Uniqueness and Rapid Mixing in the Bipartite Hardcore Model

Xiaoyu Chen

🚺 Nanjing University

based on joint work with

Jingcheng Liu

Yitong Yin

Sampling problem:

Draw (approximate) random samples from a distribution

Gibbs distribuiton:

- high-dimensional joint distribution
- described by few parameters and local interactions

Computational phase transition: computational complexity of sampling problem changes sharply around certain parameter values

Hardcore model

- G = ([n], E) with n vertices and max degree Δ .
- Fugacity $\lambda > 0$ is a real number.
- $Ind(G) = \{S \subseteq [n] \mid S \text{ is an independent set} \}.$
- Gibbs distribution

$$\forall S \in \text{Ind}(G), \quad \mu(S) := \tfrac{\lambda^{|S|}}{Z}, \quad \text{where } Z_G(\lambda) := \textstyle \sum_{I \in \text{Ind}(G)} \lambda^{|I|}.$$

an example

Partition function:

$$\mathsf{Z} = 1 + 4\lambda + \lambda^2$$

This model is self-reducible

Computational phase transition

On Δ -regular tree:

Computational phase transition:

- $\lambda < \lambda_c$: poly-time algorithm for approx. sampling [Wei06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

Computational phase transition

On Δ -regular tree:

 $\lambda:0$

Computational phase transition:

- $\lambda < \lambda_c$: poly-time algorithm for approx. sampling [Wei06]
- $\lambda > \lambda_c$: no poly-time algorithm unless NP = RP [Sly10]

≯∞

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- (parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

▶ it has no FPRAS in general

it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

it has no FPRAS in general
it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

(parti. func.)

ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]

Conjecture[DGGJ04]: #BIS represents an intermediate complexity class: ▶ it has no FPRAS in general ▶ it is easier than #SAT

It is easy: there is a poly-time algorithm to find a matximum independent set in the bipartite graph (Kőnig's theorem¹).

It is hard: many important problems are proved to be #BIS-equivalent or #BIS-hard under AP-reductions.

Selected examples

- stable matchings
- ferro. Potts model

(counting)

- (parti. func.)
- ferro. Ising with mixed external fields (parti. func.)

[DGGJ04, GJ07, DGJ10, CGM12 DGJR12, GJ12a, BDG+13, LLZ14, GJ15, CGG+16, GŠVY16, GGY21,]

Conjecture[DGGJ04]:

#BIS represents an intermediate complexity class:

it has no FPRAS in general

it is easier than #SAT

Previous algorithmic results

Low temperature regime (via polymer):

• α -expander bipartite graph:

$$\begin{array}{ll} \lambda \geq (C_0 \Delta)^{4/\alpha}, \text{ an } n^{O(\log \Delta)} \text{ time sampler} & [JKP20] \\ \flat \lambda \geq (C_1 \Delta)^{6/\alpha}, \text{ an } O(n \log n) \text{ time sampler} & [CGG+21] \\ \flat \lambda \geq (C_2 \Delta)^{2/\alpha}, \text{ an } n^{O(\log \Delta)} \text{ time sampler} & [FGKP23] \end{array}$$

• Δ -regular α -expander bipartite graph:

►
$$\lambda \ge \frac{f(\alpha) \log \Delta}{\Delta^{1/4}}$$
, an $n^{O(\Delta)}$ time sampler [JPP22]

• random Δ -regular bipartite graph:

•
$$\Delta \ge \Delta_0, \lambda \ge \frac{\log^4 \Delta}{\Delta}$$
, an $n^{O(1)}$ time sampler [LLLM19]

$$\Delta \ge \Delta_1, \lambda \ge \frac{50 \log^2 \Delta}{\Delta}, \text{ an } n^{1+O(\frac{\log^2(\Delta)}{\Delta})} \text{ time sampler} \qquad [JKP20]$$

•
$$\Delta \ge \Delta_2, \lambda \ge \frac{100 \log \Delta}{\Delta}$$
, an $O(n \log n)$ time sampler [CGŠV22]

unbalanced bipartite graph:

Previous algorithmic results

High temperature regime (via spatial mixing):

- ▶ general graph: if $\lambda < \lambda_c(\Delta)$, there is an $O(n \log n)$ time sampler
- $$\label{eq:linear} \begin{split} \mbox{bipartite graph: if } \lambda &= 1, \Delta_L \leq 5 \text{, an } O(n^2) \text{ time sampler} \\ (\lambda &= 1 \land \lambda < \lambda_c(\Delta) \Leftrightarrow \Delta \leq 5) \end{split}$$

The low/high-temperature regime follows from the **weak spatial mixing**

 σ_Λ : fixed configuration in Λ

Weak spatial mixing (WSM)

$$\label{eq:pr} \begin{split} & \text{Pr}\left[\nu \in S \mid \sigma_\Lambda\right] \text{ doesn't depend} \\ & \text{on } \sigma_\Lambda \text{ as } \ell \to +\infty \end{split}$$

high-temperature \Leftrightarrow WSM

In bipartite graph, unlike general graph, we don't have a clear picture about when does the weak spatial mixing hold.

