Uniqueness and Rapid Mixing

 in the Bipartite Hardcore Model
Xiaoyu Chen

(4) Nanjing University
based on joint work with

Jingcheng Liu

Sampling problem:

Draw (approximate) random samples from a distribution

Gibbs distribuiton:

- high-dimensional joint distribution
- described by few parameters and local interactions

has poly-time algorithm

Computational phase transition: computational complexity of sampling problem changes sharply around certain parameter values

Hardcore model

- $G=([n], E)$ with n vertices and max degree Δ.
- Fugacity $\lambda>0$ is a real number.
- $\operatorname{Ind}(G)=\{S \subseteq[n] \mid S$ is an independent set $\}$.
- Gibbs distribution
$\forall S \in \operatorname{Ind}(G), \quad \mu(S):=\frac{\lambda^{|S|}}{Z}, \quad$ where $Z_{G}(\lambda):=\sum_{I \in \operatorname{lnd}(G)} \lambda^{|I|}$.

an example

Partition function:

$$
Z=1+4 \lambda+\lambda^{2}
$$

This model is self-reducible

Computational phase transition

On Δ-regular tree:

Uniqueness threshold: $\lambda_{c}(\Delta):=(\Delta-1)^{(\Delta-1)} /(\Delta-2)^{\Delta} \approx \frac{e}{\Delta}$

Uniqueness Threshold

$\operatorname{Pr}_{S \sim \mu}[$ root $\in S \mid \sigma]$ does not depend on σ when $\ell \rightarrow \infty$ if and only if $\lambda \leq \lambda_{c}(\Delta)$
σ : boundary condition on level ℓ
On general graph with maximum degree \triangle :
easy

Computational phase transition

On Δ-regular tree:
uniqueness $\quad \lambda_{c}(\Delta)$ non-uniqueness $\longrightarrow \infty$
Uniqueness threshold: $\lambda_{c}(\Delta):=(\Delta-1)^{(\Delta-1)} /(\Delta-2)^{\Delta} \approx \frac{\mathrm{e}}{\Delta}$

Uniqueness Threshold

$\operatorname{Pr}_{\mathrm{S} \sim \mu}[$ root $\in S \mid \sigma]$ does not depend on σ when $\ell \rightarrow \infty$
if and only if $\lambda \leq \lambda_{c}(\Delta)$
σ : boundary condition on level ℓ
On general graph with maximum degree Δ :

Computational phase transition:

- $\lambda<\lambda_{c}$: poly-time algorithm for approx. sampling [Wei06]
- $\lambda>\lambda_{c}$: no poly-time algorithm unless NP = RP [Sly10]

Hardcore model on bipartite graph (weighted \#BIS)

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem ${ }^{1}$).

It is hard: many important problems are proved to be \#BIS-equivalent or \#BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model
(counting)
(parti. func.)
- ferro. Ising with mixed external fields (parti. func.)
[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]
Conjecture[DGGJ04]:
\#BIS represents an intermediate complexity class:
\rightarrow it has no FPRAS in general \quad it is easier than \#SAT
I'In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

Hardcore model on bipartite graph (weighted \#BIS)

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem ${ }^{1}$).

> It is hard: many important problems are proved to be \#BIS-equivalent or \#BIS-hard under AP-reductions.

Selectedexamoles

Conjecture[DGGJ04]:
\#BIS represents an intermediate complexity class:
$>$ it has no FPRAS in general $>$ it is easier than \#SAT

[^0] equals the number of vertices in a minimum vertex cover.

Hardcore model on bipartite graph (weighted \#BIS)

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem ${ }^{1}$).

It is hard: many important problems are proved to be \#BIS-equivalent or \#BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model
- ferro. Ising with mixed external fields (parti. func.)
[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]

Conjecture[DGGJ04]:
\#BIS represents an intermediate complexity class: \rightarrow it has no FPRAS in general $\quad>$ it is easier than \#SAT

[^1]
Hardcore model on bipartite graph (weighted \#BIS)

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem ${ }^{1}$).

It is hard: many important problems are proved to be \#BIS-equivalent or \#BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model
- ferro. Ising with mixed external fields (parti. func.)

Conjecture[DGGJ04]:
\#BIS represents an intermediate complexity class:

- it has no FPRAS in general it is easier than \#SAT
${ }^{1}$ In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

Previous algorithmic results

Low temperature regime (via polymer):

- α-expander bipartite graph:
- $\lambda \geq\left(C_{0} \Delta\right)^{4 / \alpha}$, an $n^{O(\log \Delta)}$ time sampler
- $\lambda \geq\left(\mathrm{C}_{1} \Delta\right)^{6 / \alpha}$, an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time sampler
- $\lambda \geq\left(\mathrm{C}_{2} \Delta\right)^{2 / \alpha}$, an $\mathrm{n}^{\mathrm{O}(\log \Delta)}$ time sampler
- Δ-regular α-expander bipartite graph:
- $\lambda \geq \frac{f(\alpha) \log \Delta}{\Delta^{1 / 4}}$, an $n^{O(\Delta)}$ time sampler
- random Δ-regular bipartite graph:
- $\Delta \geq \Delta_{0}, \lambda \geq \frac{\log ^{4} \Delta}{\Delta}$, an $n^{\mathrm{O}(1)}$ time sampler
- $\Delta \geq \Delta_{1}, \lambda \geq \frac{50 \log ^{2} \Delta}{\Delta}$, an $n^{1+O\left(\frac{\log ^{2}(\Delta)}{\Delta}\right)}$ time sampler
[JKP20]
- $\Delta \geq \Delta_{2}, \lambda \geq \frac{100 \log \Delta}{\Delta}$, an $\mathrm{O}(\mathrm{n} \log n)$ time sampler
- unbalanced bipartite graph:
- $6 \Delta_{\mathrm{L}} \Delta_{\mathrm{R}} \lambda \leq(1+\lambda)^{\frac{\delta_{\mathrm{R}}}{\Delta_{\mathrm{L}}}}$, an $\mathrm{n}^{\mathrm{O}\left(\log \left(\Delta_{\mathrm{L}} \Delta_{\mathrm{R}}\right)\right)}$ time sampler
[CP20]
$-3.4 \Delta_{\mathrm{L}} \Delta_{\mathrm{R}} \lambda \leq(1+\lambda)^{\frac{\delta_{R}}{\Delta_{\mathrm{L}}}}$, an $\mathrm{n}^{\mathrm{O}\left(\log \left(\Delta_{\mathrm{L}} \Delta_{\mathrm{R}}\right)\right)}$ time sampler [FGKP23]
- $(1+e) \Delta_{L} \Delta_{R} \lambda \leq(1+\lambda)^{\frac{\delta_{R}}{\Delta_{\mathrm{L}}}}$, an $\mathrm{O}(\mathrm{n} \log n)$ time sampler
[BCP22]

