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Sampling problem:

Draw (approximate) random samples from a distribution

Gibbs distribuiton:

I high-dimensional joint distribution

I described by few parameters and

local interactions

hard regime

has poly-time algorithm

Computational phase transition:

computational complexity of

sampling problem changes sharply

around certain parameter values
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Hardcore model
I G = ([n],E) with n vertices and max degree ∆.

I Fugacity λ > 0 is a real number.

I Ind(G) = {S ⊆ [n] | S is an independent set}.
I Gibbs distribution

∀S ∈ Ind(G), µ(S) := λ|S|
Z , where ZG(λ) :=

∑
I∈Ind(G) λ

|I|.

an example

1 λ λ

λ λ λ2

Partition function:

Z = 1 + 4λ + λ2

This model is self-reducible
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Computational phase transition
On ∆-regular tree:

λc(∆)
λ : 0 ∞

uniqueness non-uniqueness

Uniqueness threshold: λc(∆) := (∆ − 1)(∆−1)/(∆ − 2)∆ ≈ e
∆

· · · · · · · · · · · · · · · · · ·
`

root

σ : boundary condition on level `

Uniqueness Threshold

PrS∼µ [root ∈ S | σ] does not

depend on σ when ` → ∞
if and only if λ ≤ λc(∆)

On general graph with maximum degree ∆:

λc(∆)
λ : 0 ∞

easy hard

Computational phase transition:
I λ < λc: poly-time algorithm for approx. sampling [Wei06]

I λ > λc: no poly-time algorithm unless NP = RP [Sly10]
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Hardcore model on bipartite graph (weighted #BIS)

It is easy: there is a poly-time algorithm to find a matximum

independent set in the bipartite graph (Kőnig’s theorem1).

It is hard: many important problems are proved to be

#BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

I stable matchings (counting)

I ferro. Potts model (parti. func.)

I ferro. Ising with mixed external fields (parti. func.)

[ DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21, ]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

I it has no FPRAS in general I it is easier than #SAT

1In any bipartite graph, the number of edges in a maximum matching

equals the number of vertices in a minimum vertex cover.
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Previous algorithmic results
Low temperature regime (via polymer):

I α-expander bipartite graph:

I λ ≥ (C0∆)4/α, an nO(log∆) time sampler [JKP20]
I λ ≥ (C1∆)6/α, an O(n logn) time sampler [CGG+21]
I λ ≥ (C2∆)2/α, an nO(log∆) time sampler [FGKP23]

I ∆-regular α-expander bipartite graph:

I λ ≥ f(α) log∆

∆1/4 , an nO(∆) time sampler [JPP22]

I random ∆-regular bipartite graph:

I ∆ ≥ ∆0, λ ≥ log4 ∆
∆ , an nO(1) time sampler [LLLM19]

I ∆ ≥ ∆1, λ ≥ 50 log2 ∆
∆ , an n1+O( log2(∆)

∆ ) time sampler [JKP20]

I ∆ ≥ ∆2, λ ≥ 100 log∆
∆ , an O(n logn) time sampler [CGŠV22]

I unbalanced bipartite graph:

I 6∆L∆Rλ ≤ (1 + λ)
δR
∆L , an nO(log(∆L∆R)) time sampler [CP20]

I 3.4∆L∆Rλ ≤ (1 + λ)
δR
∆L , an nO(log(∆L∆R)) time sampler [FGKP23]

I (1 + e)∆L∆Rλ ≤ (1 + λ)
δR
∆L , an O(n logn) time sampler [BCP22]
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Previous algorithmic results

High temperature regime (via spatial mixing):

I general graph: if λ < λc(∆), there is an O(n logn) time sampler

I bipartite graph: if λ = 1,∆L ≤ 5, an O(n2) time sampler [LL15]

(λ = 1 ∧ λ < λc(∆) ⇔ ∆ ≤ 5)

The low/high-temperature regime follows from the weak spatial mixing

`

σΛ

v

σΛ : fixed configuration in Λ

Weak spatial mixing (WSM)

Pr [v ∈ S | σΛ] doesn’t depend
on σΛ as ` → +∞

high-temperature ⇔ WSM

In bipartite graph, unlike general graph,

we don’t have a clear picture about

when does the weak spatial mixing hold.
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Our results

· · · · · · · · · · · · · · · · · ·

rootd-ary

w-ary

2`...

