 𝐺, 𝑥
if 𝑥, 𝑦 ∈ 𝐸 𝐺

1

2
if 𝑥 = 𝑦

0 otherwise

. Τ1 2

Τ1 6

Τ1 6

Τ1 6

➢ 𝑉 𝐺 : Vertex set of 𝐺 ➢ 𝐸 𝐺 : Edge set of 𝐺

➢ deg 𝐺, 𝑥 : Degree of vertex 𝑥 ∈ 𝑉 𝐺

There exists a tight 

example (Lollipop graph)



Previous work: lazy simple RW on a dynamic graph 12

✓ 𝐺1, 𝐺2, … : Sequence of edge-changing 𝑛-vertex graphs

Lazy simple random walk on 𝐺1, 𝐺2, … : At time 𝑡, the walker 

moves from 𝑥 to 𝑦 w.p. 𝑃𝑡 𝑥, 𝑦 defined as follows:

𝑃𝑡 𝑥, 𝑦 ≔

1

2deg 𝐺𝑡 , 𝑥
if 𝑥, 𝑦 ∈ 𝐸 𝐺𝑡

1

2
if 𝑥 = 𝑦

0 otherwise

.

Ex. Lazy simple random walk on 𝐺1, 𝐺2, …

𝐺1 𝐺2 𝐺3 𝐺4

1/2 1/4

1/4

1/2
1/61/6

1/6

1/2
1/2

1/2
1/4

1/4



Previous work: Exponential lower bound for LSRW 13

For Sisyphus wheel 𝐺1, 𝐺2, …, let 𝑃𝑡 be the transition matrix of 

the lazy simple random walk on 𝐺𝑡. Then, 𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 = 𝟐𝛀 𝒏 .

[Avin, Kouský, Lotler. ICALP 08, RS&A 18]

1

2

3

𝟓 4

1

2

3

𝟓 4

1

2

3

𝟓 4

1

2

3

𝟓 4

𝐺1 𝐺2 𝐺3 𝐺4

Ex of 𝑛 = 5. 

The walker must stay 𝑛 − 2 consecutive steps to reach the vertex 𝑛

Sisyphus wheel. Sequence of star graphs 𝐺1, 𝐺2, … with 𝑉 𝐺𝑡 =

1,… , 𝒏 , where the center changes periodically in 1,… , 𝒏 − 𝟏



Previous work: Upper bound for lazy simple RW 14

∀sequence of connected graphs 𝐺1, 𝐺2, … with an invariant 

degree distribution, let 𝑃𝑡 be the transition matrix of lazy 

simple walk on 𝐺𝑡. Then, 

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 = 𝑶 𝒏𝟑 𝐥𝐨𝐠𝒏 .

[Sauerwald, Zanetti. ICALP 19]

⋯

𝐺1 𝐺2 𝐺3

✓ In general, there exists a sequence of graphs s.t. HT is 

exponential (Sisyphus wheel)

✓ If the degree distribution is invariant, HT is polynomial



Application of Theorem 1: Lazy simple RW 15

We can apply Thm.1 for lazy simple RW on 𝐺1, 𝐺2, … with 

time-invariant degree distribution!

✓ 𝑃𝑡 (Transition matrix of LSRW on 𝐺𝑡) is irreducible, reversible 

and lazy (if 𝐺𝑡 is connected)

✓ Stationary distribution of 𝑃𝑡 is 
deg 𝐺𝑡,𝑥

2 𝐸 𝐺𝑡

➢ Stationary distribution is invariant if degree dist. is ! 

Thm.1 (Hitting time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible, and lazy 

✓ All 𝑷𝟏, 𝑷𝟐, … have the same stationary distribution 𝝅

Then, there is a constant 𝐶 > 0 s.t. 𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕

= 𝐶max 𝑡hit 𝑃1 , 𝑡hit 𝑃2 , 𝑡hit 𝑃3 , …



Application of Theorem 1: Lazy simple RW 16

Corollary of Thm.1. ∀sequence of connected graphs 𝐺𝑡 𝑡≥1

with an invariant degree distribution, let 𝑃𝑡 be the transition 

matrix of the lazy simple RW on 𝐺𝑡. Then, 

𝑡hit 𝑃𝑡 𝑡≥1 = 𝑂 𝒏𝟑 .