Previous algorithmic results

High temperature regime (via spatial mixing):

- general graph: if $\lambda<\lambda_{c}(\Delta)$, there is an $O(n \log n)$ time sampler
- bipartite graph: if $\lambda=1, \Delta_{\mathrm{L}} \leq 5$, an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time sampler

$$
\begin{equation*}
\left(\lambda=1 \wedge \lambda<\lambda_{c}(\Delta) \Leftrightarrow \Delta \leq 5\right) \tag{LL15}
\end{equation*}
$$

The low/high-temperature regime follows from the weak spatial mixing

fixed configuration in \wedge

Weak spatial mixing (WSM)
$\operatorname{Pr}\left[\nu \in S^{\prime} \mid \sigma \wedge\right]$ doesn'i depend
on σ_{\wedge} as $\ell \rightarrow+\infty$
high-temperature \Leftrightarrow WSM

In bipartite graph, unlike general graph, we don't have a clear picture about when does the weak spatial mixing hold.

Our results

High temperature regime (via spatial mixing):

- general graph: if $\lambda<\lambda_{c}(\Delta)$, there is an $O(n \log n)$ time sampler
- bipartite graph: if $\lambda=1, \Delta_{\mathrm{L}} \leq 5$, an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time sampler

$$
\begin{equation*}
\left(\lambda=1 \wedge \lambda<\lambda_{c}(\Delta) \Leftrightarrow \Delta \leq 5\right) \tag{LL15}
\end{equation*}
$$

The low/high-temperature regime follows from the weak spatial mixing

$\sigma_{\Lambda}:$ fixed configuration in Λ

Weak spatial mixing (WSM)

$\operatorname{Pr}\left[v \in S \mid \sigma_{\Lambda}\right]$ doesn't depend on σ_{\wedge} as $\ell \rightarrow+\infty$

high-temperature \Leftrightarrow WSM

In bipartite graph, unlike general graph, we don't have a clear picture about when does the weak spatial mixing hold.

Our results

σ : boundary condition on level ℓ

Weak spatial mixing

$\operatorname{Pr}[\nu \in S \mid \sigma]$ doesn't depend on σ as $\ell \rightarrow+\infty$

Tree recursion of (d,w)-ary tree

$$
F(x):=\lambda\left(1+\lambda(1+x)^{-w}\right)^{-d}
$$

Definition
Let $\delta \in\left[0,1\right.$) be a real number. The pair $(\lambda, d) \in \mathbb{R}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Our results

σ : boundary condition on level ℓ

Weak spatial mixing

$\operatorname{Pr}[v \in S \mid \sigma]$ doesn't depend on σ as $\ell \rightarrow+\infty$

Tree recursion of (d, w)-ary tree

$$
F(x):=\lambda\left(1+\lambda(1+x)^{-w}\right)^{-d}
$$

Definition
Let $\delta \in[0,1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}_{>0}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Our results

σ : boundary condition on level ℓ

Weak spatial mixing

$\operatorname{Pr}[v \in S \mid \sigma]$ doesn't depend on σ as $\ell \rightarrow+\infty$

Tree recursion of (d, w)-ary tree

$$
F(x):=\lambda\left(1+\lambda(1+x)^{-w}\right)^{-d}
$$

Definition

Let $\delta \in[0,1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}_{>0}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Our results

Definition

Let $\delta \in[0,1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}_{>0}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Theorem
Fix any $\Delta=d+1 \geq 3$ and any $\delta \in[0,1)$, the pair (λ, d) is $\frac{\delta}{10}$-unique if

Theorem
For bipartite graph $G=(L \cup R, E)$ with maximum degree $\Delta_{L}=d+1 \geq 2$ on L and fugacity $\lambda>0$, let $n=|L|$, then for any $\delta \in(0,1)$, if (λ, d) is δ-unique, then we have a sampler for this hardcore model that runs in time

\rightarrow When $\Delta_{\mathrm{L}}=1, \mathrm{G}$ is a forest.

- When $\Delta_{\mathrm{I}}=2$, this model becomes an Ising model.

Our results

Definition

Let $\delta \in[0,1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}_{>0}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Theorem
Fix any $\Delta=d+1 \geq 3$ and any $\delta \in[0,1)$, the pair (λ, d) is $\frac{\delta}{10}$-unique if

$$
\lambda \leq(1-\delta) \lambda_{c}(\Delta)=(1-\delta) \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
$$

Theorem
For bipartite graph $G=(L \cup R, E)$ with maximum degree $\Delta_{L}=d+1 \geq 2$ on L and fugacity $\lambda>0$, let $n=|L|$, then for any $\delta \in(0,1)$, if (λ, d) is δ-unique, then we have a sampler for this hardcore model that runs in time

\rightarrow When $\Delta_{\mathrm{L}}=1, \mathrm{G}$ is a forest.
\checkmark When $\Lambda_{\mathrm{I}}=2$, this model becomes an I sing model.

Our results

Definition

Let $\delta \in[0,1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}_{>0}^{2}$ is δ-unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x}=F(\hat{x})$ of F satisfy $F^{\prime}(\hat{x}) \leq 1-\delta$.

Theorem
Fix any $\Delta=d+1 \geq 3$ and any $\delta \in[0,1)$, the pair (λ, d) is $\frac{\delta}{10}$-unique if

$$
\lambda \leq(1-\delta) \lambda_{c}(\Delta)=(1-\delta) \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}
$$

Theorem
For bipartite graph $G=(L \cup R, E)$ with maximum degree $\Delta_{L}=d+1 \geq 2$ on L and fugacity $\lambda>0$, let $n=|L|$, then for any $\delta \in(0,1)$, if (λ, d) is δ-unique, then we have a sampler for this hardcore model that runs in time

$$
n\left(\frac{\Delta_{\mathrm{L}} \log n}{\lambda}\right)^{\mathrm{O}(\mathrm{C} / \delta)}, \text { where } \begin{cases}\mathrm{C}=\mathrm{O}(1), & \Delta_{\mathrm{L}} \geq 3 \\ \mathrm{C}=(1+\lambda)^{10}, & \Delta_{\mathrm{L}}=2\end{cases}
$$

- When $\Delta_{\mathrm{L}}=1, \mathrm{G}$ is a forest.
- When $\Delta_{\mathrm{L}}=2$, this model becomes an Ising model.