σ : boundary condition on level `

Weak spatial mixing

Pr [v ∈ S | σ] doesn’t depend on σ

as ` → +∞

Tree recursion of (d,w)-ary tree

F(x) := λ(1 + λ(1 + x)−w)−d

diverge (> 1 fixed point) converge (= 1 fixed point)

Definition
Let δ ∈ [0, 1) be a real number. The pair (λ,d) ∈ ℝ2

>0 is δ-unique if for any

w ∈ ℝ>0, all fixpoints x̂ = F(x̂) of F satisfy F′(x̂) ≤ 1 − δ.
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Our results

Definition
Let δ ∈ [0, 1) be a real number. The pair (λ,d) ∈ ℝ2

>0 is δ-unique if for any

w ∈ ℝ>0, all fixpoints x̂ = F(x̂) of F satisfy F′(x̂) ≤ 1 − δ.

Theorem
Fix any ∆ = d + 1 ≥ 3 and any δ ∈ [0, 1), the pair (λ,d) is δ

10 -unique if

λ ≤ (1 − δ)λc(∆) = (1 − δ) (∆ − 1)∆−1

(∆ − 2)∆
.

Theorem
For bipartite graph G = (L∪ R,E) with maximum degree ∆L = d + 1 ≥ 2 on

L and fugacity λ > 0, let n = |L|, then for any δ ∈ (0, 1), if (λ,d) is δ-unique,
then we have a sampler for this hardcore model that runs in time

n

(
∆L logn

λ

)O(C/δ)
,where

{
C = O(1), ∆L ≥ 3
C = (1 + λ)10, ∆L = 2.

I When ∆L = 1, G is a forest.

I When ∆L = 2, this model becomes an Ising model.
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Our results

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X0;
for t from 1 to T do:
I pick a vertex v ∈ V uniformly at random;

I with prob. λ
1+λ , let S = Xt−1 ∪ {v};

with prob. 1
1+λ , let S = Xt−1 \ {v};

I if S ∈ Ind(G) then Xt = S else Xt = Xt−1;

irreducible + aperiodic + reversible =⇒ Xt ∼ µ as t → ∞
mixing time: essential running time of Glauber dynamics

Tmix := max
X0

min{t | DTV(Xt ‖ µ) ≤ 1/100}

total variation distance: conanical distance between distributions

DTV(Xt ‖ µ) := 1
2

∑
S∈Ind(G)

|Pr [Xt = S] − µ(S)|
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Our results

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X0;
for t from 1 to T do:
I pick a vertex v ∈ V uniformly at random;

I with prob. λ
1+λ , let S = Xt−1 ∪ {v};

with prob. 1
1+λ , let S = Xt−1 \ {v};

I if S ∈ Ind(G) then Xt = S else Xt = Xt−1;

Theorem
For bipartite graph G = (L∪ R,E) with maximum degree ∆L = d + 1 ≥ 3 on

L, δ ∈ (0, 1), and fugacity λ ∈ (0, (1 − δ)λc(∆)). Then the mixing time of the

Glauber dynamics is bounded as

Tmix ≤
(
∆ logn

λ

)O(C/δ)
· n3 · log 1 + λ

min {1, λ} .