Thm.1. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, lazy, and have the same 

stationary distribution 𝝅. Then, 𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱 𝒕𝐡𝐢𝐭 𝑷𝟏 , 𝒕𝐡𝐢𝐭 𝑷𝟐 , … .

Remark.

✓ 𝑡hit 𝑃1 = 𝑂 𝑛3 , 𝑡hit 𝑃2 = 𝑂 𝑛3 , … [Aleliunas et al. 79]

HT of LSRW on 𝐺1 HT of LSRW on 𝐺2

✓ Improves 𝑂 𝑛3 log 𝑛  bound of the previous work!

[Sauerwald, Zanetti. ICALP 19]

(previous work on static graphs)



Other example: lazy Metropolis walk 17

For any connected graph 𝐺, let 𝑃 be the transition matrix of 

the lazy Metropolis walk on 𝐺. Then, 𝑡hit 𝑃 = 𝑂 𝒏𝟐 .

[Nonaka, Ono, Sadakane, Yamashita. Theoretical Compt. Sci. 10]

Lazy Metropolis walk on (static) 𝐺. At time 𝑡, the walker moves 

from 𝑥 to 𝑦 w.p. 𝑃 𝑥, 𝑦 defined as follows:

𝑃 𝑥, 𝑦 ≔

1

2max deg 𝐺, 𝑥 , deg 𝐺, 𝑦
if 𝑥, 𝑦 ∈ 𝐸 𝐺

1 − 

𝑤:𝑤∼𝑥

𝑃 𝑥,𝑤 if 𝑥 = 𝑦

0 otherwise

Τ1 6

Τ1 4

Τ7 12

✓ Using local degree information achieves 𝑂 𝑛2 hitting time

✓ There are no previous studies about dynamic cases



Application of Theorem 1: Lazy Metropolis walk 18

Cor. of Thm.1. ∀sequence of connected graphs 𝐺𝑡 𝑡≥1, let 𝑃𝑡 

be the transition matrix of the lazy Metropolis W on 𝐺𝑡. Then,

𝑡hit 𝑃𝑡 𝑡≥1 = 𝑂 𝒏𝟐 .

Thm.1. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, lazy, and have the same 

stationary distribution 𝝅. Then, 𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱 𝒕𝐡𝐢𝐭 𝑷𝟏 , 𝒕𝐡𝐢𝐭 𝑷𝟐 , … .

Remark. 

✓ Stationary distribution of LMW is the uniform distribution 

(𝜋 𝑥 = 1/𝑛 for any graph)

➢ Stationary distribution is invariant for any graphs!

✓ 𝑡hit 𝑃1 = 𝑂 𝑛2 , 𝑡hit 𝑃2 = 𝑂 𝑛2 , … [Nonaka et al. 10]

HT of LMW on 𝐺1 HT of LMW on 𝐺2

Same bound as the static graph! i.e., LMW is robust for edge-changes

(previous work on static graphs)
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Key tool 1: Hitting time lemma 20

✓ 𝜏𝑦 ≔ min 𝑡 ≥ 0 𝑋𝑡 = 𝑦 : Hitting time to 𝒚

Hitting time lemma. Suppose 𝑃𝑡 𝑡≥1 satisfies the following:

✓ All 𝑃1, 𝑃2, … are irreducible and reversible 

✓ All 𝑃1, 𝑃2, … have the same stationary distribution 𝜋

Then, for any 𝑤 ∈ 𝑉 and 𝑇 ≥ 0, 

Pr
𝜋
𝜏𝑤 > 𝑇 ≤ 1 −

1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇

.

(random variable)

Remark. Hitting time 𝑡hit = max
𝑥,𝑦∈𝑉

𝐄𝑥 𝜏𝑦  from definition

✓ For the walker starting from the stationary distribution, the 

hitting time to a vertex decreases exponentially



Key tool 1: Hitting time lemma 21

Hitting time lemma. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, and 

have the same stationary distribution 𝜋. Then, for any 𝑤 ∈ 𝑉 and 𝑇 ≥ 0, 

Pr
𝜋
𝜏𝑤 > 𝑇 ≤ 1 −

1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇

.

✓ For the walker starting from the stationary distribution, the 

hitting time to a vertex decreases exponentially

➢ HTL implies that “Hitting time from stationary 𝐄𝜋 𝜏𝑤 ” is 

bounded by max
𝑡≥1

𝑡hit 𝑃𝑡 :

𝐄𝜋 𝜏𝑤 ≤ 

𝑇=0

∞

1 −
1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇

= max
𝑡≥1

𝑡hit 𝑃𝑡 .

