Improved bounds for the zeros of the chromatic polynomial

Viresh Patel

Queen Mary, University of London
MCMC 2.0-Shonan Seminar 186

Joint work with
Matthew Jenssen (KCL) and Guus Regts (Amsterdam)

Graph colouring

Graph colouring

k colouring of G
$f: V(G) \rightarrow\{1, \ldots, k\}$ s.t. $f(u) \neq f(v)$ whenever $u v \in E(G)$

Graph colouring

k colouring of G
$f: V(G) \rightarrow\{1, \ldots, k\}$ s.t. $f(u) \neq f(v)$ whenever $u v \in E(G)$

Graph colouring

k colouring of G
$f: V(G) \rightarrow\{1, \ldots, k\}$ s.t. $f(u) \neq f(v)$ whenever $u v \in E(G)$

Chromatic polynomial
$C_{G}(k)=\# k$-colourings of G

Graph colouring

k colouring of G
$f: V(G) \rightarrow\{1, \ldots, k\}$ s.t. $f(u) \neq f(v)$ whenever $u v \in E(G)$

Chromatic polynomial
$C_{G}(k)=\# k$-colourings of G
(Birkhoff 1912)

- Originally introduced to approach four colour problem
- Examples
- $C_{k_{r}}(k)=k(k-1)(k-2) \cdots(k-r+1)$
- $C_{n \text {-vertex tree }}(k)=k(k-1)^{n-1}$

Computational counting

Want FPTAS / FPRAS for

$$
C_{G}(k) \text { for } k \in \mathbb{N} \quad C_{G}(z) \text { for } z \in \mathbb{C}
$$

Computational counting

Want FPTAS / FPRAS for

$$
C_{G}(k) \text { for } k \in \mathbb{N} \quad C_{G}(z) \text { for } z \in \mathbb{C}
$$

For general graphs $C_{G}(z)$ is \#P-hard to compute

- exactly $\forall z \in \mathbb{C} \backslash\{0,1,2\}$. Jaeger-Vertigan-Welsh 1990
- approximately $\forall z$ s.t. $|z-1|>1$ Fencs-Huijben-Regts '22

Computational counting

Want FPTAS / FPRAS for

$$
C_{G}(k) \text { for } k \in \mathbb{N} \quad C_{G}(z) \text { for } z \in \mathbb{C}
$$

For general graphs $C_{G}(z)$ is \#P-hard to compute

- exactly $\forall z \in \mathbb{C} \backslash\{0,1,2\}$. Jaeger-Vertigan-Welsh 1990
- approximately $\forall z$ s.t. $|z-1|>1$ Fencs-Huijben-Regts '22
$C_{G}(k)$ is NP-hard to approximate for "most" $k \leq \Delta(G)$
[GSV15, EHK98]

Computational counting

Want FPTAS / FPRAS for

$$
C_{G}(k) \text { for } k \in \mathbb{N} \quad C_{G}(z) \text { for } z \in \mathbb{C}
$$

For general graphs $C_{G}(z)$ is \#P-hard to compute

- exactly $\forall z \in \mathbb{C} \backslash\{0,1,2\}$. Jaeger-Vertigan-Welsh 1990
- approximately $\forall z$ s.t. $|z-1|>1$ Fencs-Huijben-Regts '22
$C_{G}(k)$ is NP-hard to approximate for "most" $k \leq \Delta(G)$
[GSV15, EHK98]

Conjecture \exists FPTAS for $C_{G}(k)$ provided $k>\Delta(G)$
[1990's, Frieze-Vigoda]

Computational counting

Want FPTAS / FPRAS for

$$
C_{G}(k) \text { for } k \in \mathbb{N} \quad C_{G}(z) \text { for } z \in \mathbb{C}
$$

For general graphs $C_{G}(z)$ is \#P-hard to compute

- exactly $\forall z \in \mathbb{C} \backslash\{0,1,2\}$. Jaeger-Vertigan-Welsh 1990
- approximately $\forall z$ s.t. $|z-1|>1$ Fencs-Huijben-Regts '22
$C_{G}(k)$ is NP-hard to approximate for "most" $k \leq \Delta(G)$
[GSV15, EHK98]