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;
irreducible + aperiodic + reversible $\Longrightarrow X_{t} \sim \mu$ as $t \rightarrow \infty$
mixing time: essential running time of Glauber dynamics

$$
\mathrm{T}_{\text {mix }}:=\max _{X_{0}} \min \left\{\mathrm{t} \mid \mathrm{D}_{\mathrm{TV}}\left(X_{\mathrm{t}} \| \mu\right) \leq 1 / 100\right\}
$$

total variation distance: conanical distance between distributions

$$
\mathrm{D}_{\mathrm{TV}}\left(\mathrm{X}_{\mathrm{t}} \| \mu\right):=\frac{1}{2} \sum_{\mathrm{S} \in \operatorname{lnd}(\mathrm{G})}\left|\operatorname{Pr}\left[X_{\mathrm{t}}=\mathrm{S}\right]-\mu(\mathrm{S})\right|
$$

Our results

Glauber dynamics for Hardcore model:
start from an arbitrary independent set X_{0}; for t from 1 to T do:

- pick a vertex $v \in \mathrm{~V}$ uniformly at random;
- with prob. $\frac{\lambda}{1+\lambda}$, let $S=X_{t-1} \cup\{v\}$;
 with prob. $\frac{1}{1+\lambda}$, let $S=X_{t-1} \backslash\{v\}$;
- if $S \in \operatorname{Ind}(G)$ then $X_{t}=S$ else $X_{t}=X_{t-1}$;

Theorem

For bipartite graph $G=(L \cup R, E)$ with maximum degree $\Delta_{L}=d+1 \geq 3$ on $\mathrm{L}, \delta \in(0,1)$, and fugacity $\lambda \in\left(0,(1-\delta) \lambda_{c}(\Delta)\right)$. Then the mixing time of the Glauber dynamics is bounded as

$$
\mathrm{T}_{\operatorname{mix}} \leq\left(\frac{\Delta \log n}{\lambda}\right)^{\mathrm{O}(\mathrm{C} / \delta)} \cdot \mathrm{n}^{3} \cdot \log \frac{1+\lambda}{\min \{1, \lambda\}}
$$

- When $\Delta_{\mathrm{L}} \geq 3$, then $\mathrm{C}=\mathrm{O}(1)$.
- When $\Delta_{\mathrm{L}}=2,(\lambda, \mathrm{~d})$ is δ-unique, the bound holds with $\mathrm{C}=(1+\lambda)^{10}$.

Background

Proof outline

Fast sampler
Mixing of Glauber dynamics on $L \cup R$
Spectral independence
δ-uniqueness

Background

Let v be a distribution over $\Omega=\{-1,+1\}^{n} . \forall \sigma \in \Omega, \quad\|\sigma\|_{+}=\left|\left\{i \mid \sigma_{i}=1\right\}\right|$

impose external field $\theta>0$

$\theta * v$: a distribution on Ω :
$\forall \sigma, \quad(\theta * v)(\sigma) \propto v(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

\bar{v} : a distribution on Ω :

$$
\forall \sigma, \quad \bar{v}(\sigma)=v(-\sigma)
$$

- hardcore model: μ (fugacity $\lambda) \Longrightarrow \theta * \mu($ fugacity $\theta \lambda)$

```
For 0<0\not=1, Field dynamics Prv,v: Markov chain (X}\mp@subsup{X}{t}{}\mp@subsup{)}{t\geq0}{}\mathrm{ on }\Omega\mathrm{ :
X X is an arbitrary vector in \Omega}\mathrm{ and let s }\in{-1,+1}\mathrm{ so that }\mp@subsup{0}{}{s}<1\mathrm{ ;
for each t>0:
    1. generate R\subseteq[n]: for i}\in[n]\mathrm{ with }\mp@subsup{X}{t-1}{}(i)=
    add i to R with prob. 1- 皃
```


irreducible + aperiodic + reversible [CFYZ21] \Longrightarrow
rapid mixing of $P_{\theta, v}^{F D}$
+ sampler for $\theta * v$

Background

Let v be a distribution over $\Omega=\{-1,+1\}^{n} . \forall \sigma \in \Omega, \quad\|\sigma\|_{+}=\left|\left\{i \mid \sigma_{i}=1\right\}\right|$

impose external field $\theta>0$

$\theta * v$: a distribution on Ω :
$\forall \sigma, \quad(\theta * v)(\sigma) \propto v(\sigma) \cdot \theta\|\sigma\|_{+}$

flip the distribution

\bar{v} : a distribution on Ω :

$$
\forall \sigma, \quad \bar{v}(\sigma)=v(-\sigma)
$$

- hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

For $0<\theta \neq 1$, Field dynamics $P_{\theta, v}^{F D}$: Markov chain $\left(X_{t}\right)_{t \geq 0}$ on Ω :
X_{0} is an arbitrary vector in Ω and let $s \in\{-1,+1\}$ so that $\theta^{s}<1$; for each $t>0$:

1. generate $R \subseteq[n]: \quad$ for $i \in[n]$ with $X_{t-1}(i)=s$ add i to R with prob. $1-\theta^{s}$
2. let $X_{t}=\sigma$ with prob. $\operatorname{Pr}_{\sigma \sim \theta * v}\left[\sigma \mid \sigma_{R}=s\right]$
irreducible + aperiodic + reversible $[$ CFYZ21] \Longrightarrow

Background

Let v be a distribution over $\Omega=\{-1,+1\}^{n} . \forall \sigma \in \Omega, \quad\|\sigma\|_{+}=\left|\left\{i \mid \sigma_{i}=1\right\}\right|$

impose external field $\theta>0$

$\theta * v$: a distribution on Ω :
$\forall \sigma, \quad(\theta * v)(\sigma) \propto v(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

\bar{v} : a distribution on Ω :

$$
\forall \sigma, \quad \bar{v}(\sigma)=v(-\sigma)
$$

- hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

For $0<\theta \neq 1$, Field dynamics $P_{\theta, v}^{F D}$: Markov chain $\left(X_{t}\right)_{t \geq 0}$ on Ω :
X_{0} is an arbitrary vector in Ω and let $s \in\{-1,+1\}$ so that $\theta^{s}<1$; for each $t>0$:

1. generate $R \subseteq[n]: \quad$ for $i \in[n]$ with $X_{t-1}(i)=s$ add i to R with prob. $1-\theta^{s}$
2. let $X_{t}=\sigma$ with prob. $\operatorname{Pr}_{\sigma \sim \theta * v}\left[\sigma \mid \sigma_{R}=s\right]$
irreducible + aperiodic + reversible [CFYZ21] $\Longrightarrow X_{t} \sim v$ as $t \rightarrow \infty$
rapid mixing of $\mathrm{P}_{\theta, v}^{\mathrm{FD}}+$ sampler for $\theta * v \quad=\quad$ sampler for v