I When ∆L ≥ 3, then C = O(1).
I When ∆L = 2, (λ,d) is δ-unique, the bound holds with C = (1 + λ)10.
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Background

Proof outline

Fast sampler

Mixing of Glauber dynamics on L ∪ R

Spectral independence

δ-uniqueness
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Background

Let ν be a distribution over Ω = {−1,+1}n. ∀σ ∈ Ω, ‖σ‖+ = |{i | σi = 1}|

impose external field θ > 0

θ ∗ ν: a distribution on Ω:

∀σ, (θ ∗ ν)(σ) ∝ ν(σ) · θ‖σ‖+

flip the distribution

ν: a distribution on Ω:

∀σ, ν(σ) = ν(−σ)

I hardcore model: µ (fugacity λ) =⇒ θ ∗ µ (fugacity θλ)

For 0 < θ ≠ 1, Field dynamics PFD
θ,ν: Markov chain (Xt)t≥0 on Ω:

X0 is an arbitrary vector in Ω and let s ∈ {−1,+1} so that θs < 1;
for each t > 0:

1. generate R ⊆ [n]: for i ∈ [n] with Xt−1(i) = s

add i to R with prob. 1 − θs

2. let Xt = σ with prob. Prσ∼θ∗ν [σ | σR = s]

irreducible + aperiodic + reversible [CFYZ21] =⇒ Xt ∼ ν as t → ∞ ����

rapid mixing of PFD
θ,ν + sampler for θ ∗ ν = sampler for ν
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Background

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22])
Let 0 < θ ≠ 1 and ν be a distribution over {−1,+1}n that

1. λ ∗ ν is K-marginally stable for all λ between θ, 1,

2. λ ∗ ν is η-spectrally independent for all λ between θ, 1,

3. the Glauber dynamics on θ ∗ ν mixes in time Õ(n),
then

1 ∧ 2 ⇒ Tmix(PFDθ,ν) ≈ max {θ, 1/θ}η·poly(K).

1 ∧ 2 ∧ 3 ⇒ sampler for ν in time Õ(n) · max {θ, 1/θ}η·poly(K)

1 ∧ 2 ∧ 3
Var⇒ Tmix(PGDν ) ≈ Õ(n) · n · max {θ, 1/θ}η·poly(K)︸                          ︷︷                          ︸

relaxation time

12 / 26



Background
Let ν be a distribution over {−1,+1}n and X ∼ ν be a random vector.

influence matrix Ψν ∈ ℝn×n

Ψν(i, j) :=

{
0, if Prν [i] ∈ {0, 1}
Prν [j | i] − Prν

[
j | ī

]
i = {Xi = +1} , ī = {Xi = −1}

Corr(X) ∈ ℝn×n

Corr(X)ij =
Cov(Xi,Xj)√

Var(Xi)Var(Xj)

Ψν(i, j) =
Cov(Xi,Xj)
Var(Xi)

I Ψν is similar to Corr(X)
η-spectral independence (in ∞-norm)

∀Λ ⊆ [n] with |Λ| ≤ n − 2, and ∀τ ∈ Ω(νΛ), ‖Ψντ ‖∞ ≤ η

K-marginal stability

there is ρ ∈ {ν,ν} that for i ∈ [n], S ⊆ Λ ⊆ [n] \ {i}, τ ∈ Ω(ρΛ),

Rτi ≤ K · RτS

i
and ρτi (−1) ≥ K−1
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Proof outline

example

un

un−1

...

u2

u1

v

Let λ = 1 be the fugacity

µ: Gibbs distribution of the hardcore modelΨµ


∞ is unbounded

I ∀i,
��Ψµ(v,ui)

�� = λ
λ+1 = 1

2
I

Ψµ


∞ ≥ ∑

i

��Ψµ(v,ui)
�� = n

2

What could we do? ����ΨµL


∞ is bounded

I
��Ψµ(u1,u2)

�� = λ
1+λ − λ(1+λ)n−2

λ+(1+λ)n−1 = 1
2n+2

I
ΨµL


∞ =

∑
i≥2

��Ψµ(u1,ui)
�� = O(1)

Maybe we could take ν = µL.
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Proof outline: fast sampler for µ
µ is the Gibbs distribution of the hardcore model and ν is µL

ν

BHC(λ,λ)
θ ∗ ν

BHC(θλ,λ)PFD
θ,ν with θ = Θ(∆ logn

λ ) > 1

O(1/δ)-spectrally independent O(1)-marginally stable

Glauber dynamics mixes in Õ(n)
I fast sampler for ν in time n · (∆ logn

λ )O(1/δ) (⇒ fast sampler for µ)

