Reversible random walks on dynamic graphs

Nobutaka Shimizu
(Tokyo Institute of Technology)
*Takeharu Shiraga
(Chuo University)

Nobutaka Shimizu, Takeharu Shiraga,
Reversible random walks on dynamic graphs
Random Structures \& Algorithms, 2023
Main topic. Time-inhomogeneous Markov chain
Notation and Main result
Previous work
Idea of proof
Other topic

Notation: Random walk

$\checkmark V$: Set of n vertices
$\checkmark P \in[0,1]^{V \times V}$: Transition matrix on V
At each discrete time step $t=1,2, \ldots$,
the walker moves from x to y with probability $P(x, y)$
t

Referred to as the random walk according to \boldsymbol{P}
\checkmark i.e., time-homogeneous Markov chain
$\checkmark V$: Set of n vertices
$\checkmark P \in[0,1]^{V \times V}$: Transition matrix on V

Random walk according to \boldsymbol{P}.

A sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ s.t.

$$
\begin{aligned}
\operatorname{Pr}\left(X_{t}=x_{t} \left\lvert\, \begin{array}{c}
X_{0}=x_{0} \\
\vdots \\
X_{t-1}=x_{t-1}
\end{array}\right.\right) & =\operatorname{Pr}\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right) \\
& =P\left(x_{t-1}, x_{t}\right)
\end{aligned}
$$

holds for all $t=1,2, \ldots$ and $\left(x_{0}, \ldots, x_{t}\right) \in V^{t+1}$
(where $\operatorname{Pr}\left(X_{0}=x_{0}, \ldots, X_{t-1}=x_{t-1}\right)>0$)
\checkmark i.e., time-homogeneous Markov chain

Notation: Random walk according to $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}$

$\checkmark V$: Set of n vertices
$\checkmark\left(P_{t}\right)_{t \geq 1}=\left(P_{1}, P_{2}, \ldots\right)$: Sequence of transition matrices on V
At each discrete time step $t=1,2, \ldots$,
the walker moves from x to y with probability $\boldsymbol{P}_{\boldsymbol{t}}(\boldsymbol{x}, \boldsymbol{y})$
t

Referred to as the random walk according to $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}$
\checkmark i.e., time-inhomogeneous Markov chain
$>$ Transition matrix at time t is P_{t}

Notation: Random walk according to $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}$

$\checkmark V$: Set of n vertices
$\checkmark\left(P_{t}\right)_{t \geq 1}=\left(P_{1}, P_{2}, \ldots\right)$: Sequence of transition matrices on V
Random walk according to $\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1} \cdot$
A sequence of random variables $X_{0}, X_{1}, X_{2}, \ldots$ s.t.

$$
\begin{aligned}
\operatorname{Pr}\left(\begin{array}{c|c}
\left.X_{t}=x_{t} \left\lvert\, \begin{array}{c}
X_{0}=x_{0} \\
\vdots \\
X_{t-1}=x_{t-1}
\end{array}\right.\right) & =\operatorname{Pr}\left(X_{t}=x_{t} \mid X_{t-1}=x_{t-1}\right) \\
& =P_{t}\left(x_{t-1}, x_{t}\right)
\end{array} . \quad\right. \text { (Markov property) }
\end{aligned}
$$

holds for all $t=1,2, \ldots$ and $\left(x_{0}, \ldots, x_{t}\right) \in V^{t+1}$
(where $\operatorname{Pr}\left(X_{0}=x_{0}, \ldots, X_{t-1}=x_{t-1}\right)>0$)
\checkmark i.e., time-inhomogeneous Markov chain
$>$ Transition matrix at time t is P_{t}

Hitting time

Hitting time $\boldsymbol{t}_{\text {hit }}:=\max _{x, y \in V} \mathbf{E}_{x}\left[\min \left\{t \geq 0 \mid X_{t}=y\right\}\right]$
\checkmark The expected \# of steps for the walker to move from x to y (considering the worst-case pair of vertices x and y)

Hitting time $\boldsymbol{t}_{\text {hit }}:=\max _{x, y \in V} \mathbf{E}_{x}\left[\min \left\{t \geq 0 \mid X_{t}=y\right\}\right]$
\checkmark The expected \# of steps for the walker to move from x to y (considering the worst-case pair of vertices x and y)

Write $\boldsymbol{t}_{\text {hit }}(\boldsymbol{P})$ as the HT of the RW according to P
i.e., HT of a RW with a time-invariant transition matrix
\checkmark There is much previous work
Write $\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right)$ as the HT of the RW according to $\left(P_{t}\right)_{t \geq 1}$
i.e., HT of a RW with time-varying transition matrices
\checkmark Not much is known (This work)