Background

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22])

Let $0<\theta \neq 1$ and v be a distribution over $\{-1,+1\}^{n}$ that

1. $\lambda * v$ is K-marginally stable for all λ between $\theta, 1$,
2. $\lambda * v$ is η-spectrally independent for all λ between $\theta, 1$,
3. the Glauber dynamics on $\theta * v$ mixes in time $\widetilde{O}(n)$,
then
$1 \wedge 2 \Rightarrow T_{\text {mix }}\left(\mathrm{P}_{\theta, \nu}^{\mathrm{FD}}\right) \approx \max \{\theta, 1 / \theta\}^{\eta \cdot \operatorname{poly}(\mathrm{K})}$.
$1 \wedge 2 \wedge 3 \Rightarrow$ sampler for v in time $\widetilde{O}(n) \cdot \max \{\theta, 1 / \theta\}^{\eta \cdot p o l y(K)}$
$1 \wedge 2 \wedge 3 \stackrel{\operatorname{Var}}{\Rightarrow} T_{\text {mix }}\left(P_{V}^{G D}\right) \approx \widetilde{\mathrm{O}}(n) \cdot \underbrace{n \cdot \max \{\theta, 1 / \theta\}^{\eta \cdot \operatorname{poly}(\mathrm{K})}}_{\text {relaxation time }}$

Background

Let v be a distribution over $\{-1,+1\}^{n}$ and $X \sim v$ be a random vector.

influence matrix $\Psi_{v} \in \mathbb{R}^{n \times n}$

$$
\Psi_{v}(i, j):=\left\{\begin{array}{l}
0, \\
\text { if } \operatorname{Pr}_{v}[i] \in\{0,1\} \\
\operatorname{Pr}_{v}[j \mid i]-\operatorname{Pr}_{v}[j \mid \bar{i}]
\end{array}\right.
$$

$$
i=\left\{X_{i}=+1\right\}, \bar{i}=\left\{X_{i}=-1\right\}
$$

$\operatorname{Corr}(\mathrm{X}) \in \mathbb{R}^{\mathrm{n} \times n}$

$$
\operatorname{Corr}(\mathrm{X})_{i j}=\frac{\operatorname{Cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)}{\sqrt{\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right) \operatorname{Var}\left(\mathrm{X}_{\mathrm{j}}\right)}}
$$

$$
\Psi_{v}(i, j)=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

- Ψ_{v} is similar to $\operatorname{Corr}(\mathrm{X})$

n-spectral independence (in ∞-norm)

$\forall \Lambda \subseteq[n]$ with $|\Lambda| \leq n-2$, and $\forall \tau \in \Omega(v \wedge),\left\|\Psi_{\nu^{\tau}}\right\|_{\infty} \leq \eta$

K-marginal stability
there is $p \in\{v, \bar{v}$ that for $i \in[n], S \subseteq \Lambda \subseteq[n] \backslash\{i\}, \tau \in \Omega(p \wedge)$,

Background

Let v be a distribution over $\{-1,+1\}^{n}$ and $X \sim v$ be a random vector.

influence matrix $\Psi_{v} \in \mathbb{R}^{n \times n}$

$$
\begin{gathered}
\Psi_{v}(i, j):=\left\{\begin{array}{l}
0, \quad \text { if } \operatorname{Pr}_{v}[i] \in\{0,1\} \\
\operatorname{Pr}_{v}[j \mid i]-\operatorname{Pr}_{v}[j \mid \bar{i}]
\end{array}\right. \\
i=\left\{X_{i}=+1\right\}, \bar{i}=\left\{X_{i}=-1\right\}
\end{gathered}
$$

$\operatorname{Corr}(X) \in \mathbb{R}^{n \times n}$

$$
\operatorname{Corr}(\mathrm{X})_{i j}=\frac{\operatorname{Cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)}{\sqrt{\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}}\right) \operatorname{Var}\left(\mathrm{X}_{\mathrm{j}}\right)}}
$$

$$
\Psi_{v}(i, j)=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

- Ψ_{V} is similar to $\operatorname{Corr}(\mathrm{X})$
η-spectral independence (in ∞-norm)
$\forall \Lambda \subseteq[n]$ with $|\Lambda| \leq n-2$, and $\forall \tau \in \Omega(\nu \wedge),\left\|\Psi_{\nu} \tau\right\|_{\infty} \leq \eta$

K-marginal stability

there is $p \in\{v, \vec{v}$ that for $i \in[n], S \subseteq \Lambda \subseteq[n] \backslash\{i\}, \tau \in \Omega(p \wedge)$

Background

Let v be a distribution over $\{-1,+1\}^{n}$ and $X \sim v$ be a random vector.

influence matrix $\Psi_{v} \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
& \Psi_{v}(i, j):=\left\{\begin{array}{l}
0, \quad \text { if } \operatorname{Pr}_{v}[i] \in\{0,1\} \\
\operatorname{Pr}_{v}[j \mid i]-\operatorname{Pr}_{v}[j \mid \bar{i}]
\end{array}\right. \\
& i=\left\{X_{i}=+1\right\}, \bar{i}=\left\{X_{i}=-1\right\}
\end{aligned}
$$

$\operatorname{Corr}(X) \in \mathbb{R}^{n \times n}$

$$
\operatorname{Corr}(X)_{i j}=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right) \operatorname{Var}\left(X_{j}\right)}}
$$

$$
\Psi_{\nu}(i, j)=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\operatorname{Var}\left(X_{i}\right)}
$$

- Ψ_{V} is similar to $\operatorname{Corr}(\mathrm{X})$
η-spectral independence (in ∞-norm)
$\forall \Lambda \subseteq[n]$ with $|\Lambda| \leq n-2$, and $\forall \tau \in \Omega\left(\nu_{\wedge}\right),\left\|\Psi_{\nu \tau}\right\|_{\infty} \leq \eta$

K-marginal stability

there is $\rho \in\{v, \bar{v}\}$ that for $i \in[n], S \subseteq \Lambda \subseteq[n] \backslash\{i\}, \tau \in \Omega(\rho \Lambda)$,

$$
R_{i}^{\tau} \leq K \cdot R_{i}^{\tau} \mathrm{S} \text { and } \rho_{i}^{\tau}(-1) \geq K^{-1}
$$

