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Graph colouring

k colouring of G

f : V (G) → {1, . . . , k} s.t. f (u) ̸= f (v) whenever uv ∈ E(G)

Chromatic polynomial
CG(k) = # k−colourings of G (Birkhoff 1912)

Originally introduced to approach four colour problem
Examples

Ckr (k) = k(k − 1)(k − 2) · · · (k − r + 1)
Cn-vertex tree(k) = k(k − 1)n−1
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Computational counting
Want FPTAS / FPRAS for

CG(k) for k ∈ N CG(z) for z ∈ C

For general graphs CG(z) is #P-hard to compute
exactly ∀z ∈ C \ {0,1,2}. Jaeger-Vertigan-Welsh 1990
approximately ∀z s.t. |z − 1| > 1 Fencs-Huijben-Regts ’22

CG(k) is NP-hard to approximate for “most” k ≤ ∆(G)
[GSV15, EHK98 ]

Conjecture ∃ FPTAS for CG(k) provided k > ∆(G)
[1990’s, Frieze-Vigoda]

For k ∈ N
FPRAS for k ≥ 2∆ Jerrum 1994
FPRAS for k > (11

6 − ε)∆ Vigoda 2006, CDMPP 2019
FPTAS for k ≥ 2∆ Liu-Sinclair-Srivastava 2019
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Question: (Brenti, Royle, Wagner 1994)
Is there a function f (k) such that CG(z) ̸= 0 whenever
∆(G) ≤ k and |z| ≥ f (k)?

Sokal answered this affirmatively with f (k) = 7.97k

CG(z) ̸= 0 whenever |z| ≥ 7.97∆(G) (Sokal 2001)

CG(z) ̸= 0 whenever |z| ≥ 6.91∆(G)
(Jackson-Procacci-Sokal 2013)

CG(z) ̸= 0 whenever |z| ≥ 5.93∆(G)
(Jenssen, Patel, Regts 2023+)

Moreover if girth(G) ≥ g then can replace 5.93 with Kg where

K3 = 5.93 K4 = 5.23 K5 = 4.87
K10 = 4.26 K25 = 3.97 K100 = 3.87
K1000 = 3.86
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Conjecture: CG(z) ̸= 0 if ℜ(z) > ∆(G) Sokal 2003

Implies

Conjecture: ∃ FPTAS for CG(k) provided k > ∆(G)
[1990’s, Frieze-Vigoda]
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CG(z) ̸= 0 whenever |z| ≤ 6.91∆(G) (new short proof)
CG(z) ̸= 0 whenever |z| ≤ 5.93∆(G) (sketch)

Let G = (V ,E) with ∆(G) ≤ k and |V | = n

CG(z) = a0zn + a1zn−1 + · · ·+ an−1z + an

Theorem (Whitney 1932)
ai = number of broken-circuit free sets of size i in G

Broken circuit free sets (BCF sets)

Fix an ordering of E. We say A ⊆ E is broken circuit free if
A is a forest, and
each e ∈ E \ A is not the largest edge in the unique cycle
of A + e (when it exists)

Note: number of BCF sets is independent of edge ordering!

Example



CG(z) ̸= 0 whenever |z| ≤ 6.91∆(G) (new short proof)
CG(z) ̸= 0 whenever |z| ≤ 5.93∆(G) (sketch)

Let G = (V ,E) with ∆(G) ≤ k and |V | = n

CG(z) = a0zn + a1zn−1 + · · ·+ an−1z + an

Theorem (Whitney 1932)
ai = number of broken-circuit free sets of size i in G

Broken circuit free sets (BCF sets)

Fix an ordering of E. We say A ⊆ E is broken circuit free if
A is a forest, and
each e ∈ E \ A is not the largest edge in the unique cycle
of A + e (when it exists)

Note: number of BCF sets is independent of edge ordering!

Example



CG(z) ̸= 0 whenever |z| ≤ 6.91∆(G) (new short proof)
CG(z) ̸= 0 whenever |z| ≤ 5.93∆(G) (sketch)

Let G = (V ,E) with ∆(G) ≤ k and |V | = n

CG(z) = a0zn + a1zn−1 + · · ·+ an−1z + an

Theorem (Whitney 1932)
ai = number of broken-circuit free sets of size i in G

Broken circuit free sets (BCF sets)

Fix an ordering of E. We say A ⊆ E is broken circuit free if
A is a forest, and
each e ∈ E \ A is not the largest edge in the unique cycle
of A + e (when it exists)

Note: number of BCF sets is independent of edge ordering!