Conjecture \exists FPTAS for $C_{G}(k)$ provided $k>\Delta(G)$
[1990's, Frieze-Vigoda]
For $k \in \mathbb{N}$

- FPRAS for $k \geq 2 \Delta$

Jerrum 1994

- FPRAS for $k>\left(\frac{11}{6}-\varepsilon\right) \Delta$

Vigoda 2006, CDMPP 2019

- FPTAS for $k \geq 2 \Delta$

Liu-Sinclair-Srivastava 2019

Question: (Brenti, Royle, Wagner 1994)
Is there a function $f(k)$ such that $C_{G}(z) \neq 0$ whenever $\Delta(G) \leq k$ and $|z| \geq f(k)$?

Question: (Brenti, Royle, Wagner 1994)
Is there a function $f(k)$ such that $C_{G}(z) \neq 0$ whenever $\Delta(G) \leq k$ and $|z| \geq f(k)$?

Sokal answered this affirmatively with $f(k)=7.97 k$
$C_{G}(z) \neq 0$ whenever $|z| \geq 7.97 \Delta(G)$
(Sokal 2001)
$C_{G}(z) \neq 0$ whenever $|z| \geq 6.91 \Delta(G)$
(Jackson-Procacci-Sokal 2013)

Question: (Brenti, Royle, Wagner 1994)
Is there a function $f(k)$ such that $C_{G}(z) \neq 0$ whenever
$\Delta(G) \leq k$ and $|z| \geq f(k)$?
Sokal answered this affirmatively with $f(k)=7.97 k$
$C_{G}(z) \neq 0$ whenever $|z| \geq 7.97 \Delta(G)$
(Sokal 2001)
$C_{G}(z) \neq 0$ whenever $|z| \geq 6.91 \Delta(G)$
(Jackson-Procacci-Sokal 2013)
$C_{G}(z) \neq 0$ whenever $|z| \geq 5.93 \Delta(G)$
(Jenssen, Patel, Regts 2023+)

Question: (Brenti, Royle, Wagner 1994)
Is there a function $f(k)$ such that $C_{G}(z) \neq 0$ whenever
$\Delta(G) \leq k$ and $|z| \geq f(k)$?
Sokal answered this affirmatively with $f(k)=7.97 k$
$C_{G}(z) \neq 0$ whenever $|z| \geq 7.97 \Delta(G)$
(Sokal 2001)
$C_{G}(z) \neq 0$ whenever $|z| \geq 6.91 \Delta(G)$
(Jackson-Procacci-Sokal 2013)
$C_{G}(z) \neq 0$ whenever $|z| \geq 5.93 \Delta(G)$
(Jenssen, Patel, Regts 2023+)
Moreover if $\operatorname{girth}(G) \geq g$ then can replace 5.93 with K_{g} where $K_{3}=5.93 \quad K_{4}=5.23 \quad K_{5}=4.87$
$K_{10}=4.26 \quad K_{25}=3.97 \quad K_{100}=3.87$
$K_{1000}=3.86$
$C_{G}(z) \neq 0$ whenever $|z| \geq 5.93 \Delta(G)$
Moreover if $\operatorname{girth}(G) \geq g$ then can replace 5.93 with K_{g} where

$K_{3}=5.93$	$K_{4}=5.23$	$K_{5}=4.87$
$K_{10}=4.26$	$K_{25}=3.97$	$K_{100}=3.87$

$K_{1000}=3.86$
(Jenssen, Patel, Regts 2023+)
$C_{G}(z) \neq 0$ whenever $|z| \geq 5.93 \Delta(G)$
Moreover if $\operatorname{girth}(G) \geq g$ then can replace 5.93 with K_{g} where

$$
\begin{array}{lll}
K_{3}=5.93 & K_{4}=5.23 & K_{5}=4.87 \\
K_{10}=4.26 & K_{25}=3.97 & K_{100}=3.87 \\
K_{1000}=3.86 & & \text { (Jenssen, Patel, Regts 2023+) }
\end{array}
$$