I Glauber dynamics on ν mixes in time n2 · (∆ logn
λ )O(1/δ)

For ν = µL on BHC(λ,α): δ-uniqueness =⇒ O(1/δ)-spectral independence

λ α

∆L = d + 1
F(x) = λ(1 +α(1 + x)−w)−d

∀w > 0,∀x̂,F′(x̂) ≤ 1

0 2 4 6 8
0

10

20

α

λ

(λc,λc)

1
d e1+ 1

d

d = 2

uniqueness
uniqueniss regime

Fix d ≥ 1, the pair (λ,d,α) is
unique if the point (λ,α) is on
above of the following para-

metric curve for w > d−1 :


α(w) = dw(w+1)w+1

(dw−1)w+1

λ(w) = wd(d+1)d+1

(dw−1)d+1
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Proof outline: mixing of GD on µ
Glauber dynamics on ν mixes in time n2 · (∆ logn

λ )O(1/δ)

To get an algorithm that only updates each site seperately:

O(1) Õ(∆)

I This algorithm also runs in n2 · (∆ logn
λ )O(1/δ) round

I A vertex u ∈ R is updated with rate 1 in each round

I The Glauber dynamics on µ mixes in time n3 · (∆ logn
λ )O(1/δ)

Could be implemented by block factorization [CMT15, CP20, CLV21].
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Proof outline: spectral independence

· · · · · · · · · · · · · · · · · ·

rootd-ary

w-ary

2`...

I ν = µL for BHC(λ,α) that is δ-unique
I reduce the general case to the

(d + 1,w + 1)-regular tree via the SAW

tree [CLV21] and a special potential

function [LL15]

Φ(x) := log(log(1 + x))

Φ′(x) =: φ(x) = 1
(1 + x) log(1 + x)

I recursion on (d,w)-ary tree
F(x) = λ(1 +α(1 + x)−w)−d

the total influence is bounded by

+∞∑
`=1

©«
∑

v∈Lr(2`)

��Ψµ(root,v)
��ª®¬

[CLV21]
≤ O(1) ·

+∞∑
`=1

{
sup
R

(Φ ◦ F ◦Φ−1)′(Φ(R))
}`

= O(1) ·
+∞∑
`=1

{
sup
R

φ(F(R))
φ(R) F′(R)

}`
≤ O(1) ·

+∞∑
`=1

(1 − δ)` = O(1/δ).
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Proof outline: contraction (δ = 0)
δ-uniqueness

The tuple (λ,d,α) is δ-unique if

∀w ∈ ℝ>0, and ∀x̂, F′(x̂) ≤ 1 − δ.

contraction

If (λ,d,α) is δ-unique, d ≥ 1,
supx≥0 H(x) := supx≥0

φ(F(x))
φ(x) F′(x) ≤ 1 − δ.

1. w could be eliminated by a change of variable: z = 1 +α(1 + x)−w [LL15],

sup
x≥0

H(x) = sup
z∈[1,1+α]

U(λ,d,α;z)

H(x) = H(λ,d,α,w;x)
I supx H(x) does not effected by w

I ∂λU ≤ 0 and ∂αU ≥ 0

2. There are function c1(x) > 0,c2(x) > 0 (when x > 0) that
H′(x) = c1(x) · (1 −H(x)) + c2(x) · (αd − (x + 1)w(F(x) + 1))

3. Uniqueness regime

α

λ

uniqueness

≤

uniqueniss boundary

parametric curve:
α(w) = dw(w+1)w+1

(dw−1)w+1

λ(w) = wd(d+1)d+1

(dw−1)d+1

On the boundary (α,λ):
∃ unique w = wc:{
F′(x̂) = 1
αd − (1 + x̂)w+1 = 0

,

where x̂ is the unique fixpoint.
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On the boundary (α,λ):
∃ unique w = wc:{
F′(x̂) = 1
αd − (1 + x̂)w+1 = 0

,

where x̂ is the unique fixpoint.