Main result (Hitting time)

\checkmark We give an upper bound on HT of a RW with time-varying transition matrices in terms of HTs of time-invariant ones:

Thm. 1 (Hitting time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible, and lazy
\checkmark All P_{1}, P_{2}, \ldots have the same stationary distribution π
Then, there is a constant $C>0$ s.t.

$$
\begin{aligned}
\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{\boldsymbol{t} \geq 1}\right) & \leq \boldsymbol{C} \max _{\boldsymbol{t} \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \\
& =C \max \left\{t_{\text {hit }}\left(P_{1}\right), t_{\text {hit }}\left(P_{2}\right), t_{\text {hit }}\left(P_{3}\right), \ldots\right\} .
\end{aligned}
$$

$t_{\text {hit }}\left(\left(P_{t}\right)_{t \geq 1}\right)$: HT of the RW according to $\left(P_{t}\right)_{t \geq 1}$, i.e., HT of the RW with timevarying transition matrices $\left(P_{t}\right.$ at time t)
$t_{\text {hit }}\left(P_{1}\right)$: HT of the RW according to P_{1}, i.e., HT of the RW with the time-invariant transition matrix (P_{1} at all times)

Notation and Main result

Previous work

Idea of proof
Other topic

Thm. 1 (Hitting time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible, and lazy
\checkmark All $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ have the same stationary distribution π
Then, there is a constant $C>0$ s.t.

$$
\begin{aligned}
\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right) & \leq \boldsymbol{C} \max _{\boldsymbol{t} \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \\
& =C \max \left\{t_{\text {hit }}\left(P_{1}\right), t_{\text {hit }}\left(P_{2}\right), t_{\text {hit }}\left(P_{3}\right), \ldots\right\} .
\end{aligned}
$$

Previous work: lazy simple RW on a (static) graph

$\checkmark G$:n-vertex graph $>V(G)$: Vertex set of $G>E(G)$: Edge set of G
$>\operatorname{deg}(G, x)$: Degree of vertex $x \in V(G)$
Lazy simple random walk on (static) G : At time t, the walker moves from x to y w.p. $P(x, y)$ defined as follows:

$$
P(x, y):=\left\{\begin{array}{ccc}
\frac{1}{2 \operatorname{deg}(G, x)} & (\text { if }\{x, y\} \in E(G)) & \\
\frac{1}{2} & \text { (if } x=y) & 1 / 2,1 / 6 \\
0 & \text { (otherwise) } & 1 / 6
\end{array}\right.
$$

For any connected graph G, let P be the transition matrix of the lazy simple RW on G. Then,

$$
t_{\mathrm{hit}}(P)=O\left(\boldsymbol{n}^{3}\right)
$$

There exists a tight example (Lollipop graph)
[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

Previous work: lazy simple RW on a dynamic graph 12

$\checkmark G_{1}, G_{2}, \ldots$: Sequence of edge-changing n-vertex graphs
Lazy simple random walk on G_{1}, G_{2}, \ldots : At time t, the walker moves from x to y w.p. $P_{t}(x, y)$ defined as follows:

Ex. Lazy simple random walk on G_{1}, G_{2}, \ldots

Previous work: Exponential lower bound for LSRW

Sisyphus wheel. Sequence of star graphs G_{1}, G_{2}, \ldots with $V\left(G_{t}\right)=$ $\{1, \ldots, \boldsymbol{n}\}$, where the center changes periodically in $1, \ldots, \boldsymbol{n}-\mathbf{1}$

For Sisyphus wheel G_{1}, G_{2}, \ldots, let P_{t} be the transition matrix of the lazy simple random walk on G_{t}. Then, $\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right)=\mathbf{2}^{\boldsymbol{\Omega (n)}}$.
[Avin, Kouský, Lotler. ICALP 08, RS\&A 18]

Ex of $n=5$.
The walker must stay $n-2$ consecutive steps to reach the vertex n

Previous work: Upper bound for lazy simple RW

\forall sequence of connected graphs G_{1}, G_{2}, \ldots with an invariant degree distribution, let P_{t} be the transition matrix of lazy simple walk on G_{t}. Then,

$$
t_{\text {hit }}\left(\left(P_{t}\right)_{t \geq 1}\right)=O\left(n^{3} \log n\right) .
$$

[Sauerwald, Zanetti. ICALP 19]

\checkmark In general, there exists a sequence of graphs s.t. HT is exponential (Sisyphus wheel)
\checkmark If the degree distribution is invariant, HT is polynomial