Using the Taylor polynomial interpolation method (Barvinok)
For $z \in \mathbb{C}, \exists$ FPTAS for $C_{G}(z)$ provided $|z|>5.93 \Delta(G)$
For $z \in \mathbb{C}, \exists$ FPTAS for $C_{G}(z)$ provided $|z|>K_{g} \Delta(G)$ and $\operatorname{girth}(G) \geq g$
$C_{G}(z) \neq 0$ whenever $|z| \geq 5.93 \Delta(G)$
Moreover if $\operatorname{girth}(G) \geq g$ then can replace 5.93 with K_{g} where
$K_{3}=5.93 \quad K_{4}=5.23 \quad K_{5}=4.87$
$K_{10}=4.26 \quad K_{25}=3.97 \quad K_{100}=3.87$
$K_{1000}=3.86$
(Jenssen, Patel, Regts 2023+)

Using the Taylor polynomial interpolation method (Barvinok)
For $z \in \mathbb{C}, \exists$ FPTAS for $C_{G}(z)$ provided $|z|>5.93 \Delta(G)$
For $z \in \mathbb{C}, \exists$ FPTAS for $C_{G}(z)$ provided $|z|>K_{g} \Delta(G)$ and $\operatorname{girth}(G) \geq g$

Conjecture: $C_{G}(z) \neq 0$ if $\Re(z)>\Delta(G)$ Sokal 2003 Implies

Conjecture: \exists FPTAS for $C_{G}(k)$ provided $k>\Delta(G)$ [1990's, Frieze-Vigoda]
$C_{G}(z) \neq 0$ whenever $|z| \leq 6.91 \Delta(G)$
(new short proof)
(sketch)
$C_{G}(z) \neq 0$ whenever $|z| \leq 6.91 \Delta(G)$
(new short proof)
$C_{G}(z) \neq 0$ whenever $|z| \leq 5.93 \Delta(G)$
(sketch)
Let $G=(V, E)$ with $\Delta(G) \leq k$ and $|V|=n$

$$
C_{G}(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

$C_{G}(z) \neq 0$ whenever $|z| \leq 6.91 \Delta(G)$ $C_{G}(z) \neq 0$ whenever $|z| \leq 5.93 \Delta(G)$
(new short proof)
(sketch)

Let $G=(V, E)$ with $\Delta(G) \leq k$ and $|V|=n$

$$
C_{G}(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

Theorem (Whitney 1932)

$a_{i}=$ number of broken-circuit free sets of size i in G
$C_{G}(z) \neq 0$ whenever $|z| \leq 6.91 \Delta(G)$
$C_{G}(z) \neq 0$ whenever $|z| \leq 5.93 \Delta(G)$
(sketch)
Let $G=(V, E)$ with $\Delta(G) \leq k$ and $|V|=n$

$$
C_{G}(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

Theorem (Whitney 1932)

$a_{i}=$ number of broken-circuit free sets of size i in G

Broken circuit free sets (BCF sets)

Fix an ordering of E. We say $A \subseteq E$ is broken circuit free if

- A is a forest, and
- each $e \in E \backslash A$ is not the largest edge in the unique cycle of $A+e$ (when it exists)
Note: number of BCF sets is independent of edge ordering!
Example

We work with a simple transformation:

$$
\begin{aligned}
& C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n} \\
& B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}
\end{aligned}
$$

We work with a simple transformation:

$$
\begin{aligned}
& C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n} \\
& B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}
\end{aligned}
$$

$C_{G}(z) \neq 0$ whenever $|z| \geq K \Delta$ iff $B_{G}(z) \neq 0$ whenever $|z| \leq(K \Delta)^{-1}$

We work with a simple transformation:

$$
\begin{aligned}
& C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n} \\
& B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}
\end{aligned}
$$

$C_{G}(z) \neq 0$ whenever $|z| \geq K \Delta$ iff $B_{G}(z) \neq 0$ whenever $|z| \leq(K \Delta)^{-1}$

Enough to show that whenever $\Delta(G) \leq \Delta$ and $|z| \leq 1 / K \Delta$

$$
\left|\frac{B_{G}(z)}{B_{G-u}(z)}\right| \in[1-a, 1+a]
$$

$\forall u \in V$ and some constants $a \in(0,1)$ and $K>0$ (to be determined).