4. Move (λ,α) to the boundary and let w = wc in H(x) = φ(F(x))
φ(x) F′(x).

1
x̂

H(x̂) = 1,H′(x̂) = 0,H′′(x̂) < 0

H′ ≥ 0, contradiction�H′ < 0, contradiction�
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Proof outline: contraction (δ > 0)
For simplicity, we assume δ = 0. The δ > 0 case could be handled by a similar high level idea.

1. w could be eliminated · · ·
2. There are function c1(x) > 0,c2(x) > 0 (when x > 0) that

H′(x) = c1(x) · ((1 − δ) −H(x)) + c2(x) ·Bδ(x), where

Bδ(x) = w log(x + 1)
(
αd · x+1

F(x)+1 − (x + 1)w+1
)
+ δ(x + 1)(α + (x + 1)w)

3. Uniqueness regime

α

λ

1−δ
d e1+ 1−δ

d

δ-uniqueness

≤

No parametric equation avaliable
On the boundary (α,λ): ∃ unique w = wc :{

(1 − δ)(x̂ + 1)(α + (1 + x̂)w) −αdwx̂ = 0
w log(1 + x̂)(αd − (1 + x̂)w+1) + δ(x̂ + 1)(α + (x̂ + 1)w) = 0

⇔
{
F′(x̂) = 1 − δ

w log(1 + x̂)(αd − (1 + x̂)w+1) + δ(x̂ + 1)(α + (x̂ + 1)w) = 0 ,

where x̂ = F(x̂) is the unique fixpoint.

4. Move (λ,α) to the boundary and let w = wc in H(x) = φ(F(x))
φ(x) F′(x).

1 − δ
x̂

H(x̂) = 1 − δ,H′(x̂) = 0,H′′(x̂) < 0

H′ ≥ 0, contradiction�
H′ < 0, contradiction�
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Mixing of Glauber dynamics on L ∪ R

Spectral independence

δ-uniqueness
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Proof outline: δ-uniqueness
F(x) = λ(1 +α(1 + x)−w)−d

δ-uniqueness

The tuple (λ,d,α) is δ-unique if ∀w ∈
ℝ>0, and ∀x̂, F′(x̂) ≤ 1 − δ.

I The requiremnt on fixpoint is not easy

to use
����

.

I (x̂,d,α,w) determines a unique λ:
λ(x̂) = x̂(1 +α(1 + x̂)−w)d

I Change the coordinates:

(λ,d,α,w) ↔ (x̂,d,α,w)
I F′(x̂) ≤ 1 − δ ⇔
(1 − δ)(x̂ + 1)(α + (1 + x̂)w) −αdwx̂︸                                             ︷︷                                             ︸

=:Tδ(x̂)

≥ 0

w0wδ

λδ
2,c

wc

λδ
1

λδ
2

λ0
2

λ0
1

has more than one fixed points

F′(x̂) > 1 − δ at some fixed point x̂∪

Fix d,α,w, a typical case is

T0(x)

Tδ(x)

λ(x)

xδ
1 xδ

2x0
1 x0

2

λ0
1

λ0
2

λδ
1

λδ
2

I as w → +∞, we have λδ
i
→ 0

I λ ≥ λδ
2,c implies δ-uniqueness

I fix d,α, critical x̂,w arise when{
Tδ(x) = 0
∂wλδ

2(w) = 0
δ=0⇒ parametric

curve
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Open problems

I Uniqueness regime for negative λ.

May lead to better regime for k-CNF via LLL.

I Remove the depedency on degree ∆ in the running time.

I Currently, we are able to show that the Glauber dynamics on µ

mixes in time Õ(n3) via a comparison argument.

We want to know whether it actually mixes in O(n logn) time.
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Thank you
arXiv:2305.00186

Take home message: considering a bipartite hardcore

model with different fugacities on both side might result in

unexpected flexibility in the analysis
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