✓ 𝜏𝑦 ≔ min 𝑡 ≥ 0 𝑋𝑡 = 𝑦 : Hitting time to 𝒚 (random variable)



Proof of hitting time lemma (1/3) 22

✓ 𝐷𝑤 ∈ 0,1 𝑉×𝑉: diagonal matrix where 𝐷𝑤 𝑥, 𝑥 = 𝟏𝑥≠𝑤

➢ Key observation. 𝜏𝑤 can be expressed in terms of 𝐷𝑤 :

= ෑ

𝑡=1

𝑇

𝐷𝑤𝑃𝑡𝐷𝑤 𝑥, 𝑦 .

Pr
𝑥
𝜏𝑤 > 𝑇,𝑋𝑇 = 𝑦 = Pr

𝑥
ሥ

𝑡=0

𝑇

𝑋𝑡 ≠ 𝑤 ,𝑋𝑇 = 𝑦

𝐷𝑤𝑃𝐷𝑤 = 𝑷

𝑤

𝑤𝐷𝑤 =

𝑤

𝑤

Identity matrix 

except that its 𝑤,𝑤 -entry is set to 0

𝑃 except that 

its 𝑤-th row and column are set to 0

“Transitions that 

exclude reaching 𝑤”



Proof of Hitting time lemma (2/3) 23

Pr
𝜋
𝜏𝑤 > 𝑇 = 

𝑥∈𝑉

𝜋 𝑥 

𝑦∈𝑉

ෑ

𝑡=1

𝑇

𝐷𝑤𝑃𝑡𝐷𝑤 𝑥, 𝑦

≤ ෑ

𝑡=1

𝑇

𝐷𝑤𝑃𝑡𝐷𝑤 𝟏

2,𝜋

≤ෑ

𝑡=1

𝑇

𝜌 𝐷𝑤𝑃𝑡𝐷𝑤
Cauchy-Schwarz inequality

✓ 𝑓 2,𝜋 ≔ σ𝑥∈𝑉 𝜋 𝑥 𝑓 𝑥 2

(ℓ2 𝜋 -norm)

Courant-Fischer-Weyl Min-max theorem

✓ 𝜌 𝐴 : the spectral radius of 𝐴

Pr
𝑥
𝜏𝑤 > 𝑇, 𝑋𝑇 = 𝑦

= ෑ

𝑡=1

𝑇

𝐷𝑤𝑃𝑡𝐷𝑤 𝑥, 𝑦



Proof of Hitting time lemma (3/3) 24

Lem. Suppose 𝑃 is irreducible & reversible. Then, ∀𝑤 ∈ 𝑉, the 

spectral radius 𝜌 𝐷𝑤𝑃𝐷𝑤 of 𝐷𝑤𝑃𝐷𝑤 is bounded by 1 −
1

𝑡hit 𝑃
.

[Aldous, Fill 02]

✓ The following lemma, a basic consequence of 

the Perron-Frobenius theorem, concludes the proof:

Pr
𝜋
𝜏𝑤 > 𝑇 ≤ෑ

𝑡=1

𝑇

𝜌 𝐷𝑤𝑃𝑡𝐷𝑤 ≤ෑ

𝑡=1

𝑇

1 −
1

𝑡hit 𝑃𝑡
.

Hitting time lemma. Suppose all 𝑃1, 𝑃2, … are irreducible, and have the same 

stationary distribution 𝜋. Then, Pr
𝜋
𝜏𝑤 > 𝑇 ≤ 1 −

1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇
.



Idea of proof for Theorem 1 (Hitting time) 25

Proof overview: 

𝑡hit 𝑃𝑡 𝑡≥1 ≤

Time taken for a walker 

to converge 𝜋 (from 

the worst initial pos.)

+max
𝑡≥1

𝑡hit 𝑃𝑡

✓ Mixing time bound for time-inhomogeneous Markov chain

✓ For time-homogeneous MC, the following is well-known:

Thm. Suppose 𝑃 is irreducible, reversible and lazy. Then,

𝑡mix
∞

𝑃 ≤ 𝐶𝑡hit 𝑃 . [Levin, Peres, Wilmer. 08] 

Hitting time lemma:

𝐄𝜋 𝜏𝑤 ≤ max
𝑡≥1

𝑡hit 𝑃𝑡 .