- marginal ratio $R_{i}^{\tau}=\frac{\rho_{i}^{\tau}(+1)}{\rho_{i}^{\tau}(-1)}$

Background

Proof outline
Fast sampler
Mixing of Glauber dynamics on $L \cup R$
Spectral independence
δ-uniqueness

Proof outline

Let $\lambda=1$ be the fugacity

μ : Gibbs distribution of the hardcore model

$\mid \Psi_{4} \|_{\infty}$ is unbounded

What could we do? $\%$

$\mid \Psi_{\mu} \|_{\infty}$ is bounded

$$
\begin{aligned}
& >\left|\Psi_{\mu}\left(u_{1}, u_{2}\right)\right|=\frac{\lambda}{1+\lambda}-\frac{\lambda(1+\lambda)^{n-2}}{\lambda+(1+\lambda)^{n-1}}=\frac{1}{2^{n+2}} \\
& >\left|\left\|\Psi_{\mu_{L}}\right\|_{\infty}=\sum_{i \geq 2}\right| \Psi_{\mu}\left(u_{1}, u_{i}\right) \mid=O(1)
\end{aligned}
$$

Maybe we could take $v=\mu_{\mathrm{L}}$

Proof outline

Let $\lambda=1$ be the fugacity
μ : Gibbs distribution of the hardcore model

$\mid \Psi_{u} \|_{\infty}$ is unbounded

What could we do?

$\left|\Psi_{\mu_{2}}\right|_{\infty}$ is bounded

Maybe we could take $v=\mu_{\mathrm{L}}$

Proof outline

Let $\lambda=1$ be the fugacity
μ : Gibbs distribution of the hardcore model
$\left\|\Psi_{\mu}\right\|_{\infty}$ is unbounded

- $\forall i, \quad\left|\Psi_{\mu}\left(v, u_{i}\right)\right|=\frac{\lambda}{\lambda+1}=\frac{1}{2}$
- $\left\|\Psi_{\mu}\right\|_{\infty} \geq \sum_{\mathfrak{i}}\left|\Psi_{\mu}\left(v, u_{\mathfrak{i}}\right)\right|=\frac{\mathfrak{n}}{2}$

What could we do?

$\left|\Psi_{\mu_{L}}\right|_{\infty}$ is bounded

Maybe we could take $v=\mu_{\mathrm{L}}$

Proof outline

Let $\lambda=1$ be the fugacity
μ : Gibbs distribution of the hardcore model

$\left\|\Psi_{\mu}\right\|_{\infty}$ is unbounded

- $\forall i, \quad\left|\Psi_{\mu}\left(v, u_{i}\right)\right|=\frac{\lambda}{\lambda+1}=\frac{1}{2}$
- $\left\|\Psi_{\mu}\right\|_{\infty} \geq \sum_{i}\left|\Psi_{\mu}\left(v, u_{i}\right)\right|=\frac{\mathfrak{n}}{2}$

What could we do?

$$
\begin{aligned}
& \left\|\Psi_{\mu_{L}}\right\|_{\infty} \text { is bounded } \\
& \quad>\left|\Psi_{\mu}\left(u_{1}, u_{2}\right)\right|=\frac{\lambda}{1+\lambda}-\frac{\lambda(1+\lambda)^{n-2}}{\lambda+(1+\lambda)^{n-1}}=\frac{1}{2^{n}+2} \\
& \quad>\left\|\Psi_{\mu_{L}}\right\|_{\infty}=\sum_{i \geq 2}\left|\Psi_{\mu}\left(u_{1}, u_{i}\right)\right|=O(1)
\end{aligned}
$$

Maybe we could take $v=\mu_{\mathrm{L}}$.

Proof outline: fast sampler for μ

μ is the Gibbs distribution of the hardcore model and v is μ_{L}

\Rightarrow fast sampler for v in time $n \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}(\Rightarrow$ fast sampler for $\mu)$ - Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$

For $v=\mu_{\mathrm{L}}$ on $\operatorname{BHC}(\lambda, \alpha)$:
δ-uniqueness $\Longrightarrow \mathrm{O}(1 / \delta)$-spectral independence

Proof outline: fast sampler for μ

μ is the Gibbs distribution of the hardcore model and v is μ_{L}
$\operatorname{BHC}(\lambda, \lambda)$

$$
P_{\theta, v}^{\mathrm{FD}} \text { with } \theta=\Theta\left(\frac{\Delta \log n}{\lambda}\right)>1 \quad \mathrm{BHC}(\theta \lambda, \lambda)
$$

Glauber dynamics mixes in $\widetilde{O}(n)$

- fast sampler for v in time $n \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{\mathrm{O}(1 / \delta)}(\Rightarrow$ fast sampler for $\mu)$
- Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$

$$
\text { For } v=\mu_{\mathrm{L}} \text { on } \mathrm{BHC}(\lambda, \alpha) \text { : }
$$

δ-uniqueness $\Longrightarrow \mathrm{O}(1 / \delta)$-spectral independence

Proof outline: fast sampler for μ

μ is the Gibbs distribution of the hardcore model and v is μ_{L}

$\mathrm{O}(1 / \delta)$-spectrally independent		$\mathrm{O}(1)$-marginally stable \square	
$\operatorname{BHC}(\lambda, \lambda)$	$\mathrm{P}_{\theta, v}^{\mathrm{FD}} \text { with } \theta=\Theta\left(\frac{\Delta \log n}{\lambda}\right)>1$		$\operatorname{BHC}(\theta \lambda, \lambda)$
			namics mixes in

- fast sampler for v in time $n \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}(\Rightarrow$ fast sampler for $\mu)$
- Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$

For $v=\mu_{\mathrm{L}}$ on $\mathrm{BHC}(\lambda, \alpha)$:
δ-uniqueness $\Longrightarrow \mathrm{O}(1 / \delta)$-spectral independence

Proof outline: fast sampler for μ

μ is the Gibbs distribution of the hardcore model and v is μ_{L}

Glauber dynamics mixes in $\widetilde{\mathrm{O}}(\mathrm{n}) \sqrt{ }$

- fast sampler for v in time $n \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{\mathrm{O}(1 / \delta)}(\Rightarrow$ fast sampler for $\mu)$
- Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$

For $v=\mu_{\mathrm{L}}$ on $\operatorname{BHC}(\lambda, \alpha): \quad \delta$-uniqueness $\Longrightarrow \mathrm{O}(1 / \delta)$-spectral independence

uniqueniss regime

Proof outline: fast sampler for μ

μ is the Gibbs distribution of the hardcore model and v is μ_{L}

$$
\operatorname{BHC}(\lambda, \lambda) \quad \mathrm{P}_{\theta, \nu}^{\mathrm{FD}} \text { with } \theta=\Theta\left(\frac{\Delta \log n}{\lambda}\right)>1 \quad \operatorname{BHC}(\theta \lambda, \lambda)
$$