Application of Theorem 1: Lazy simple RW

We can apply Thm. 1 for lazy simple RW on G_{1}, G_{2}, \ldots with time-invariant degree distribution!
$\checkmark P_{t}$ (Transition matrix of LSRW on G_{t}) is irreducible, reversible and lazy (if G_{t} is connected)
\checkmark Stationary distribution of P_{t} is $\frac{\operatorname{deg}\left(G_{t}, x\right)}{2\left|E\left(G_{t}\right)\right|}$
> Stationary distribution is invariant if degree dist. is !
Thm. 1 (Hitting time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible, and lazy
\checkmark All P_{1}, P_{2}, \ldots have the same stationary distribution π
Then, there is a constant $C>0$ s.t. $\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right) \leq \boldsymbol{C} \max _{\boldsymbol{t} \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right)$

$$
=C \max \left\{t_{\text {hit }}\left(P_{1}\right), t_{\text {hit }}\left(P_{2}\right), t_{\text {hit }}\left(P_{3}\right), \ldots\right\}
$$

Application of Theorem 1: Lazy simple RW

Corollary of Thm.1. \forall sequence of connected graphs $\left(G_{t}\right)_{t \geq 1}$ with an invariant degree distribution, let P_{t} be the transition matrix of the lazy simple RW on G_{t}. Then,

$$
t_{\text {hit }}\left(\left(P_{t}\right)_{t \geq 1}\right)=O\left(\boldsymbol{n}^{3}\right) .
$$

\checkmark Improves $O\left(n^{3} \log n\right)$ bound of the previous work!
[Sauerwald, Zanetti. ICALP 19]
Remark.
$\checkmark t_{\text {hit }}\left(P_{1}\right)=O\left(n^{3}\right), t_{\text {hit }}\left(P_{2}\right)=O\left(n^{3}\right), \ldots$
[Aleliunas et al. 79]
(previous work on static graphs)

$$
\text { HT of LSRW on } G_{1} \quad \text { HT of LSRW on } G_{2}
$$

Thm.1. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, lazy, and have the same stationary distribution π. Then, $\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right) \leq \boldsymbol{C} \boldsymbol{\operatorname { m a x }}\left\{\boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{1}\right), \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{2}\right), \ldots\right\}$.

Other example: lazy Metropolis walk

Lazy Metropolis walk on (static) G. At time t, the walker moves from x to y w.p. $P(x, y)$ defined as follows:

$$
P(x, y):=\left\{\begin{array}{ccc}
\frac{1}{2 \max \{\operatorname{deg}(G, x), \operatorname{deg}(G, y)\}} & (\text { if }\{x, y\} \in E(G)) \\
1-\sum_{w: w \sim x} P(x, w) & (\text { if } x=y) & \text { (otherwise) }
\end{array}\right.
$$

For any connected graph G, let P be the transition matrix of the lazy Metropolis walk on G. Then, $t_{\text {hit }}(P)=O\left(\boldsymbol{n}^{2}\right)$.
[Nonaka, Ono, Sadakane, Yamashita. Theoretical Compt. Sci. 10]
\checkmark Using local degree information achieves $O\left(n^{2}\right)$ hitting time
\checkmark There are no previous studies about dynamic cases

Application of Theorem 1: Lazy Metropolis walk

Cor. of Thm.1. \forall sequence of connected graphs $\left(G_{t}\right)_{t \geq 1}$, let P_{t} be the transition matrix of the lazy Metropolis W on G_{t}. Then,

$$
t_{\mathrm{hit}}\left(\left(P_{t}\right)_{t \geq 1}\right)=O\left(\boldsymbol{n}^{2}\right) .
$$

Remark. Same bound as the static graph! i.e., LMW is robust for edge-changes
\checkmark Stationary distribution of LMW is the uniform distribution ($\pi(x)=1 / n$ for any graph)
$>$ Stationary distribution is invariant for any graphs!
$\checkmark t_{\text {hit }}\left(P_{1}\right)=O\left(n^{2}\right), t_{\text {hit }}\left(P_{2}\right)=O\left(n^{2}\right), \ldots$
[Nonaka et al. 10]
(previous work on static graphs)

$$
\text { HT of LMW on } G_{1} \quad \text { HT of LMW on } G_{2}
$$

Thm.1. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, lazy, and have the same stationary distribution π. Then, $\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right) \leq \boldsymbol{C} \boldsymbol{\operatorname { m a x }}\left\{\boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{1}\right), \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{2}\right), \ldots\right\}$.