Key tool 2: Mixing time ≲ Hitting time 26

Thm.2 (Mixing time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible and lazy 

✓ All 𝑃1, 𝑃2, … have the same stationary distribution 𝜋

Then, there is a constant 𝐶 > 0 s.t.

𝒕𝐦𝐢𝐱
∞

𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 .

(ℓ∞ 𝜋 -) Mixing time 𝒕𝐦𝐢𝐱
∞

𝑷𝒕 𝒕≥𝟏 .

𝒕𝐦𝐢𝐱
∞

𝑷𝒕 𝒕≥𝟏

≔ min 𝑡 ≥ 0: max
𝑠≥0,𝑥,𝑦∈𝑉

𝑃𝑠+1𝑃𝑠+2⋯𝑃𝑠+𝑡 𝑥, 𝑦

𝜋 𝑦
− 1 ≤

1

2
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✓ The following bound of 𝑡mix
∞

𝑃𝑡 𝑡≥1 has been shown:

✓ For some cases (e.g., LSRW on expander graphs), this gives 

a better bound than our bound of max
𝑡≥1

𝑡hit 𝑃𝑡

✓ However, there exists bad examples (e.g, LSRW on cycles) 

where this bound gets max
𝑡≥1

𝑡hit 𝑃𝑡 𝐥𝐨𝐠𝒏

Suppose all 𝑃1, 𝑃2, … are irreducible, aperiodic, reversible, and 

have the same stationary distribution 𝜋. Then, ∃constant 𝐶 s.t.

𝒕𝐦𝐢𝐱
∞

𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝐥𝐨𝐠𝝅𝐦𝐢𝐧
−𝟏

𝟏 − 𝝀⋆ 𝑷𝒕
.

[Saloff-Coste, Zúñiga. Stochastic Processes and their Applications 07]

𝜆⋆ 𝑃 :  2nd largest eigenvalue in absolute value of 𝑃
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For a probability vector 𝜇 ∈ 0,1 𝑉, let 

Δ 𝜋 𝜇 ≔
𝜇

𝜋
− 𝟏

2,𝜋

2

= 

𝑥∈𝑉

𝜋 𝑥
𝜇 𝑥

𝜋 𝑥
− 1

2

.

For 𝑇 ≥ 𝐶max
𝑡≥1

𝑡hit 𝑃𝑡 , max
𝑠≥0,𝑥,𝑦∈𝑉

𝑃𝑠+1⋯𝑃𝑠+𝑇 𝑥, 𝑦

𝜋 𝑦
− 1 ≤

1

2
.

For 𝑇 ≥ 𝐶max
𝑡≥1

𝑡hit 𝑃𝑡 , Δ 𝜋 𝜇𝑃1⋯𝑃𝑇 ≤
1

2
.

𝜇𝑃 gets closer to 𝜋 than 𝜇 in terms of 𝑡hit 𝑃

Applying repeatedly

ℓ2 𝜋 -norm → ℓ∞ 𝜋 -norm

(dist. after one step) 

Δ 𝜋 𝜇𝑃 ≤ Δ 𝜋 𝜇 1 −
Δ 𝜋 𝜇

𝑡hit 𝑃
.Lem.

Lem.

Thm.2.
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𝑓, 𝑔 𝜋 ≔ σ𝑥∈𝑉 𝜋 𝑥 𝑓 𝑥 𝑔 𝑥 : 𝜋-inner product

For 𝑓 ∈ ℝ𝑉, let 

𝓔𝑷,𝝅 𝒇 ≔ ℰ𝑃,𝜋 𝑓, 𝑓 =
1

2


𝑥,𝑦∈𝑉

𝜋 𝑥 𝑃 𝑥, 𝑦 𝑓 𝑥 − 𝑓 𝑦
2

(Dirichlet form)= 𝑓, 𝑓 𝜋 − 𝑓, 𝑃𝑓 𝜋 .

Lem. 

Δ 𝜋 𝜇𝑃 ≤ Δ 𝜋 𝜇 − 𝓔𝑷,𝝅
𝝁

𝝅
.

[Mihail 89]

Δ 𝜋 𝜇𝑃 ≤ Δ 𝜋 𝜇 1 −
Δ 𝜋 𝜇

𝑡hit 𝑃
.Lem.