Glauber dynamics mixes in $\widetilde{\mathrm{O}}(n) \sqrt{ }$

- fast sampler for v in time $n \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{\mathrm{O}(1 / \delta)}(\Rightarrow$ fast sampler for $\mu)$
- Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$

$$
\text { For } v=\mu_{\mathrm{L}} \text { on } \mathrm{BHC}(\lambda, \alpha): \quad \delta \text {-uniqueness } \Longrightarrow \mathrm{O}(1 / \delta) \text {-spectral independence }
$$

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$
$\forall w>0, \forall \hat{x}, F^{\prime}(\hat{x}) \leq 1$

$$
d=2
$$

uniqueniss regime

Fix $d \geq 1$, the pair (λ, d, α) is unique if the point (λ, α) is on above of the following parametric curve for $w>d^{-1}$:

$$
\left\{\begin{array}{l}
\alpha(w)=\frac{d^{w}(w+1)^{w+1}}{(d w-1)^{w+1}} \\
\lambda(w)=\frac{w^{d}(d+1)^{d+1}}{(d w-1)^{d+1}}
\end{array}\right.
$$

Background

Proof outline
Fast sampler
Mixing of Glauber dynamics on $L \cup R$
Spectral independence
ס-uniqueness

Proof outline: mixing of GD on μ

Glauber dynamics on v mixes in time $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{\mathrm{O}(1 / \delta)}$
To get an algorithm that only updates each site seperately:

- This algorithm also runs in $n^{2} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O(1 / \delta)}$ round
- A vertex $u \in R$ is updated with rate 1 in each round
- The Glauber dynamics on μ mixes in time $n^{3} \cdot\left(\frac{\Delta \log n}{\lambda}\right)^{O}(1 / \delta)$

Could be implemented by block factorization [CMT15, CP20, CLV21].

Background

Proof outline
Fast sampler
Mixing of Glauber dynamics on L $\cup R$
Spectral independence
ס-uniqueness

Proof outline: spectral independence

- $v=\mu_{\mathrm{L}}$ for $\operatorname{BHC}(\lambda, \alpha)$ that is δ-unique

the total influence is bounded by

$=\mathrm{O}(1)$

Proof outline: spectral independence

- $v=\mu_{\mathrm{L}}$ for $\operatorname{BHC}(\lambda, \alpha)$ that is δ-unique

the total influence is bounded by

Proof outline: spectral independence

- $v=\mu_{\mathrm{L}}$ for $\operatorname{BHC}(\lambda, \alpha)$ that is δ-unique

the total influence is bounded by

Proof outline: spectral independence

- $v=\mu_{\mathrm{L}}$ for $\operatorname{BHC}(\lambda, \alpha)$ that is δ-unique

the total influence is bounded by

$$
\begin{aligned}
\sum_{\ell=1}^{+\infty}\left(\sum_{v \in \mathrm{~L}_{\mathrm{r}}(2 \ell)} \mid \Psi_{\mu}(\text { root }, v) \mid\right) & \stackrel{[\mathrm{CLV} 21]}{\leq} \mathrm{O}(1) \cdot \sum_{\ell=1}^{+\infty}\left\{\sup _{\mathrm{R}}\left(\Phi \circ \mathrm{~F} \circ \Phi^{-1}\right)^{\prime}(\Phi(\mathrm{R}))\right\}^{\ell} \\
& =\mathrm{O}(1) \cdot \sum_{\ell=1}^{+\infty}\left\{\sup _{\mathrm{R}} \frac{\phi(\mathrm{~F}(\mathrm{R}))}{\phi(\mathrm{R})} \mathrm{F}^{\prime}(\mathrm{R})\right\}^{\ell} \\
& \leq \mathrm{O}(1) \cdot \sum_{\ell=1}^{+\infty}(1-\delta)^{\ell}=\mathrm{O}(1 / \delta)
\end{aligned}
$$

Proof outline: contraction $(\delta=0)$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

contraction

If (λ, d, α) is δ-unique, $d \geq 1$, $\sup _{x \geq 0} H(x):=\sup _{x \geq 0} \frac{\phi(F(x))}{\phi(x)} F^{\prime}(x) \leq 1-\delta$.

1. w could be eliminated by a change of variable: $z=1+\alpha(1+x)^{-w}$ [LL15],
```
    H(x)=H(\lambda,d,\alpha,w;x)
```

$=\partial u \leq 0$ and $\partial_{\alpha} u \geq 0$
2. There are function $c_{1}(x)>0, c_{2}(x)>0($ when $x>0)$ that $H^{\prime}(x)=c_{1}(x) \cdot(1-H(x))+c_{2}(x) \cdot\left(\alpha d-(x+1)^{w}(F(x)+1)\right)$
3. Uniqueness regime

uniqueniss boundary

parametric curve:

On the boundary (α, λ) :
\exists unique $w=w_{c}$
$F^{\prime}(\hat{x})=1$
$\alpha d-(1+\hat{x})^{w+1}=0$
where \hat{x} is the unique fixpoint

Proof outline: contraction $(\delta=0)$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, \mathrm{~F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta$.

contraction

If (λ, d, α) is δ-unique, $d \geq 1$, $\sup _{x \geq 0} H(x):=\sup _{x \geq 0} \frac{\phi(F(x))}{\phi(x)} F^{\prime}(x) \leq 1-\delta$.

1. w could be eliminated by a change of variable: $z=1+\alpha(1+x)^{-w}$ [LL15],

$$
\begin{aligned}
\sup _{x \geq 0} H(x)=\sup _{z \in[1,1+\alpha]} U(\lambda, d, \alpha ; z) & \sup _{x} H(x) \text { does not effected by } w \\
H(x)=H(\lambda, d, \alpha, w ; x) & \partial_{\lambda} U \leq 0 \text { and } \partial_{\alpha} U \geq 0
\end{aligned}
$$

3. Uniqueness regime

On the boundary (α, λ) :
\exists unique $w=w_{c}$:
$\int F^{\prime}(\hat{x})=1$
$\alpha d-(1+\hat{x})^{w+1}=0$
where \hat{x} is the unique fixpoint

Proof outline: contraction $(\delta=0)$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, \mathrm{~F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta$.