Contents

Notation and Main result
Previous works

Idea of proof

Other topic

$\checkmark \tau_{y}:=\min \left\{t \geq 0 \mid X_{t}=y\right\}$: Hitting time to \boldsymbol{y} (random variable)
Remark. Hitting time $t_{\text {hit }}=\max _{x, y \in V} \mathbf{E}_{x}\left[\tau_{y}\right]$ from definition
Hitting time lemma. Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible and reversible
\checkmark All P_{1}, P_{2}, \ldots have the same stationary distribution π Then, for any $w \in V$ and $T \geq 0$,

$$
\underset{\pi}{\operatorname{Pr}}\left(\tau_{w}>T\right) \leq\left(1-\frac{1}{\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)}\right)^{T} .
$$

\checkmark For the walker starting from the stationary distribution, the hitting time to a vertex decreases exponentially

Key tool 1: Hitting time lemma

$\checkmark \tau_{y}:=\min \left\{t \geq 0 \mid X_{t}=y\right\}$: Hitting time to \boldsymbol{y} (random variable)
Hitting time lemma. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, and have the same stationary distribution π. Then, for any $w \in V$ and $T \geq 0$,

$$
\operatorname{Pr}_{\pi}\left(\tau_{w}>T\right) \leq\left(1-\frac{1}{\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)}\right)^{T}
$$

\checkmark For the walker starting from the stationary distribution, the hitting time to a vertex decreases exponentially
$>$ HTL implies that "Hitting time from stationary $\mathbf{E}_{\pi}\left[\tau_{w}\right]$ " is bounded by $\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right)$:

$$
\mathbf{E}_{\pi}\left[\tau_{w}\right] \leq \sum_{T=0}^{\infty}\left(1-\frac{1}{\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)}\right)^{T}=\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)
$$

Proof of hitting time lemma (1/3)

$\checkmark D_{w} \in\{0,1\}^{V \times V}$: diagonal matrix where $D_{w}(x, x)=\mathbf{1}_{x \neq w}$
$>$ Key observation. τ_{w} can be expressed in terms of D_{w} :

$$
\operatorname{Pr}_{x}\left(\tau_{w}>T, X_{T}=y\right)=\operatorname{Pr}_{x}\left(\bigwedge_{t=0}^{T}\left\{X_{t} \neq w\right\}, X_{T}=y\right)
$$

Proof of Hitting time lemma (2/3)

$$
\begin{aligned}
& \underset{\pi}{\operatorname{Pr}\left(\tau_{w}>T\right)}= \sum_{x \in V} \pi(x) \sum_{y \in V}\left(\prod_{t=1}^{T} D_{w} P_{t} D_{w}\right)(x, y) \\
& \leq\left\|\left(\prod_{t=1}^{T} D_{w} P_{t} D_{w}\right) \mathbf{1}\right\| \begin{array}{l}
\operatorname{Pr}\left(\tau_{w}>T, X_{T}=y\right) \\
=\left(\prod_{t=1}^{T} D_{w} P_{t} D_{w}\right)(x, y)
\end{array} \\
& \leq \prod_{t=1}^{T} \rho\left(D_{w} P_{t} D_{w}\right) \begin{array}{l}
\text { Cauchy-Schwarz inequality } \\
\begin{array}{l}
\|f\|_{2, \pi}:=\sqrt{\sum_{x \in V} \pi(x) f(x)^{2}} \\
\left(\ell_{2}(\pi)-\operatorname{norm}\right)
\end{array}
\end{array}
\end{aligned}
$$

Courant-Fischer-Weyl Min-max theorem
$\checkmark \rho(A)$: the spectral radius of A

Proof of Hitting time lemma (3/3)

\checkmark The following lemma, a basic consequence of the Perron-Frobenius theorem, concludes the proof:

Lem. Suppose P is irreducible \& reversible. Then, $\forall w \in V$, the spectral radius $\rho\left(D_{w} P D_{w}\right)$ of $D_{w} P D_{w}$ is bounded by $1-\frac{1}{t_{\text {hit }}(P)}$.
[Aldous, Fill 02]

$$
\operatorname{Pr}_{\pi}\left(\tau_{w}>T\right) \leq \prod_{t=1}^{T} \rho\left(D_{w} P_{t} D_{w}\right) \leq \prod_{t=1}^{T}\left(1-\frac{1}{t_{\mathrm{hit}}\left(P_{t}\right)}\right)
$$

Hitting time lemma. Suppose all P_{1}, P_{2}, \ldots are irreducible, and have the same stationary distribution π. Then, $\underset{\pi}{\operatorname{Pr}}\left(\tau_{w}>T\right) \leq\left(1-\frac{1}{\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right)}\right)^{T}$.