𝓔𝑷,𝝅
𝝁

𝝅
≥
Δ 𝜋 𝜇 2

𝑡hit 𝑃
.Lem.
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Lem. For any irreducible & reversible 𝑃,

𝓔𝑷,𝝅
𝝁

𝝅
≥
Δ 𝜋 𝜇 2

𝑡hit 𝑃
.

✓ Let 𝑔 𝑥 ≔
𝜇

𝜋 ∞
−

𝜇 𝑥

𝜋 𝑥
.

✓ The proof consists of the following three statements:

➢
𝜇

𝜋 ∞
= max

𝑥∈𝑉

𝜇 𝑥

𝜋 𝑥

1. ℰ𝑃,𝜋
𝜇

𝜋
= 𝑔, 𝑔 𝜋 − 𝑃𝑔, 𝑔 𝜋

2. 𝑃𝑔, 𝑔 𝜋 ≤ 1 −
1

𝑡hit 𝑃
𝑔, 𝑔 𝜋.

3. 𝑔, 𝑔 𝜋 ≥ Δ 2,𝜋 𝜇 2
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✓ 𝑔 𝑥 ≔
𝜇

𝜋 ∞
−

𝜇 𝑥

𝜋 𝑥
. 

Lem. 𝜌 𝐷𝑤𝑃𝐷𝑤 ≤ 1 −
1

𝑡hit 𝑃
.

1. Since 
𝜇 𝑥

𝜋 𝑥
−

𝜇 𝑦

𝜋 𝑦
= 𝑔 𝑦 − 𝑔 𝑥 ,

ℰ𝑃,𝜋
𝜇

𝜋
= ℰ𝑃,𝜋 𝑔 = 𝑔, 𝑔 𝜋 − 𝑃𝑔, 𝑔 𝜋 .

ℰ𝑃,𝜋 𝑓

≔
1

2


𝑥,𝑦∈𝑉

𝜋 𝑥 𝑃 𝑥, 𝑦 𝑓 𝑥 − 𝑓 𝑦
2

= 𝑓, 𝑓 𝜋 − 𝑓, 𝑃𝑓 𝜋

2. Let 𝑤 ∈ 𝑉 be a vertex s.t.
𝜇 𝑤

𝜋 𝑤
=

𝜇

𝜋 ∞
. Then, 𝑔 𝑤 = 0 and 

𝑃𝑔, 𝑔 𝜋 = 𝐷𝑤𝑃𝐷𝑤𝑔, 𝑔 𝜋 ≤ 𝜌 𝐷𝑤𝑃𝐷𝑤 𝑔, 𝑔 𝜋

≤ 1 −
1

𝑡hit 𝑃
𝑔, 𝑔 𝜋.

𝐷𝑤: Identity matrix 

except that its 𝑤,𝑤 -entry is 0
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3. From 

Δ 𝜋 𝜇 = 

𝑥∈𝑉

𝜋 𝑥
𝜇 𝑥

𝜋 𝑥
− 1

2

= 

𝑥∈𝑉

𝜋 𝑥
𝜇 𝑥

𝜋 𝑥

2

− 1 ≤
𝜇

𝜋 ∞
− 1,

✓ 𝑔 𝑥 ≔
𝜇

𝜋 ∞
−

𝜇 𝑥

𝜋 𝑥
. 

𝑔, 𝑔 𝜋 = 

𝑥∈𝑉

𝜋 𝑥
𝜇

𝜋 ∞
−
𝜇 𝑥

𝜋 𝑥

2

=
𝜇

𝜋 ∞

2

+

𝑥∈𝑉

𝜋 𝑥
𝜇 𝑥

𝜋 𝑥

2

− 2
𝜇

𝜋 ∞

≥
𝜇

𝜋 ∞
− 1

2

≥ Δ 𝜋 𝜇 2. 