We work with a simple transformation:

$$
\begin{aligned}
& C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n} \\
& B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}
\end{aligned}
$$

$C_{G}(z) \neq 0$ whenever $|z| \geq K \Delta$ iff $B_{G}(z) \neq 0$ whenever $|z| \leq(K \Delta)^{-1}$

Enough to show that whenever $\Delta(G) \leq \Delta$ and $|z| \leq 1 / K \Delta$

$$
\left|\frac{B_{G}(z)}{B_{G-u}(z)}\right| \in[1-a, 1+a] \quad \text { i.e. } \quad R(z):=\left|\frac{B_{G}(z)}{B_{G-u}(z)}-1\right|<a
$$

$\forall u \in V$ and some constants $a \in(0,1)$ and $K>0$ (to be determined).

We work with a simple transformation:
$C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n}$
$B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}$
$C_{G}(z) \neq 0$ whenever $|z| \geq K \Delta$ iff $B_{G}(z) \neq 0$ whenever $|z| \leq(K \Delta)^{-1}$

Enough to show that whenever $\Delta(G) \leq \Delta$ and $|z| \leq 1 / K \Delta$

$$
\left|\frac{B_{G}(z)}{B_{G-u}(z)}\right| \in[1-a, 1+a] \quad \text { i.e. } \quad R(z):=\left|\frac{B_{G}(z)}{B_{G-u}(z)}-1\right|<a
$$

$\forall u \in V$ and some constants $a \in(0,1)$ and $K>0$ (to be determined).

By induction may assume that if $\left|G^{\prime}\right|<|G|$ then

$$
\left|\frac{B_{G^{\prime}}}{B_{G^{\prime}-v}}\right| \in[1-a, 1+a] \quad \text { and }
$$

We work with a simple transformation:
$C_{G}(z)=a_{0} z^{n}-a_{1} z^{n-1}+\cdots+(-1)^{n} a_{n}$
$B_{G}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=z^{n} C_{G}\left(-z^{-1}\right)=\sum_{F \subseteq E B C F} z^{|F|}$
$C_{G}(z) \neq 0$ whenever $|z| \geq K \Delta$ iff $B_{G}(z) \neq 0$ whenever $|z| \leq(K \Delta)^{-1}$

Enough to show that whenever $\Delta(G) \leq \Delta$ and $|z| \leq 1 / K \Delta$

$$
\left|\frac{B_{G}(z)}{B_{G-u}(z)}\right| \in[1-a, 1+a] \quad \text { i.e. } \quad R(z):=\left|\frac{B_{G}(z)}{B_{G-u}(z)}-1\right|<a
$$

$\forall u \in V$ and some constants $a \in(0,1)$ and $K>0$ (to be determined).

By induction may assume that if $\left|G^{\prime}\right|<|G|$ then

$$
\left|\frac{B_{G^{\prime}}}{B_{G^{\prime}-v}}\right| \in[1-a, 1+a] \quad \text { and } \quad\left|\frac{B_{G^{\prime}}}{B_{G^{\prime}-\left\{v_{1}, \ldots, v_{k}\right\}}}\right| \in\left[(1-a)^{k},(1+a)^{k}\right]
$$

Fundamental Recursion:

$$
B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \text { a } B C F \text { tree } \\ u \in V(T)}} z^{|T|} B_{G-V(T)}(z)
$$

Fundamental Recursion:

$$
\begin{gathered}
\quad B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \text { a BCF tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \text { a BCF tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{gathered}
$$