High temperature regime (via spatial mixing):

- ▶ general graph: if $\lambda < \lambda_c(\Delta)$, there is an $O(n \log n)$ time sampler

The low/high-temperature regime follows from the weak spatial mixing

 σ_Λ : fixed configuration in Λ

high-temperature \Leftrightarrow WSM

In bipartite graph, unlike general graph, we don't have a clear picture about when does the weak spatial mixing hold.

Weak spatial mixing

 $\Pr[v \in S \mid \sigma]$ doesn't depend on σ

Tree recursion of (d, w)-ary tree

$$F(x) := \lambda (1 + \lambda (1 + x)^{-w})^{-d}$$

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any

Weak spatial mixing

 $\label{eq:prime} \begin{array}{l} \mbox{Pr}\left[\nu \in S \mid \sigma\right] \mbox{doesn't depend on } \sigma \\ \mbox{as } \ell \rightarrow +\infty \end{array}$

Tree recursion of (d, w)-ary tree

$$F(x) := \lambda (1 + \lambda (1 + x)^{-w})^{-d}$$

Definition

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x} = F(\hat{x})$ of F satisfy $F'(\hat{x}) \le 1 - \delta$.

Weak spatial mixing

 $\label{eq:prime} \begin{array}{l} \mbox{Pr}\left[\nu \in S \mid \sigma\right] \mbox{doesn't depend on } \sigma \\ \mbox{as } \ell \rightarrow +\infty \end{array}$

Tree recursion of (d, w)-ary tree

$$F(x) := \lambda (1 + \lambda (1 + x)^{-w})^{-d}$$

Definition

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x} = F(\hat{x})$ of F satisfy $F'(\hat{x}) \le 1 - \delta$.

Definition

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x} = F(\hat{x})$ of F satisfy $F'(\hat{x}) \le 1 - \delta$.

Theorem

Fix any $\Delta = d + 1 \ge 3$ and any $\delta \in [0, 1)$, the pair (λ, d) is $\frac{\delta}{10}$ -unique if

$$\lambda \le (1-\delta)\lambda_{c}(\Delta) = (1-\delta)\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}}.$$

Theorem

For bipartite graph G = (L \cup R, E) with maximum degree $\Delta_L = d + 1 \ge 2$ on L and fugacity $\lambda > 0$, let n = |L|, then for any $\delta \in (0, 1)$, if (λ, d) is δ -unique, then we have a sampler for this hardcore model that runs in time

$$n\left(\frac{\Delta_L \log n}{\lambda}\right)^{O(C/\delta)}, \text{ where } \begin{cases} C = O(1), & \Delta_L \ge 3\\ C = (1+\lambda)^{10}, & \Delta_L = 2. \end{cases}$$

- When $\Delta_L = 1$, G is a forest.
- When $\Delta_{L} = 2$, this model becomes an Ising model.

Definition

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x} = F(\hat{x})$ of F satisfy $F'(\hat{x}) \le 1 - \delta$.

Theorem

Fix any $\Delta = d + 1 \ge 3$ and any $\delta \in [0, 1)$, the pair (λ, d) is $\frac{\delta}{10}$ -unique if

$$\lambda \le (1 - \delta)\lambda_{\mathbf{c}}(\Delta) = (1 - \delta)\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}.$$

Theorem

For bipartite graph G = (L \cup R, E) with maximum degree $\Delta_L = d + 1 \ge 2$ on L and fugacity $\lambda > 0$, let n = |L|, then for any $\delta \in (0, 1)$, if (λ, d) is δ -unique, then we have a sampler for this hardcore model that runs in time

$$n\left(\frac{\Delta_L \log n}{\lambda}\right)^{O(C/\delta)}, \text{ where } \begin{cases} C = O(1), & \Delta_L \ge 3\\ C = (1+\lambda)^{10}, & \Delta_L = 2. \end{cases}$$

- When $\Delta_L = 1$, G is a forest.
- When $\Delta_{\rm L} = 2$, this model becomes an Ising model.