𝑥∈𝑉

𝜋 𝑥
𝜇 𝑥

𝜋 𝑥

2

≥ 1
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Notation and Main result

Previous work

Idea of proof

Other topic

✓ We also studied other parameters of a random walk 

according to 𝑃𝑡 𝑡≥1:

➢ Cover time

➢ Hitting and cover times of 𝑘-independent walkers

➢ Coalescing time
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Cover time 𝒕𝐜𝐨𝐯 ≔ max
𝑥∈𝑉

𝐄𝑥 min 𝑡 ≥ 0 𝑋0, 𝑋1, … , 𝑋𝑡 = 𝑉

✓ The expected # of steps for the walker to visit all vertices

(from the worst initial position)

i.e., CT of a RW with a time-invariant transition matrix

✓ There is much previous work 

i.e., CT of a RW with time-varying transition matrices

✓ Not much is known

Write 𝑡hit 𝑃𝑡 𝑡≥1 as the HT of the RW according to 𝑃𝑡 𝑡≥1𝒕𝐜𝐨𝐯 𝑷𝒕 𝒕≥𝟏 CT of the RW according to 𝑃𝑡 𝑡≥1

Write 𝑡hit 𝑃 as the HT of the RW according to 𝑃𝒕𝐜𝐨𝐯 𝑷 CT of the RW according to 𝑃
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✓ There is much previous work for time-invariant 𝑃, e.g.,

For any connected graph 𝐺, let 𝑃 be the transition matrix of 

the lazy Metropolis walk on 𝐺. Then, 

𝑡cov 𝑃 = 𝑂 𝒏𝟐 𝐥𝐨𝐠𝒏 .

[Nonaka, Ono, Sadakane, Yamashita. Theoretical Compt. Sci. 10]

For any connected graph 𝐺, let 𝑃 be the transition matrix of 

the lazy simple RW on 𝐺. Then, 

𝑡cov 𝑃 = 𝑂 𝒏𝟑 .

[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

For any irreducible 𝑃, 𝑡cov 𝑃 ≤ 𝒕𝐡𝐢𝐭 𝑷 𝐥𝐨𝐠𝒏 .

[Matthews. Annals of Proability 88]

There exists a tight 

example (Lollipop graph)

There exists a tight 

example (glitter star)
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Thm.3 (Cover time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible, and lazy 

✓ All 𝑃1, 𝑃2, … have the same stationary distribution 𝜋

Then, there is a constant 𝐶 > 0 s.t.

𝒕𝐜𝐨𝐯 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 𝐥𝐨𝐠𝒏 .

✓ Multiplying 𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 by 𝑶 𝐥𝐨𝐠𝒏 is sufficient to cover all 

vertices (even for the time-inhomogeneous case)

✓ Theorem 3 gives tight bounds for some cases

➢ Lazy Metropolis walk 
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Cor. of Thm.3. ∀sequence of connected graphs 𝐺𝑡 𝑡≥1, let 𝑃𝑡 

be the transition matrix of the lazy Metropolis W on 𝐺𝑡. Then,

𝑡cov 𝑃𝑡 𝑡≥1 = 𝑂 𝒏𝟐 𝐥𝐨𝐠𝒏 .

Remark. 

✓ Stationary distribution of LMW is the uniform distribution 

(𝜋 𝑥 = 1/𝑛 for any graph)

➢ Stationary distribution is invariant for any graphs!

✓ 𝑡hit 𝑃1 = 𝑂 𝑛2 , 𝑡hit 𝑃2 = 𝑂 𝑛2 , … [Nonaka et al. 10]

HT of LMW on 𝐺1 HT of LMW on 𝐺2

Thm.3. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, lazy, and have the same 

stationary distribution 𝜋. Then, 𝒕𝐜𝐨𝐯 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 𝐥𝐨𝐠𝒏 .

Same bound as the static graph! i.e., LMW is robust for edge-changes

(previous work on static graphs)
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We can assume the initial position ∼ 𝜋 from Thm. 2 

✓ 𝜏cov ≔ min 𝑡 ≥ 0 𝑋0, … , 𝑋𝑡 = 𝑉

✓ 𝜏𝑦 ≔ min 𝑡 ≥ 0 𝑋𝑡 = 𝑦

For 𝑇 = max
𝑡≥1

𝑡hit 𝑃𝑡 log 𝑛, Union bound + HTL implies

Pr
𝜋
𝜏cov > 𝑇𝑖 = Pr

𝜋
ራ

𝑤∈𝑉

𝜏𝑤 > 𝑇𝑖 ≤ 𝑛 1 −
1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇𝑖

≤ 𝑛− 𝑖−1 .

Hence, 𝐄𝜋 𝜏cov = 𝑂 𝑇 .

Hitting time lemma.