$$
\begin{aligned}
& \text { contraction } \\
& \text { If }(\lambda, d, \alpha) \text { is } \delta \text {-unique, } d \geq 1 \text {, } \\
& \sup _{x \geq 0} H(x):=\sup _{x \geq 0} \frac{\phi(F(x))}{\phi(x)} F^{\prime}(x) \leq 1-\delta .
\end{aligned}
$$

1. w could be eliminated by a change of variable: $z=1+\alpha(1+x)^{-w}$ [LL15],

$$
\begin{aligned}
& \sup _{x \geq 0} H(x)=\sup _{z \in[1,1+\alpha]} \mathrm{U}(\lambda, \mathrm{~d}, \alpha ; z) \\
& H(x)=\mathrm{Hup}(\lambda, \mathrm{~d}, \alpha, w ; x) \\
& H(x) \text { does not effected by } w \\
& \partial_{\lambda} U \leq 0 \text { and } \partial_{\alpha} U \geq 0
\end{aligned}
$$

2. There are function $c_{1}(x)>0, c_{2}(x)>0($ when $x>0)$ that

$$
H^{\prime}(x)=c_{1}(x) \cdot(1-H(x))+c_{2}(x) \cdot\left(\alpha d-(x+1)^{w}(F(x)+1)\right)
$$

3. Uniqueness regime

Proof outline: contraction $(\delta=0)$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, \mathrm{~F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta$.

contraction

If (λ, d, α) is δ-unique, $d \geq 1$,
$\sup _{x \geq 0} H(x):=\sup _{x \geq 0} \frac{\phi(F(x))}{\phi(x)} F^{\prime}(x) \leq 1-\delta$.

1. w could be eliminated by a change of variable: $z=1+\alpha(1+x)^{-w}$ [LL15],

$$
\begin{gathered}
\sup _{x \geq 0} H(x)=\sup _{z \in[1,1+\alpha]} U(\lambda, d, \alpha ; z) \\
H(x)=H(\lambda, d, \alpha, w ; x)
\end{gathered}
$$

- $\sup _{x} \mathrm{H}(\mathrm{x})$ does not effected by w
- $\partial_{\lambda} U \leq 0$ and $\partial_{\alpha} U \geq 0$

2. There are function $c_{1}(x)>0, c_{2}(x)>0($ when $x>0)$ that

$$
H^{\prime}(x)=c_{1}(x) \cdot(1-H(x))+c_{2}(x) \cdot\left(\alpha d-(x+1)^{w}(F(x)+1)\right)
$$

3. Uniqueness regime

uniqueniss boundary

parametric curve:

$$
\left\{\begin{array}{l}
\alpha(w)=\frac{d^{w}(w+1)^{w+1}}{(d w-1)^{w+1}} \\
\lambda(w)=\frac{w^{d}(d+1)^{d+1}}{(d w-1)^{d+1}}
\end{array}\right.
$$

On the boundary (α, λ) :
\exists unique $w=w_{c}$:
$\left\{\begin{array}{l}F^{\prime}(\hat{x})=1 \\ \alpha \mathrm{~d}-(1+\hat{x})^{w+1}=0\end{array}\right.$ where \hat{x} is the unique fixpoint.

Proof outline: contraction $(\delta=0)$

1. w could be eliminated by a change of variable: $z=1+\alpha(1+x)^{-w}$ [LL15],

$$
\begin{gathered}
\sup _{x \geq 0} H(x)=\sup _{z \in[1,1+\alpha]} U(\lambda, d, \alpha ; z) \\
H(x)=H(\lambda, d, \alpha, w ; x)
\end{gathered}
$$

- $\sup _{x} \mathrm{H}(\mathrm{x})$ does not effected by w
- $\partial_{\lambda} \mathrm{U} \leq 0$ and $\partial_{\alpha} \mathrm{U} \geq 0$

2. There are function $c_{1}(x)>0, c_{2}(x)>0($ when $x>0)$ that

$$
H^{\prime}(x)=c_{1}(x) \cdot(1-H(x))+c_{2}(x) \cdot\left(\alpha d-(x+1)^{w}(F(x)+1)\right)
$$

3. Uniqueness regime

uniqueniss boundary

parametric curve:

$$
\left\{\begin{array}{l}
\alpha(w)=\frac{d^{w}(w+1)^{w+1}}{(d w-1)^{w+1}} \\
\lambda(w)=\frac{w^{d}(d+1)^{d+1}}{(d w-1)^{d+1}}
\end{array}\right.
$$

On the boundary (α, λ) : \exists unique $w=w_{c}$:

$$
\left\{\begin{array}{l}
F^{\prime}(\hat{x})=1 \\
\alpha d-(1+\hat{x})^{w+1}=0
\end{array}\right.
$$

$$
\text { where } \hat{x} \text { is the unique fixpoint. }
$$

4. $\operatorname{Move}(\lambda, \alpha)$ to the boundary and let $w=w_{c}$ in $H(x)=\frac{\phi(F(x))}{\phi(x)} F^{\prime}(x)$.

$$
\mathrm{H}(\hat{\mathrm{x}})=1, \mathrm{H}^{\prime}(\hat{\mathrm{x}})=0, \mathrm{H}^{\prime \prime}(\hat{\mathrm{x}})<0
$$

Proof outline: contraction $(\delta>0)$

For simplicity, we assume $\delta=0$. The $\delta>0$ case could be handled by a similar high level idea.

1. w could be eliminated \cdot.
2. There are function $c_{1}(x)>0, c_{2}(x)>0($ when $x>0)$ that

$$
\begin{aligned}
& H^{\prime}(x)=c_{1}(x) \cdot((1-\delta)-H(x))+c_{2}(x) \cdot B_{\delta}(x), \text { where } \\
& B_{\delta}(x)=w \log (x+1)\left(\alpha d \cdot \frac{x+1}{F(x)+1}-(x+1)^{w+1}\right)+\delta(x+1)\left(\alpha+(x+1)^{w}\right)
\end{aligned}
$$

3. Uniqueness regime

No parametric equation avaliable On the boundary $(\alpha, \lambda): \exists$ unique $w=w_{c}$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
(1-\delta)(\hat{x}+1)\left(\alpha+(1+\hat{x})^{w}\right)-\alpha d w \hat{x}=0 \\
w \log (1+\hat{x})\left(\alpha d-(1+\hat{x})^{w+1}\right)+\delta(\hat{x}+1)\left(\alpha+(\hat{x}+1)^{w}\right)=0
\end{array}\right. \\
\Leftrightarrow & \left\{\begin{array}{l}
F^{\prime}(\hat{x})=1-\delta \\
w \log (1+\hat{x})\left(\alpha d-(1+\hat{x})^{w+1}\right)+\delta(\hat{x}+1)\left(\alpha+(\hat{x}+1)^{w}\right)=0
\end{array}\right.
\end{aligned}
$$

where $\hat{x}=F(\hat{x})$ is the unique fixpoint.
4. Move (λ, α) to the boundary and let $w=w_{c}$ in $H(x)=\frac{\phi(F(x))}{\phi(x)} F^{\prime}(x)$.