Example



CG(z) ̸= 0 whenever |z| ≤ 6.91∆(G) (new short proof)
CG(z) ̸= 0 whenever |z| ≤ 5.93∆(G) (sketch)

Let G = (V ,E) with ∆(G) ≤ k and |V | = n

CG(z) = a0zn + a1zn−1 + · · ·+ an−1z + an

Theorem (Whitney 1932)
ai = number of broken-circuit free sets of size i in G

Broken circuit free sets (BCF sets)

Fix an ordering of E. We say A ⊆ E is broken circuit free if
A is a forest, and
each e ∈ E \ A is not the largest edge in the unique cycle
of A + e (when it exists)

Note: number of BCF sets is independent of edge ordering!

Example



We work with a simple transformation:

CG(z) = a0zn − a1zn−1 + · · · + (−1)nan

BG(z) = a0 + a1z + · · · + anzn = znCG(−z−1) =
∑

F⊆E BCF

z |F |

CG(z) ̸= 0 whenever |z| ≥ K∆ iff BG(z) ̸= 0 whenever |z| ≤ (K∆)−1

Enough to show that whenever ∆(G) ≤ ∆ and |z| ≤ 1/K∆∣∣∣∣ BG(z)
BG−u(z)

∣∣∣∣ ∈ [1 − a,1 + a]

i.e. R(z) :=
∣∣∣∣ BG(z)
BG−u(z)

− 1
∣∣∣∣ < a

∀u ∈ V and some constants a ∈ (0,1) and K > 0 (to be
determined).

By induction may assume that if |G′| < |G| then∣∣∣ BG′
BG′−v

∣∣∣ ∈ [1−a,1+a] and
∣∣∣∣ BG′

BG′−{v1,...,vk}

∣∣∣∣ ∈ [(1−a)k , (1+a)k ]
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Fundamental Recursion:

BG(z) = BG−u(z) +
∑

T a BCF tree
u∈V (T )

z |T |BG−V (T )(z)

So R(z) =
BG(z)

BG−u(z)
− 1 =

∑
T a BCF tree

u∈V (T )

z |T |BG−V (T )(z)
BG−u(z)

|R(z)| ≤
∑

T a tree
u∈V (T )

|z||T |
∣∣∣BG−V (T )

BG−u

∣∣∣ ≤ ∑
T a tree
u∈V (T )

(K∆)−|T |(1 − a)−|T | ≤ a

for K = 6.91 and a = 0.32

TG,u(x) :=
∑

T⊆G a tree
u∈V (T )

x |T | and note TG,u

(
lnα

α∆

)
≤ α for α > 0,∆(G) ≤ ∆
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∑

T a tree
u∈V (T )

|z||T |
∣∣∣BG−V (T )

BG−u

∣∣∣ ≤ ∑
T a tree
u∈V (T )

(K∆)−|T |(1 − a)−|T | ≤ a

for K = 6.91 and a = 0.32

TG,u(x) :=
∑

T⊆G a tree
u∈V (T )

x |T | and note TG,u

(
lnα

α∆

)
≤ α for α > 0,∆(G) ≤ ∆
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Claim: For each S ⊆ N(u), have
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BG−u
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Equivalently
∑

F+uS is
BCF tree

z |F |BG−u−S−V (F ) ≈ BG−u

Compare with
∑

BCF F s.t.
every non-trivial
component of F

hits S

z |F |BG−u−S−V (F ) = BG−u

If F occurs in second sum but not the first then
Every non-trivial component of F hits S
Some component of F hits N(u) twice (or more)

∣∣∣ ∑
F+uS is
BCF tree

z |F |BG−u−S−V (F )

BG−u

∣∣∣ ≤ 1 +
∣∣∣ ∑

BCF F∈X

z |F |BG−u−S−V (F )

BG−u

∣∣∣
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If BCF F occurs in second sum but not the first then
Every non-trivial component of F hits S
Some component of F hits N(u) twice (or more)
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∣∣∣ ∑
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BG−u
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≤ 1 +

∑
F∈X

(K∆)−|F |(1 − a)−|F |−|S| ≤ 1 + ε

For final inequality we introduce and bound

TG,v1,v2(x) =
∑

T tree:
v1,v2∈V (T )

x |T | and bound TG,v1,v2

(
lnα

α∆

)
≤ α lnα

∆
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Conclusion

CG(z) ̸= 0 whenever ∆(G) ≤ ∆ and |z| ≥ 5.93∆
Try to improve on 5.93
Unclear what the correct constant should be (perhaps
complete bipartite graphs are extremal?)
Can we leverage BCF characterisation for further
progress?



Further Results

Forest generating polynomial of G = (V ,E)

FG(z) =
∑

F⊆E forest

z |F |

Also called partition function of arboreal gas model
Our methods extend here, but can go further using a
different recursion

FG(z) ̸= 0 whenever ∆(G) ≤ ∆ and |z| ≤ 1/(2∆)
Jenssen-Patel-Regts 2023+

Cannot replace 1/(2∆) with 1/∆ due to ∆-multi edge.
Can we get close to 1/∆?