Definition

Let $\delta \in [0, 1)$ be a real number. The pair $(\lambda, d) \in \mathbb{R}^2_{>0}$ is δ -unique if for any $w \in \mathbb{R}_{>0}$, all fixpoints $\hat{x} = F(\hat{x})$ of F satisfy $F'(\hat{x}) \le 1 - \delta$.

Theorem

Fix any $\Delta = d + 1 \ge 3$ and any $\delta \in [0, 1)$, the pair (λ, d) is $\frac{\delta}{10}$ -unique if

$$\lambda \le (1 - \delta)\lambda_{\mathbf{c}}(\Delta) = (1 - \delta)\frac{(\Delta - 1)^{\Delta - 1}}{(\Delta - 2)^{\Delta}}.$$

Theorem

For bipartite graph G = (L \cup R, E) with maximum degree $\Delta_L = d + 1 \ge 2$ on L and fugacity $\lambda > 0$, let n = |L|, then for any $\delta \in (0, 1)$, if (λ, d) is δ -unique, then we have a sampler for this hardcore model that runs in time

$$n\left(\frac{\Delta_L \log n}{\lambda}\right)^{O(C/\delta)}, \text{ where } \begin{cases} C = O(1), & \Delta_L \ge 3\\ C = (1+\lambda)^{10}, & \Delta_L = 2. \end{cases}$$

- When $\Delta_L = 1$, G is a forest.
- When $\Delta_{L} = 2$, this model becomes an Ising model.

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(\mathsf{X}_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[\mathsf{X}_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

- pick a vertex $v \in V$ uniformly at random;
- ▶ with prob. $\frac{\lambda}{1+\lambda}$, let $S = X_{t-1} \cup \{\nu\}$; with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

irreducible + aperiodic + reversible $\Longrightarrow X_t \sim \mu \text{ as } t \rightarrow \infty$

mixing time: essential running time of Glauber dynamics

$$T_{\mathsf{mix}} := \max_{X_0} \min\{t \mid \mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) \le 1/100\}$$

$$\mathsf{D}_{\mathsf{TV}}(X_t \parallel \mu) := \frac{1}{2} \sum_{S \in \mathsf{Ind}(G)} |\mathsf{Pr}[X_t = S] - \mu(S)|$$

Glauber dynamics for Hardcore model:

start from an arbitrary independent set X_0 ; for t from 1 to T do:

• pick a vertex $v \in V$ uniformly at random;

▶ with prob.
$$\frac{\lambda}{1+\lambda}$$
, let $S = X_{t-1} \cup \{\nu\}$;
with prob. $\frac{1}{1+\lambda}$, let $S = X_{t-1} \setminus \{\nu\}$;

• if $S \in Ind(G)$ then $X_t = S$ else $X_t = X_{t-1}$;

Theorem

For bipartite graph G = (L \cup R, E) with maximum degree $\Delta_L = d + 1 \ge 3$ on L, $\delta \in (0, 1)$, and fugacity $\lambda \in (0, (1 - \delta)\lambda_c(\Delta))$. Then the mixing time of the Glauber dynamics is bounded as

$$\mathsf{T}_{\mathsf{mix}} \leq \left(\frac{\Delta \log \mathfrak{n}}{\lambda}\right)^{\mathsf{O}(C/\delta)} \cdot \mathfrak{n}^3 \cdot \log \frac{1+\lambda}{\min\left\{1,\lambda\right\}}.$$

- When $\Delta_L \ge 3$, then C = O(1).
- When $\Delta_L = 2$, (λ, d) is δ -unique, the bound holds with $C = (1 + \lambda)^{10}$.

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$ Spectral independence δ -uniqueness

Let ν be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta>0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

For $0 < \theta \neq 1$, Field dynamics $P_{\theta,\gamma}^{\text{FD}}$: Markov chain $(X_t)_{t\geq 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1,+1\}$ so that $\theta^s < 1;$ for each t > 0;

1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$

2. **let** $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim \nu \quad \text{as } t \rightarrow \infty \quad \textcircled{B}$

rapid mixing of $P_{\theta,\nu}^{FD}$ + sampler for $\theta * \nu$ = sampler for ν

Let v be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta>0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, \quad (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

For $0 < \theta \neq 1$, Field dynamics $P_{\theta,\gamma}^{\text{FD}}$: Markov chain $(X_t)_{t\geq 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s < 1$; for each t > 0:

- $\begin{array}{ll} \text{1. generate } \mathsf{R} \subseteq [n] \text{:} & \text{for } i \in [n] \text{ with } X_{t-1}(i) = s \\ & \text{add } i \text{ to } \mathsf{R} \text{ with prob. } 1 \theta^s \end{array}$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma \mid \sigma_R = s]$