$$
\mathrm{H}(\hat{x})=1-\delta, \mathrm{H}^{\prime}(\hat{x})=0, \mathrm{H}^{\prime \prime}(\hat{x})<0
$$

Background

Proof outline
Fast sampler
Mixing of Glauber dynamics on $L \cup R$
Spectral independence
δ-uniqueness

Proof outline: δ-uniqueness

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in$ $\mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

- The requiremnt on fixpoint is not easy

Proof outline: δ-uniqueness

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$

δ-uniqueness

The tuple $(\lambda, \mathrm{d}, \alpha)$ is δ-unique if $\forall w \in$ $\mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

- The requiremnt on fixpoint is not easy to use $\%$.
- $(\hat{x}, \mathrm{~d}, \alpha, w)$ determines a unique λ :

$$
\lambda(\hat{x})=\hat{x}\left(1+\alpha(1+\hat{x})^{-w}\right)^{\mathrm{d}}
$$

- Change the coordinates:
$(\lambda, d, \alpha, w) \leftrightarrow(\hat{x}, d, \alpha, w)$
- $\mathrm{F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta \Leftrightarrow$ $(1-\delta)(\hat{x}+1)\left(\alpha+(1+\hat{x})^{w}\right)-\alpha d w \hat{x} \geq 0$

$$
=: T_{\delta}(\hat{x})
$$

Fix d, α, w, a typical case is

Proof outline: δ-uniqueness

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in$ $\mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

- The requiremnt on fixpoint is not easy to use $\%$.
- $(\hat{x}, \mathrm{~d}, \alpha, w)$ determines a unique λ :

$$
\lambda(\hat{x})=\hat{x}\left(1+\alpha(1+\hat{x})^{-w}\right)^{d}
$$

- Change the coordinates:
$(\lambda, d, \alpha, w) \leftrightarrow(\hat{x}, d, \alpha, w)$
- $\mathrm{F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta \Leftrightarrow$ $(1-\delta)(\hat{x}+1)\left(\alpha+(1+\hat{x})^{w}\right)-\alpha d w \hat{x} \geq 0$

$$
=: T_{\delta}(\hat{x})
$$

Fix d, α, w, a typical case is

- as $w \rightarrow+\infty$, we have $\lambda_{i}^{\delta} \rightarrow 0$
- $\lambda \geq \lambda_{2}^{\delta}$ implies δ-uniqueness
- fix d, α, critical \hat{x}, w arise when
$\stackrel{\delta=0}{\Rightarrow}$ parametric

Proof outline: δ-uniqueness

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in$ $\mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

- The requiremnt on fixpoint is not easy to use
- $(\hat{x}, \mathrm{~d}, \alpha, w)$ determines a unique λ :

$$
\lambda(\hat{x})=\hat{x}\left(1+\alpha(1+\hat{x})^{-w}\right)^{\mathrm{d}}
$$

- Change the coordinates:
$(\lambda, d, \alpha, w) \leftrightarrow(\hat{x}, d, \alpha, w)$
- $\mathrm{F}^{\prime}(\hat{\mathrm{x}}) \leq 1-\delta \Leftrightarrow$

$$
(1-\delta)(\hat{x}+1)\left(\alpha+(1+\hat{x})^{w}\right)-\alpha \mathrm{d} w \hat{x} \geq 0
$$

\square has more than one fixed points
$\square \cup F^{\prime}(\hat{x})>1-\delta$ at some fixed point \hat{x}

Fix d, α, w, a typical case is

\rightarrow as $w \rightarrow+\infty$, we have $\lambda_{i}^{\delta} \rightarrow 0$
$\Rightarrow \lambda \geq \lambda_{2 . c}^{\delta}$ implies δ-uniqueness

- fix d, α, critical \hat{x}, w arise when
\Longrightarrow parametric

Proof outline: δ-uniqueness

$F(x)=\lambda\left(1+\alpha(1+x)^{-w}\right)^{-d}$

δ-uniqueness

The tuple (λ, d, α) is δ-unique if $\forall w \in$ $\mathbb{R}_{>0}$, and $\forall \hat{x}, F^{\prime}(\hat{x}) \leq 1-\delta$.

- The requiremnt on fixpoint is not easy to use
- $(\hat{x}, \mathrm{~d}, \alpha, w)$ determines a unique λ :

$$
\lambda(\hat{x})=\hat{x}\left(1+\alpha(1+\hat{x})^{-w}\right)^{d}
$$

- Change the coordinates:
$(\lambda, d, \alpha, w) \leftrightarrow(\hat{x}, d, \alpha, w)$
- $F^{\prime}(\hat{x}) \leq 1-\delta \Leftrightarrow$

$$
(1-\delta)(\hat{x}+1)\left(\alpha+(1+\hat{x})^{w}\right)-\alpha d w \hat{x} \geq 0
$$

\square has more than one fixed points
$\square \cup F^{\prime}(\hat{x})>1-\delta$ at some fixed point \hat{x}

Fix d, α, w, a typical case is

- as $w \rightarrow+\infty$, we have $\lambda_{i}^{\delta} \rightarrow 0$
- $\lambda \geq \lambda_{2, \mathrm{c}}^{\delta}$ implies δ-uniqueness
- fix d, α, critical \hat{x}, \mathcal{w} arise when
$\left\{\begin{array}{l}\mathrm{T}_{\delta}(x)=0 \\ \partial_{w} \lambda_{2}^{\delta}(w)=0\end{array} \stackrel{\delta=0}{\Rightarrow} \underset{\text { curve }}{\text { parametric }}\right.$

Open problems

- Uniqueness regime for negative λ. May lead to better regime for $k-C N F$ via LLL.
- Remove the depedency on degree Δ in the running time.
- Currently, we are able to show that the Glauber dynamics on μ mixes in time $\widetilde{\mathrm{O}}\left(\mathrm{n}^{3}\right)$ via a comparison argument. We want to know whether it actually mixes in $O(n \log n)$ time.

Thank you
 arXiv:2305.00186

Take home message: considering a bipartite hardcore model with different fugacities on both side might result in unexpected flexibility in the analysis

[^0]: ${ }^{1}$ In any bipartite graph, the number of edges in a maximum matching

[^1]: ${ }^{1}$ In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