Pr
𝜋
𝜏𝑤 > 𝑇 ≤ 1 −

1

max
𝑡≥1

𝑡hit 𝑃𝑡

𝑇
.

Thm 2 (Mixing time). 

𝑡mix
∞

𝑃𝑡 𝑡≥1 ≤ 𝐶max
𝑡≥1

𝑡hit 𝑃𝑡 .
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Corollary of Thm.3. ∀sequence of connected graphs 𝐺𝑡 𝑡≥1

with an invariant degree distribution, let 𝑃𝑡 be the transition 

matrix of the lazy simple RW on 𝐺𝑡. Then, 

𝑡cov 𝑃𝑡 𝑡≥1 = 𝑂 𝒏𝟑 𝐥𝐨𝐠𝒏 .

Time-invariant case:

For any connected graph 𝐺, let 𝑃 be the transition matrix of the lazy simple 

RW on 𝐺. Then, 𝑡cov 𝑃 = 𝑂 𝒏𝟑 . [Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

There exists a tight 

example (Lollipop graph)

Q. Is it tight? 

➢ Is there a bad sequence of graphs with an invariant degree 

dist. s.t. 𝑡cov 𝑃𝑡 𝑡≥1 = Ω 𝑛3 log 𝑛 ? 
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Thm.3. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, lazy, and have the 

same stationary distribution 𝜋. Then, 

𝑡cov 𝑃𝑡 𝑡≥1 ≤ 𝐶max
𝑡≥1

𝒕𝐡𝐢𝐭 𝑷𝒕 log 𝑛 .

Conjecture. Suppose all 𝑃1, 𝑃2, … are irreducible, reversible, 

lazy, and have the same stationary distribution 𝜋. Then, 

𝒕𝐜𝐨𝐯 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐜𝐨𝐯 𝑷𝒕 ?

✓ Is it true? Or a counter-example exists?

➢ Do good tools like the Hitting time lemma exist?

e.g., Pr
𝜋
𝜏cov > 𝑇 ≤ ⋯
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Thm.1 (Hitting time). Suppose 𝑃𝑡 𝑡≥1 satisfies the following: 

✓ All 𝑃1, 𝑃2, … are irreducible, reversible, and lazy 

✓ All 𝑷𝟏, 𝑷𝟐, … have the same stationary distribution 𝝅

Then, there is a constant 𝐶 > 0 s.t.

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕

= 𝐶max 𝑡hit 𝑃1 , 𝑡hit 𝑃2 , 𝑡hit 𝑃3 , … .

✓ We give an upper bound on HT of a RW with time-varying

transition matrices, in terms of HTs of time-invariant ones:

✓ We also give upper bounds for the mixing and cover times 

in terms of 𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕
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Graph 𝒕𝐡𝐢𝐭 𝒕𝐜𝐨𝐯

∀connected 𝐺 (static) 𝑂 𝑛3
[Aleliunas

et al. 79]

∃connected 𝐺 (static) Ω 𝑛3 (Lollipop) [Feige. 95]

∃seq. of connected graphs 𝐺1, 𝐺2, … 2Ω 𝑛
(Sisyphus wheel)

[Avin, Kouský, 

Lotler. 08]

∀seq. of connected graphs 𝐺1, 𝐺2, …
with time-invariant degree dist.

𝑂 𝑛3 log 𝑛 𝑂 𝑛3 log2 𝑛
[Sauerwald, 

Zanneti. 19]

𝑂 𝑛3 𝑂 𝑛3 log 𝑛 [Shimizu, S. 23]

Lazy simple RW

Graph 𝒕𝐡𝐢𝐭 𝒕𝐜𝐨𝐯

∀connected 𝐺 (static) 𝑂 𝑛2 𝑂 𝑛2 log 𝑛
[Nonaka

et al. 10]∃connected 𝐺 (static)
Ω 𝑛2

(e.g., path)

Ω 𝑛2 log 𝑛
(glitter star)

∀seq. of connected graphs 𝐺1, 𝐺2, … 𝑂 𝑛2 𝑂 𝑛2 log 𝑛 [Shimizu, S. 23]

Lazy Metropolis walk

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 𝒕𝐜𝐨𝐯 𝑷𝒕 𝒕≥𝟏 ≤ 𝑪𝐦𝐚𝐱
𝒕≥𝟏

𝒕𝐡𝐢𝐭 𝑷𝒕 𝐥𝐨𝐠𝒏 .
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