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim v$ as $t \rightarrow \infty$ rapid mixing of P^{FD}_{0,v} + sampler for $\theta * v$ = sampler for v

Let v be a distribution over $\Omega = \{-1, +1\}^n$. $\forall \sigma \in \Omega$, $\|\sigma\|_+ = |\{i \mid \sigma_i = 1\}|$

impose external field $\theta>0$

 $\theta * \nu$: a distribution on Ω :

 $\forall \sigma, \quad (\theta * \nu)(\sigma) \propto \nu(\sigma) \cdot \theta^{\|\sigma\|_{+}}$

flip the distribution

 $\overline{\nu}$: a distribution on Ω :

$$\forall \sigma, \quad \overline{\nu}(\sigma) = \nu(-\sigma)$$

• hardcore model: μ (fugacity λ) $\Longrightarrow \theta * \mu$ (fugacity $\theta \lambda$)

For $0 < \theta \neq 1$, Field dynamics $P_{\theta,\gamma}^{\text{FD}}$: Markov chain $(X_t)_{t\geq 0}$ on Ω :

 X_0 is an arbitrary vector in Ω and let $s \in \{-1, +1\}$ so that $\theta^s < 1$; for each t > 0:

- 1. generate $R \subseteq [n]$: for $i \in [n]$ with $X_{t-1}(i) = s$ add i to R with prob. $1 - \theta^s$
- 2. let $X_t = \sigma$ with prob. $Pr_{\sigma \sim \theta * \nu} [\sigma | \sigma_R = s]$

irreducible + aperiodic + reversible [CFYZ21] $\implies X_t \sim \nu \quad \text{as } t \rightarrow \infty \quad \textcircled{P}{2}$

rapid mixing of $P_{\theta,\nu}^{FD}$ + sampler for $\theta * \nu$ = sampler for ν

Theorem ([CFYZ21, AJKPV22, CFYZ22, CE22]) Let $0 < \theta \neq 1$ and v be a distribution over $\{-1, +1\}^n$ that

- 1. $\lambda * \nu$ is K-marginally stable for all λ between θ , 1,
- 2. $\lambda * \nu$ is η -spectrally independent for all λ between θ , 1,
- 3. the Glauber dynamics on $\theta * \nu$ mixes in time $\widetilde{O}(n)$,

then

$$1 \wedge 2 \Rightarrow T_{mix}(P_{\theta,\nu}^{\mathsf{FD}}) \approx \max{\{\theta, 1/\theta\}}^{\eta:\mathsf{poly}(\mathsf{K})}.$$

 $1 \wedge 2 \wedge 3 \ \Rightarrow \text{sampler for } \nu \text{ in time } \widetilde{O}(n) \cdot \max{\{\theta, 1/\theta\}}^{\eta \cdot \text{poly}(K)}$

 $1 \wedge 2 \wedge 3 \stackrel{\text{Var}}{\Rightarrow} T_{\text{mix}}(P_{\nu}^{\text{GD}}) \approx \widetilde{O}(n) \cdot n \cdot \max{\{\theta, 1/\theta\}^{\eta \cdot \text{poly}(K)}}$

relaxation time

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$

$$\Psi_{\mathbf{v}}(\mathbf{i}, \mathbf{j}) := \begin{cases} 0, & \text{if } \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{i}\right] \in \{0, 1\} \\ \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{i}\right] - \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{\bar{i}}\right] \end{cases}$$

 $i = \{X_i = +1\}, \overline{i} = \{X_i = -1\}$

$$Corr(X) \in \mathbb{R}^{n \times n}$$
$$Corr(X)_{ij} = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i)Va$$

$$\Psi_{\nu}(i,j) = \frac{\operatorname{Cov}(X_i,X_j)}{\operatorname{Var}(X_i)}$$

 $\overline{X_i}$

• Ψ_{ν} is similar to Corr(X)

 η -spectral independence (in ∞ -norm)

 $\forall \Lambda \subseteq [n] \text{ with } |\Lambda| \leq n-2 \text{, and } \forall \tau \in \Omega(\nu_{\Lambda}), \|\Psi_{\nu^{\tau}}\|_{\infty} \leq \eta$

K<mark>-marginal stability</mark>

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$,

 $\mathsf{R}_i^\tau \leq \mathsf{K} \cdot \mathsf{R}_i^{\tau_S} \text{ and } \rho_i^\tau(-1) \geq \mathsf{K}^{-1}$