Proof overview:
Time taken for a walker

$$
\begin{aligned}
t_{\text {hit }}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq & \text { to converge } \pi \text { (from } \\
& \text { the worst initial pos.) }
\end{aligned}
$$

Hitting time lemma:

$$
\mathbf{E}_{\pi}\left(\tau_{w}\right) \leq \max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)
$$

$+\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)$
\checkmark Mixing time bound for time-inhomogeneous Markov chain
\checkmark For time-homogeneous MC, the following is well-known:
Thm. Suppose P is irreducible, reversible and lazy. Then,

$$
t_{\text {mix }}^{(\infty)}(P) \leq C t_{\mathrm{hit}}(P)
$$

Thm. 2 (Mixing time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible and lazy
\checkmark All P_{1}, P_{2}, \ldots have the same stationary distribution π
Then, there is a constant $C>0$ s.t.

$$
t_{\operatorname{mix}}^{(\infty)}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right) .
$$

$\left(\ell_{\infty}(\pi)-\right)$ Mixing time $\boldsymbol{t}_{\text {mix }}^{(\infty)}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right)$.
$t_{\text {mix }}^{(\infty)}\left(\left(P_{t}\right)_{t \geq 1}\right)$
$:=\min \left\{t \geq 0: \max _{s \geq 0, x, y \in V}\left|\frac{\left(P_{s+1} P_{s+2} \cdots P_{s+t}\right)(x, y)}{\pi(y)}-1\right| \leq \frac{1}{2}\right\}$

Remark.

\checkmark The following bound of $t_{\text {mix }}^{(\infty)}\left(\left(P_{t}\right)_{t \geq 1}\right)$ has been shown:
Suppose all P_{1}, P_{2}, \ldots are irreducible, aperiodic, reversible, and have the same stationary distribution π. Then, \exists constant C s.t.

$$
t_{\operatorname{mix}}^{(\infty)}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1}\left(\frac{\log \pi_{\min }^{-1}}{1-\lambda_{\star}\left(P_{t}\right)}\right)
$$

[Saloff-Coste, Zúñiga. Stochastic Processes and their Applications 07]
$\lambda_{\star}(P): 2^{\text {nd }}$ largest eigenvalue in absolute value of P
\checkmark For some cases (e.g., LSRW on expander graphs), this gives a better bound than our bound of $\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right)$
\checkmark However, there exists bad examples (e.g, LSRW on cycles) where this bound gets $\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right) \log n$

Proof outline for Theorem 2 (Mixing time)

For a probability vector $\mu \in[0,1]^{V}$, let

$$
\Delta^{(\pi)}(\mu):=\left\|\frac{\mu}{\pi}-\mathbf{1}\right\|_{2, \pi}^{2}=\sum_{x \in V} \pi(x)\left(\frac{\mu(x)}{\pi(x)}-1\right)^{2}
$$

$$
\Delta^{(\pi)}(\mu P) \leq \Delta^{(\pi)}(\mu)\left(1-\frac{\Delta^{(\pi)}(\mu)}{t_{\mathrm{hit}}(P)}\right) .
$$

μP gets closer to π than μ in terms of $t_{\text {hit }}(P)$
(dist. after one step)
Applying repeatedly
Lem.

$$
\text { For } T \geq C \max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right), \Delta^{(\pi)}\left(\mu P_{1} \cdots P_{T}\right) \leq \frac{1}{2}
$$

$$
\ell_{2}(\pi) \text {-norm } \rightarrow \ell_{\infty}(\pi) \text {-norm }
$$

Thm.2. For $T \geq C \max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right), \max _{s \geq 0, x, y \in V}\left|\frac{\left(P_{s+1} \cdots P_{s+T}\right)(x, y)}{\pi(y)}-1\right| \leq \frac{1}{2}$.

Lem.

$\Delta^{(\pi)}(\mu P) \leq \Delta^{(\pi)}(\mu)-\boldsymbol{\mathcal { E }}_{P, \pi}\left(\frac{\boldsymbol{\mu}}{\boldsymbol{\pi}}\right)$.
Lem. $\boldsymbol{E}_{P, \pi}\left(\frac{\boldsymbol{\mu}}{\boldsymbol{\pi}}\right) \geq \frac{\Delta^{(\pi)}(\mu)^{2}}{t_{\text {hit }}(P)}$.

Lem.

$$
\Delta^{(\pi)}(\mu P) \leq \Delta^{(\pi)}(\mu)\left(1-\frac{\Delta^{(\pi)}(\mu)}{t_{\mathrm{hit}}(P)}\right) .
$$

For $f \in \mathbb{R}^{V}$, let

$$
\begin{aligned}
\mathcal{E}_{P, \pi}(f):=\mathcal{E}_{P, \pi}(f, f) & =\frac{1}{2} \sum_{x, y \in V} \pi(x) P(x, y)(f(x)-f(y))^{2} \\
& =\langle f, f\rangle_{\pi}-\langle f, P f\rangle_{\pi} . \quad \text { (Dirichlet form) }
\end{aligned}
$$