Fundamental Recursion:

$$
\begin{gathered}
B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \operatorname{aBCF} \text { tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{BCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{gathered}
$$

$$
|R(z)| \leq \sum_{\substack{T, \text { arree } \\ u \in V(T)}}|z|^{|T|}\left|\frac{B_{G-V(T)}}{B_{G-u}}\right| \leq \sum_{\substack{T \text { a tree } \\ u \in V(T)}}(K \Delta)^{-|T|}(1-a)^{-|T|} \leq a
$$

$$
\text { for } K=6.91 \text { and } a=0.32
$$

Fundamental Recursion:

$$
\begin{gathered}
B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \operatorname{aCF} \text { BCree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{BCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u(}(z)}
\end{gathered}
$$

$$
|R(z)| \leq \sum_{\substack{T, \text { arree } \\ u \in V(T)}}|z|^{|T|}\left|\frac{B_{G-V(T)}}{B_{G-u}}\right| \leq \sum_{\substack{T \text { a tree } \\ u \in V(T)}}(K \Delta)^{-|T|}(1-a)^{-|T|} \leq a
$$

$$
\text { for } K=6.91 \text { and } a=0.32
$$

$$
T_{G, u}(x):=\sum_{\substack{T \subseteq G \text { a tree } \\ u \in V(T)}} x^{|T|} \text { and note } T_{G, u}\left(\frac{\ln \alpha}{\alpha \Delta}\right) \leq \alpha \text { for } \alpha>0, \Delta(G) \leq \Delta
$$

Fundamental Recursion:

$$
\begin{gathered}
B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \operatorname{aCF} \text { BCree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{BCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u(}(z)}
\end{gathered}
$$

$$
|R(z)| \leq \sum_{\substack{T, \text { arree } \\ u \in V(T)}}|z|^{|T|}\left|\frac{B_{G-V(T)}}{B_{G-u}}\right| \leq \sum_{\substack{T \text { a tree } \\ u \in V(T)}}(K \Delta)^{-|T|}(1-a)^{-|T|} \leq a
$$

$$
\text { for } K=6.91 \text { and } a=0.32
$$

$$
T_{G, u}(x):=\sum_{\substack{T \subseteq G \text { a tree } \\ u \in V(T)}} x^{|T|} \text { and note } T_{G, u}\left(\frac{\ln \alpha}{\alpha \Delta}\right) \leq \alpha \text { for } \alpha>0, \Delta(G) \leq \Delta
$$

Fundamental Recursion:

$$
\begin{gathered}
B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \text { a BCF tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \text { a BCF tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{gathered}
$$

Fundamental Recursion:

$$
\begin{aligned}
& B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \text { a } B C F \text { tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
& \text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{a~BCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{aligned}
$$

Break down further (assume edges at u highest in ordering)

$$
\sum_{\substack{T \text { a BCF tree } \\ u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}}{B_{G-u}}=\sum_{\substack{S \subseteq N(u) \\ S \neq \emptyset}} z^{|S|} \sum_{\substack{F+u S \text { is } \\ B C F}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}
$$

Fundamental Recursion:

$$
\begin{gathered}
\quad B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \operatorname{a~BCF} \text { tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
\text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{a~BCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{gathered}
$$

Break down further (assume edges at u highest in ordering)

$$
\sum_{\substack{T \text { a BCF tree } \\ u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}}{B_{G-u}}=\sum_{\substack{S \subseteq N(u) \\ S \neq \emptyset}} z^{|S|} \sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}
$$

Claim: For each $S \subseteq N(u)$, have |inner sum $\mid \leq 1+\varepsilon_{g}(K, a)$

Fundamental Recursion:

$$
\begin{aligned}
& B_{G}(z)=B_{G-u}(z)+\sum_{\substack{T \text { a } B C F \text { tree } \\
u \in V(T)}} z^{|T|} B_{G-V(T)}(z) \\
& \text { So } R(z)=\frac{B_{G}(z)}{B_{G-u}(z)}-1=\sum_{\substack{T \operatorname{aBCF} \text { tree } \\
u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}(z)}{B_{G-u}(z)}
\end{aligned}
$$

Break down further (assume edges at u highest in ordering)

$$
\sum_{\substack{T \text { a BCF tree } \\ u \in V(T)}} z^{|T|} \frac{B_{G-V(T)}}{B_{G-u}}=\sum_{\substack{S \subseteq N(u) \\ S \neq \emptyset}} z^{|S|} \sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}
$$

Claim: For each $S \subseteq N(u)$, have \mid inner sum $\mid \leq 1+\varepsilon_{g}(K, a)$
Enough to complete the induction ...