• marginal ratio
$$R_i^{\tau} = \frac{\rho_i^{\tau}(+1)}{\rho_i^{\tau}(-1)}$$

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$

$$\Psi_{\mathbf{v}}(\mathbf{i}, \mathbf{j}) := \begin{cases} 0, & \text{if } \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{i}\right] \in \{0, 1\} \\ \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{i}\right] - \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{\bar{i}}\right] \end{cases}$$

 $i = \{X_i = +1\}, \overline{i} = \{X_i = -1\}$

 $\begin{aligned} & \textbf{Corr}(X) \in \mathbb{R}^{n \times n} \\ & \textbf{Corr}(X)_{ij} = \frac{\textbf{Cov}(X_i, X_j)}{\sqrt{\textsf{Var}(X_i)\textsf{Var}(X_j)}} \\ & \Psi_{\nu}(i, j) = \frac{\textbf{Cov}(X_i, X_j)}{\textsf{Var}(X_i)} \end{aligned}$

• Ψ_{ν} is similar to Corr(X)

 $\eta\text{-spectral}$ independence (in $\infty\text{-norm}$)

 $\forall \Lambda \subseteq [n] \text{ with } |\Lambda| \leq n-2 \text{, and } \forall \tau \in \Omega(\nu_{\Lambda}) \text{, } \|\Psi_{\nu^{\tau}}\|_{\infty} \leq \eta$

K**-marginal stability**

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$,

 $\mathtt{R}_i^\tau \leq \mathtt{K} \cdot \mathtt{R}_i^{\tau_S}$ and $\rho_i^\tau(-1) \geq \mathtt{K}^{-1}$

• marginal ratio
$$R_i^{\tau} = \frac{\rho_i^{\tau}(+1)}{\rho_i^{\tau}(-1)}$$

Let ν be a distribution over $\{-1,+1\}^n$ and $X\sim\nu$ be a random vector.

influence matrix $\Psi_{\nu} \in \mathbb{R}^{n \times n}$

$$\Psi_{\mathbf{v}}(\mathbf{i}, \mathbf{j}) := \begin{cases} 0, & \text{if } \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{i}\right] \in \{0, 1\} \\ \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{i}\right] - \mathbf{Pr}_{\mathbf{v}}\left[\mathbf{j} \mid \mathbf{\bar{i}}\right] \end{cases}$$

 $i = \{X_i = +1\}, \overline{i} = \{X_i = -1\}$

 $\begin{aligned} & \textbf{Corr}(X) \in \mathbb{R}^{n \times n} \\ & \textbf{Corr}(X)_{ij} = \frac{\textbf{Cov}(X_i, X_j)}{\sqrt{\textsf{Var}(X_i)\textsf{Var}(X_j)}} \\ & \Psi_{\nu}(i, j) = \frac{\textbf{Cov}(X_i, X_j)}{\textsf{Var}(X_i)} \end{aligned}$

• Ψ_{ν} is similar to Corr(X)

 $\eta\text{-spectral}$ independence (in $\infty\text{-norm}$)

 $\forall \Lambda \subseteq [n] \text{ with } |\Lambda| \leq n-2 \text{, and } \forall \tau \in \Omega(\nu_{\Lambda}), \|\Psi_{\nu^{\tau}}\|_{\infty} \leq \eta$

K-marginal stability

there is $\rho \in \{\nu, \overline{\nu}\}$ that for $i \in [n], S \subseteq \Lambda \subseteq [n] \setminus \{i\}, \tau \in \Omega(\rho_{\Lambda})$,

$$R_i^{\tau} \leq K \cdot R_i^{\tau_S}$$
 and $\rho_i^{\tau}(-1) \geq K^{-1}$

• marginal ratio
$$R_i^{\tau} = \frac{\rho_i^{\tau}(+1)}{\rho_i^{\tau}(-1)}$$

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$ Spectral independence $\delta\text{-uniqueness}$

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

$ \forall i, \left \Psi_{\mu}(\nu, u_{i}) \right = \frac{\lambda}{\lambda + 1} = \frac{1}{2} $ $ \left\ \Psi_{\mu} \right\ _{\infty} \ge \sum_{i} \left \Psi_{\mu}(\nu, u_{i}) \right = \frac{\pi}{2} $
What could we do? 🤔

 $\|\Psi_{\mu_{L}}\|_{\infty} = \sum_{i \ge 2} |\Psi_{\mu}(u_{1}, u_{i})| = O($

Maybe we could take $v = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

Maybe we could take $\nu = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

$$\begin{aligned} & \left| \Psi_{\mu}(u_1, u_2) \right| = \frac{\lambda}{1+\lambda} - \frac{\lambda(1+\lambda)^{n-2}}{\lambda+(1+\lambda)^{n-1}} = \frac{1}{2^n+2} \\ & \left\| \Psi_{\mu_L} \right\|_{\infty} = \sum_{i \ge 2} \left| \Psi_{\mu}(u_1, u_i) \right| = O(1) \end{aligned}$$

Maybe we could take $v = \mu_L$.