$\langle f, g\rangle_{\pi}:=\sum_{x \in V} \pi(x) f(x) g(x): \pi$-inner product

Lem. For any irreducible \& reversible P,

$$
\boldsymbol{\varepsilon}_{P, \boldsymbol{\pi}}\left(\frac{\boldsymbol{\mu}}{\boldsymbol{\pi}}\right) \geq \frac{\Delta^{(\pi)}(\mu)^{2}}{t_{\mathrm{hit}}(P)}
$$

\checkmark Let $g(x):=\left\|\frac{\mu}{\pi}\right\|_{\infty}-\frac{\mu(x)}{\pi(x)} . \quad \geqslant\left\|\frac{\mu}{\pi}\right\|_{\infty}=\max _{x \in V} \frac{\mu(x)}{\pi(x)}$
\checkmark The proof consists of the following three statements:

1. $\mathcal{E}_{P, \pi}\left(\frac{\mu}{\pi}\right)=\langle g, g\rangle_{\pi}-\langle P g, g\rangle_{\pi}$
2. $\langle P g, g\rangle_{\pi} \leq\left(1-\frac{1}{t_{\text {hit }}(P)}\right)\langle g, g\rangle_{\pi}$.
3. $\langle g, g\rangle_{\pi} \geq \Delta^{(2, \pi)}(\mu)^{2}$

Key technical lemma (Proof, 2/3)

$\checkmark g(x):=\left\|\frac{\mu}{\pi}\right\|_{\infty}-\frac{\mu(x)}{\pi(x)}$.

1. Since $\frac{\mu(x)}{\pi(x)}-\frac{\mu(y)}{\pi(y)}=g(y)-g(x)$,

$$
\begin{aligned}
& \mathcal{E}_{P, \pi}(f) \\
& :=\frac{1}{2} \sum_{x, y \in V} \pi(x) P(x, y)(f(x)-f(y))^{2} \\
& =\langle f, f\rangle_{\pi}-\langle f, P f\rangle_{\pi}
\end{aligned}
$$

$$
\mathcal{E}_{P, \pi}\left(\frac{\mu}{\pi}\right)=\mathcal{E}_{P, \pi}(g)=\langle g, g\rangle_{\pi}-\langle P g, g\rangle_{\pi}
$$

2. Let $w \in V$ be a vertex s.t. $\frac{\mu(w)}{\pi(w)}=\left\|\frac{\mu}{\pi}\right\|_{\infty}$. Then, $g(w)=0$ and

$$
\begin{aligned}
\langle P g, g\rangle_{\pi}=\left\langle D_{w} P D_{w} g, g\right\rangle_{\pi} & \leq \rho\left(D_{w} P D_{w}\right)\langle g, g\rangle_{\pi} \\
& \leq\left(1-\frac{1}{t_{\mathrm{hit}}(P)}\right)\langle g, g\rangle_{\pi}
\end{aligned}
$$

D_{w} : Identity matrix except that its (w, w)-entry is 0

Lem. $\rho\left(D_{w} P D_{w}\right) \leq 1-\frac{1}{t_{\mathrm{hit}}(P)}$.
$\checkmark g(x):=\left\|\frac{\mu}{\pi}\right\|_{\infty}-\frac{\mu(x)}{\pi(x)}$.
3. From

$$
\begin{aligned}
\Delta^{(\pi)}(\mu) & =\sum_{x \in V} \pi(x)\left(\frac{\mu(x)}{\pi(x)}-1\right)^{2}=\sum_{x \in V} \pi(x)\left(\frac{\mu(x)}{\pi(x)}\right)^{2}-1 \leq\left\|\frac{\mu}{\pi}\right\|_{\infty}-1 \\
\langle g, g\rangle_{\pi} & =\sum_{x \in V} \pi(x)\left(\left\|\frac{\mu}{\pi}\right\|_{\infty}-\frac{\mu(x)}{\pi(x)}\right)^{2} \\
& =\left\|\frac{\mu}{\pi}\right\|_{\infty}^{2}+\sum_{x \in V} \pi(x)\left(\frac{\mu(x)}{\pi(x)}\right)^{2}-2\left\|\frac{\mu}{\pi}\right\|_{\infty} \\
& \geq\left(\left\|\frac{\mu}{\pi}\right\|_{\infty}-1\right)^{2} \geq \Delta^{(\pi)}(\mu)^{2} . \quad \sum_{x \in V} \pi(x)\left(\frac{\mu(x)}{\pi(x)}\right)^{2} \geq 1
\end{aligned}
$$