Claim: For each $S \subseteq N(u)$, have $\left|\sum_{\substack{F+u S \text { is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\varepsilon$

Claim: For each $S \subseteq N(u)$, have $\left|\sum_{\substack{F+u S \text { is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\varepsilon$
Equivalently $\quad \sum z^{|F|} B_{G-u-S-V(F)} \approx B_{G-u}$

$$
F+u S \text { is }
$$

BCF tree

Claim: For each $S \subseteq N(u)$, have $\left|\sum_{\substack{F+u S \text { is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\varepsilon$ Equivalently $\quad \sum z^{|F|} B_{G-u-S-V(F)} \approx B_{G-u}$ $F+u S$ is BCF tree
Compare with

$$
z^{|F|_{G-u-S-V(F)}}=B_{G-u}
$$

every non-trivial component of F
hits S

Claim: For each $S \subseteq N(u)$, have $\left|\sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\varepsilon$

If F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)

Claim: For each $S \subseteq N(u)$, have $\left|\sum_{\substack{F+u S \text { is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\varepsilon$ Equivalently $\quad \sum z^{|F|} B_{G-u-S-V(F)} \approx B_{G-u}$

If F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)
$\left|\sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\left|\sum_{\text {BCF } F \in X} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|$

If BCF F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)
$\left|\sum_{\substack{\text { F+uS is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\left|\sum_{B C F F \in X} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|$

If BCF F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)

$$
\left|\sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\left|\sum_{\text {BCF } F \in X} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|
$$

$$
\leq 1+\sum_{F \in X}|z|^{|F|}\left|\frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|
$$

If BCF F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)

$$
\left|\sum_{\substack{F+u S \text { is } \\ B C F \text { tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\left|\sum_{B C F F \in X} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|
$$

$$
\begin{aligned}
& \leq 1+\sum_{F \in X}|z|^{|F|}\left|\frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \\
& \leq 1+\sum_{F \in X}(K \Delta)^{-|F|}(1-a)^{-|F|-|S|} \leq 1+\varepsilon
\end{aligned}
$$

If BCF F occurs in second sum but not the first then

- Every non-trivial component of F hits S
- Some component of F hits $N(u)$ twice (or more)
$\left|\sum_{\substack{F+u S \text { is } \\ \text { BCF tree }}} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \leq 1+\left|\sum_{B C F F \in X} z^{|F|} \frac{B_{G-u-S-V(F)}}{B_{G-u}}\right|$

$$
\begin{aligned}
& \leq 1+\sum_{F \in X}|z|^{|F|}\left|\frac{B_{G-u-S-V(F)}}{B_{G-u}}\right| \\
& \leq 1+\sum_{F \in X}(K \Delta)^{-|F|}(1-a)^{-|F|-|S|} \leq 1+\varepsilon
\end{aligned}
$$

For final inequality we introduce and bound
$T_{G, v_{1}, v_{2}}(x)=\sum_{\substack{T \text { tree: } \\ v_{1}, v_{2} \in V(T)}} x^{|T|}$ and bound $T_{G, v_{1}, v_{2}}\left(\frac{\ln \alpha}{\alpha \Delta}\right) \leq \frac{\alpha \ln \alpha}{\Delta}$

Conclusion

$C_{G}(z) \neq 0$ whenever $\Delta(G) \leq \Delta$ and $|z| \geq 5.93 \Delta$

- Try to improve on 5.93
- Unclear what the correct constant should be (perhaps complete bipartite graphs are extremal?)
- Can we leverage BCF characterisation for further progress?

Further Results

Forest generating polynomial of $G=(V, E)$

$$
F_{G}(z)=\sum_{F \subseteq E \text { forest }} z^{|F|}
$$

- Also called partition function of arboreal gas model
- Our methods extend here, but can go further using a different recursion
$F_{G}(z) \neq 0$ whenever $\Delta(G) \leq \Delta$ and $|z| \leq 1 /(2 \Delta)$
Jenssen-Patel-Regts 2023+
- Cannot replace $1 /(2 \Delta)$ with $1 / \Delta$ due to Δ-multi edge.
- Can we get close to $1 / \Delta$?