Let $\lambda = 1$ be the fugacity μ : Gibbs distribution of the hardcore model

 $\left|\Psi_{\mu}(\mathfrak{u}_{1},\mathfrak{u}_{2})\right| = \frac{\lambda}{1+\lambda} - \frac{\lambda(1+\lambda)^{n-2}}{\lambda+(1+\lambda)^{n-1}} = \frac{1}{2^{n}+2}$

Maybe we could take $v = \mu_L$.

Proof outline: fast sampler for μ

Proof outline: fast sampler for $\boldsymbol{\mu}$

Proof outline: fast sampler for $\boldsymbol{\mu}$

Proof outline: fast sampler for $\boldsymbol{\mu}$

Proof outline: fast sampler for μ

Proof outline

Fast sampler Mixing of Glauber dynamics on L U R Spectral independence δ-uniqueness

Proof outline: mixing of GD on μ

Glauber dynamics on ν mixes in time $n^2 \cdot (\frac{\Delta \log n}{\lambda})^{O(1/\delta)}$ To get an algorithm that only updates each site seperately:

• This algorithm also runs in $n^2 \cdot (\frac{\Delta \log n}{\lambda})^{O(1/\delta)}$ round

A vertex $u \in R$ is updated with rate 1 in each round

• The Glauber dynamics on μ mixes in time $n^3 \cdot (\frac{\Delta \log n}{\lambda})^{O(1/\delta)}$

Could be implemented by block factorization [CMT15, CP20, CLV21].

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$ Spectral independence δ -uniqueness

$\nu = \mu_L$ for BHC(λ, α) that is δ -unique

 reduce the general case to the (d + 1, w + 1)-regular tree via the SAW tree [CLV21] and a special potential function [LL15]

$$\begin{split} \Phi(x) &:= \log(\log(1+x))\\ \Phi'(x) &:= \varphi(x) = \frac{1}{(1+x)\log(1+x)}\\ \text{recursion on } (d,w)\text{-ary tree}\\ F(x) &= \lambda(1+\alpha(1+x)^{-w})^{-d} \end{split}$$

$$\begin{split} \sum_{\ell=1}^{+\infty} \left(\sum_{\nu \in L_{\tau}(2\ell)} \left| \Psi_{\mu}(\text{root}, \nu) \right| \right)^{[\text{CLV21}]} & O(1) \cdot \sum_{\ell=1}^{+\infty} \left\{ \sup_{R} (\Phi \circ F \circ \Phi^{-1})'(\Phi(R)) \right\}^{\ell} \\ &= O(1) \cdot \sum_{\ell=1}^{+\infty} \left\{ \sup_{R} \frac{\Phi(F(R))}{\Phi(R)} F'(R) \right\}^{\ell} \\ & \bigotimes O(1) \cdot \sum_{\ell=1}^{+\infty} (1-\delta)^{\ell} = O(1/\delta). \end{split}$$

δ -uniqueness

The tuple (λ, d, α) is δ -unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F'(\hat{x}) \leq 1 - \delta$.

contraction

 $\begin{array}{l} \text{If } (\lambda, d, \alpha) \text{ is } \delta \text{-unique, } d \geq 1, \\ \sup_{x \geq 0} H(x) \coloneqq \sup_{x \geq 0} \frac{\varphi(F(x))}{\varphi(x)} F'(x) \leq 1 - \delta. \end{array}$

1. w could be eliminated by a change of variable: $z = 1 + \alpha(1 + \alpha)^{-w}$ [LL15],

$$\begin{split} \sup_{x\geq 0} H(x) &= \sup_{z\in [1,1+\alpha]} U(\lambda,d,\alpha;z) \\ H(x) &= H(\lambda,d,\alpha,w;x) \end{split}$$

- $\sup_x H(x)$ does not effected by w
- $\partial_{\lambda} U \leq 0$ and $\partial_{\alpha} U \geq 0$
- 2. There are function $c_1(x)>0, c_2(x)>0$ (when x>0) that $H'(x)=c_1(x)\cdot(1-H(x))+c_2(x)\cdot(\alpha d-(x+1)^w(F(x)+1)$
- 3. Uniqueness regime