Notation and Main result

Previous work

Idea of proof

Other topic

\checkmark We also studied other parameters of a random walk according to $\left(P_{t}\right)_{t \geq 1}$:
> Cover time
$>$ Hitting and cover times of k-independent walkers
$>$ Coalescing time

Cover time

Cover time $\boldsymbol{t}_{\text {cov }}:=\max _{x \in V} \mathbf{E}_{x}\left[\min \left\{t \geq 0 \mid\left\{X_{0}, X_{1}, \ldots, X_{t}\right\}=V\right\}\right]$
\checkmark The expected \# of steps for the walker to visit all vertices (from the worst initial position)

Write $\boldsymbol{t}_{\text {cov }}(\boldsymbol{P})$ as the CT of the RW according to P
i.e., CT of a RW with a time-invariant transition matrix
\checkmark There is much previous work
Write $\boldsymbol{t}_{\mathbf{c o v}}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right)$ as the CT of the RW according to $\left(P_{t}\right)_{t \geq 1}$
i.e., CT of a RW with time-varying transition matrices
\checkmark Not much is known

Previous work for time-invariant P

\checkmark There is much previous work for time-invariant P, e.g.,
For any connected graph G, let P be the transition matrix of the lazy simple RW on G. Then,

$$
t_{\mathrm{cov}}(P)=O\left(\boldsymbol{n}^{3}\right)
$$

There exists a tight
example (Lollipop graph)
[Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]
For any connected graph G, let P be the transition matrix of the lazy Metropolis walk on G. Then,

$$
t_{\mathrm{cov}}(P)=O\left(\boldsymbol{n}^{2} \log \boldsymbol{n}\right)
$$

There exists a tight example (glitter star)

For any irreducible $P, t_{\text {cov }}(P) \leq \boldsymbol{t}_{\text {hit }}(\boldsymbol{P}) \log \boldsymbol{n}$.

Result (Cover time)

Thm. 3 (Cover time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible, and lazy
\checkmark All P_{1}, P_{2}, \ldots have the same stationary distribution π
Then, there is a constant $C>0$ s.t.

$$
t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right) \log n .
$$

\checkmark Multiplying $\max _{t \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right)$ by $\boldsymbol{O}(\log n)$ is sufficient to cover all vertices (even for the time-inhomogeneous case)
\checkmark Theorem 3 gives tight bounds for some cases
> Lazy Metropolis walk

Application of Theorem 3: Lazy Metropolis walk

Cor. of Thm.3. \forall sequence of connected graphs $\left(G_{t}\right)_{t \geq 1}$, let P_{t} be the transition matrix of the lazy Metropolis W on G_{t}. Then,

$$
t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right)=O\left(\boldsymbol{n}^{2} \log \boldsymbol{n}\right) .
$$

Remark. Same bound as the static graph! i.e., LMW is robust for edge-changes
\checkmark Stationary distribution of LMW is the uniform distribution ($\pi(x)=1 / n$ for any graph)
$>$ Stationary distribution is invariant for any graphs!
$\checkmark t_{\text {hit }}\left(P_{1}\right)=O\left(n^{2}\right), t_{\text {hit }}\left(P_{2}\right)=O\left(n^{2}\right), \ldots$
[Nonaka et al. 10]
(previous work on static graphs)

$$
\text { HT of LMW on } G_{1} \quad \text { HT of LMW on } G_{2}
$$

Thm.3. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, lazy, and have the same stationary distribution π. Then, $\boldsymbol{t}_{\mathbf{c o v}}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{t \geq 1}\right) \leq \boldsymbol{C} \max _{\boldsymbol{t} \geq 1} \boldsymbol{t}_{\mathrm{hit}}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \log n$.

Proof sketch of Theorem 3

We can assume the initial position $\sim \pi$ from Thm. 2

$\checkmark \tau_{y}:=\min \left\{t \geq 0 \mid X_{t}=y\right\}$
For $T=\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right) \log n$, Union bound + HTL implies

$$
\operatorname{Pr}_{\pi}\left(\tau_{\text {cov }}>T i\right)=\operatorname{Pr}_{\pi}\left(\bigcup_{w \in V}\left\{\tau_{w}>T i\right\}\right) \leq n\left(1-\frac{1}{\max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right)}\right)^{T i}
$$

$$
\leq n^{-(i-1)}
$$

Hitting time lemma.

$$
\operatorname{Pr}_{\pi}\left(\tau_{w}>T\right) \leq\left(1-\frac{1}{\max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right)}\right)^{T}
$$

Hence, $\mathbf{E}_{\pi}\left[\tau_{\text {cov }}\right]=O(T)$.