On the boundary (α, λ) : \exists unique $w = w_c$: $\begin{cases}
F'(\hat{x}) = 1 \\
\alpha d - (1 + \hat{x})^{w+1} = 0
\end{cases}$, where \hat{x} is the unique fixpoint

δ -uniqueness

The tuple (λ, d, α) is δ -unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F'(\hat{x}) \leq 1 - \delta$.

contraction

 $\begin{array}{l} \text{If } (\lambda, d, \alpha) \text{ is } \delta \text{-unique, } d \geq 1, \\ \sup_{x \geq 0} H(x) \coloneqq \sup_{x \geq 0} \frac{\varphi(F(x))}{\varphi(x)} F'(x) \leq 1 - \delta. \end{array}$

1. w could be eliminated by a change of variable: $z = 1 + \alpha(1 + \alpha)^{-w}$ [LL15],

$$\begin{split} \sup_{x\geq 0} H(x) &= \sup_{z\in [1,1+\alpha]} U(\lambda,d,\alpha;z) \\ H(x) &= H(\lambda,d,\alpha,w;x) \end{split}$$

- $\sup_x H(x)$ does not effected by w
- $\partial_{\lambda} U \leq 0$ and $\partial_{\alpha} U \geq 0$

2. There are function $c_1(x) > 0, c_2(x) > 0$ (when x > 0) that $H'(x) = c_1(x) \cdot (1 - H(x)) + c_2(x) \cdot (\alpha d - (x + 1)^w(F(x) + 1))$

3. Uniqueness regime

uniqueniss boundary parametric curve: $\begin{cases} \alpha(w) = \frac{d^{w}(w+1)^{w+1}}{(dw-1)^{w+1}} \\ \lambda(w) = \frac{w^{d}(d+1)^{d+1}}{(dw-1)^{d+1}} \end{cases}$

On the boundary (α, λ) : \exists unique $w = w_c$: $\begin{cases}
F'(\hat{x}) = 1 \\
\alpha d - (1 + \hat{x})^{w+1} = 0
\end{cases}$, where \hat{x} is the unique fixpoint

δ -uniqueness

The tuple (λ, d, α) is δ -unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F'(\hat{x}) \leq 1 - \delta$.

contraction

 $\begin{array}{l} \text{If } (\lambda, d, \alpha) \text{ is } \delta \text{-unique, } d \geq 1, \\ \sup_{x \geq 0} H(x) \coloneqq \sup_{x \geq 0} \frac{\varphi(F(x))}{\varphi(x)} F'(x) \leq 1 - \delta. \end{array}$

1. w could be eliminated by a change of variable: $z = 1 + \alpha(1 + \alpha)^{-w}$ [LL15],

$$\begin{split} \sup_{x\geq 0} H(x) &= \sup_{z\in [1,1+\alpha]} U(\lambda,d,\alpha;z) \\ H(x) &= H(\lambda,d,\alpha,w;x) \end{split}$$

- $\sup_x H(x)$ does not effected by w
- ▶ $∂_λ U ≤ 0$ and $∂_α U ≥ 0$
- 2. There are function $c_1(x)>0, c_2(x)>0$ (when x>0) that $H'(x)=c_1(x)\cdot(1-H(x))+c_2(x)\cdot(\alpha d-(x+1)^w(F(x)+1))$

3. Uniqueness regime λ uniqueness

parametric curve: $\begin{cases} \alpha(w) = \frac{d^{w}(w+1)^{w+1}}{(dw-1)^{w+1}} \\ \lambda(w) = \frac{w^{d}(d+1)^{d+1}}{(dw-1)^{d+1}} \end{cases}$

On the boundary (α, λ) : \exists unique $w = w_c$: $\begin{cases} F'(\hat{x}) = 1 \\ \alpha d - (1 + \hat{x})^{w+1} = 0 \end{cases}$, where \hat{x} is the unique fixpoint

δ -uniqueness

The tuple (λ, d, α) is δ -unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F'(\hat{x}) \leq 1 - \delta$.

contraction

 $\begin{array}{l} \text{If } (\lambda, d, \alpha) \text{ is } \delta \text{-unique, } d \geq 1, \\ \sup_{x \geq 0} H(x) \coloneqq \sup_{x \geq 0} \frac{\varphi(F(x))}{\varphi(x)} F'(x) \leq 1 - \delta. \end{array}$

1. w could be eliminated by a change of variable: $z = 1 + \alpha(1 + x)^{-w}$ [LL15],

$$\begin{split} \sup_{x\geq 0} H(x) &= \sup_{z\in [1,1+\alpha]} U(\lambda,d,\alpha;z) \\ H(x) &= H(\lambda,d,\alpha,w;x) \end{split}$$