Remark. Thm. 3 is (possibly) weak for LSRW

Corollary of Thm.3. \forall sequence of connected graphs $\left(G_{t}\right)_{t \geq 1}$ with an invariant degree distribution, let P_{t} be the transition matrix of the lazy simple RW on G_{t}. Then,

$$
t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right)=O\left(\boldsymbol{n}^{3} \log n\right) .
$$

Q. Is it tight?
$>$ Is there a bad sequence of graphs with an invariant degree dist. s.t. $t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right)=\Omega\left(n^{3} \log n\right)$?

Time-invariant case:
There exists a tight example (Lollipop graph)

For any connected graph G, let P be the transition matrix of the lazy simple $\underline{\text { RW }}$ on G. Then, $t_{\text {cov }}(P)=O\left(\boldsymbol{n}^{\mathbf{3}}\right) . \quad$ [Aleliunas, Karp, Lipton, Lovász, Rackoff. FOCS 79]

Thm.3. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, lazy, and have the same stationary distribution π. Then,

$$
t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} \boldsymbol{t}_{\mathbf{h i t}}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \log n .
$$

Conjecture. Suppose all P_{1}, P_{2}, \ldots are irreducible, reversible, lazy, and have the same stationary distribution π. Then,

$$
\begin{equation*}
\boldsymbol{t}_{\mathrm{cov}}\left(\left(\boldsymbol{P}_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} t_{\mathrm{cov}}\left(P_{t}\right) \tag{?}
\end{equation*}
$$

\checkmark Is it true? Or a counter-example exists?
$>$ Do good tools like the Hitting time lemma exist?

$$
\text { e.g., } \operatorname{Pr}_{\pi}\left(\tau_{\text {cov }}>T\right) \leq \cdots
$$

Conclusion

\checkmark We give an upper bound on HT of a RW with time-varying transition matrices, in terms of HTs of time-invariant ones:

Thm. 1 (Hitting time). Suppose $\left(P_{t}\right)_{t \geq 1}$ satisfies the following:
\checkmark All P_{1}, P_{2}, \ldots are irreducible, reversible, and lazy
\checkmark All $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots$ have the same stationary distribution $\boldsymbol{\pi}$
Then, there is a constant $C>0$ s.t.

$$
\begin{aligned}
\boldsymbol{t}_{\text {hit }}\left(\left(\boldsymbol{P}_{\boldsymbol{t}}\right)_{\boldsymbol{t} \geq 1}\right) & \leq \boldsymbol{C} \max _{\boldsymbol{t} \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right) \\
& =C \max \left\{t_{\text {hit }}\left(P_{1}\right), t_{\text {hit }}\left(P_{2}\right), t_{\text {hit }}\left(P_{3}\right), \ldots\right\} .
\end{aligned}
$$

\checkmark We also give upper bounds for the mixing and cover times in terms of $\max _{t \geq 1} \boldsymbol{t}_{\text {hit }}\left(\boldsymbol{P}_{\boldsymbol{t}}\right)$

Summary: Thank you for your attention!

Lazy simple RW

Graph	$\boldsymbol{t}_{\text {hit }} \boldsymbol{t}_{\text {cov }}$	
\forall connected G (static)	$O\left(n^{3}\right)$	[Aleliunas et al. 79]
ヨconnected G (static)	$\Omega\left(n^{3}\right)$ (Lollipop)	[Feige. 95]
\exists seq. of connected graphs G_{1}, G_{2}, \ldots	$2^{\Omega(n)(\text { Sisyphus wheel) }}$	[Avin, Kouský, Lotler. 08]
[seq. of connected graphs G_{1}, G_{2}, \ldots with time-invariant degree dist.	$O\left(n^{3} \log n\right) \quad O\left(n^{3} \log ^{2} n\right)$	[Sauerwald, Zanneti. 19]

Lazy Metropolis walk

Graph	$t_{\text {hit }}$	$\boldsymbol{t}_{\text {cov }}$	
\forall connected G (static)	$O\left(n^{2}\right)$	$O\left(n^{2} \log n\right)$	
\exists connected G (static)	$\begin{gathered} \Omega\left(n^{2}\right) \\ (\text { e.g, path }) \end{gathered}$	$\begin{aligned} & \Omega\left(n^{2} \log n\right) \\ & \text { (glitter star) } \\ & \hline \end{aligned}$	[Nonaka et al. 10]
\forall seq. of connected graphs G_{1}, G_{2}, \ldots	$O\left(n^{2}\right)$	$O\left(n^{2} \log n\right)$	[Shimizu, S. 23]
$t_{\text {hit }}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} t_{\text {hit }}\left(P_{t}\right)$	$t_{\mathrm{cov}}\left(\left(P_{t}\right)_{t \geq 1}\right) \leq C \max _{t \geq 1} t_{\mathrm{hit}}\left(P_{t}\right) \log n .$		