- $\sup_x H(x)$ does not effected by w
- $\partial_{\lambda} U \leq 0$ and $\partial_{\alpha} U \geq 0$
- 2. There are function $c_1(x)>0, c_2(x)>0$ (when x>0) that $H'(x)=c_1(x)\cdot(1-H(x))+c_2(x)\cdot(\alpha d-(x+1)^w(F(x)+1))$
- 3. Uniqueness regime

uniqueniss boundary parametric curve: $\begin{cases} \alpha(w) = \frac{d^{w}(w+1)^{w+1}}{(dw-1)^{w+1}} \\ \lambda(w) = \frac{w^{d}(d+1)^{d+1}}{(dw-1)^{d+1}} \end{cases}$

On the boundary (α, λ) : \exists unique $w = w_c$: $\begin{cases} F'(\hat{x}) = 1 \\ \alpha d - (1 + \hat{x})^{w+1} = 0 \end{cases}$, where \hat{x} is the unique fixpoint.

1. w could be eliminated by a change of variable: $z = 1 + \alpha(1 + x)^{-w}$ [LL15],

• $\sup_{x} H(x)$ does not effected by w

$$\partial_{\lambda} U \leq 0 \text{ and } \partial_{\alpha} U \geq 0$$

- 2. There are function $c_1(x)>0, c_2(x)>0$ (when x>0) that $H'(x)=c_1(x)\cdot(1-H(x))+c_2(x)\cdot(\alpha d-(x+1)^w(F(x)+1))$
- 3. Uniqueness regime

For simplicity, we assume $\delta = 0$. The $\delta > 0$ case could be handled by a similar high level idea.

- 1. w could be eliminated \cdots
- 2. There are function $c_1(x) > 0$, $c_2(x) > 0$ (when x > 0) that

$$H'(x) = c_1(x) \cdot ((1 - \delta) - H(x)) + c_2(x) \cdot B_{\delta}(x)$$
, where

¢

 $\mathsf{B}_{\delta}(x) = w \log(x+1) \left(\alpha \mathsf{d} \cdot \frac{x+1}{\mathsf{F}(x)+1} - (x+1)^{w+1} \right) + \delta(x+1)(\alpha + (x+1)^w)$

3. Uniqueness regime

No parametric equation available On the boundary (α, λ) : \exists unique $w = w_c$:

$$\begin{cases} (1-\delta)(\hat{x}+1)(\alpha+(1+\hat{x})^{W}) - \alpha dw\hat{x} = 0\\ w \log(1+\hat{x})(\alpha d - (1+\hat{x})^{W+1}) + \delta(\hat{x}+1)(\alpha+(\hat{x}+1)^{W}) = 0\\ \Rightarrow \begin{cases} F'(\hat{x}) = 1-\delta\\ w \log(1+\hat{x})(\alpha d - (1+\hat{x})^{W+1}) + \delta(\hat{x}+1)(\alpha+(\hat{x}+1)^{W}) = 0 \end{cases}, \end{cases}$$

where $\hat{x} = F(\hat{x})$ is the unique fixpoint.

Proof outline

Fast sampler Mixing of Glauber dynamics on $L \cup R$ Spectral independence

δ -uniqueness

 $F(x) = \lambda (1 + \alpha (1 + x)^{-w})^{-d}$

δ -uniqueness

- The requiremnt on fixpoint is not easy to use ⁹.
- (\hat{x} , d, α , w) determines a unique λ : $\lambda(\hat{x}) = \hat{x}(1 + \alpha(1 + \hat{x})^{-w})^d$
- Change the coordinates: $(\lambda, d, \alpha, w) \leftrightarrow (\hat{x}, d, \alpha, w)$
- $F'(\hat{x}) \le 1 \delta \Leftrightarrow$ $(1 - \delta)(\hat{x} + 1)(\alpha + (1 + \hat{x})^{w}) - \alpha dw \hat{x} \ge 0$

- $\blacktriangleright \ \lambda \geq \lambda_{2,c}^{\delta} \text{ implies } \delta \text{-uniqueness}$
- $\begin{array}{l} \bullet \quad \mbox{fix } d, \, \alpha, \, \mbox{critical } \hat{x}, w \mbox{ arise when} \\ \begin{cases} T_{\delta}(x) = 0 & \stackrel{\delta=0}{\Rightarrow} \mbox{ parametric} \\ \partial_{w} \lambda_{2}^{\delta}(w) = 0 & \stackrel{\forall v \in \mathcal{N}}{\Rightarrow} \end{cases}$

 $F(x) = \lambda (1 + \alpha (1 + x)^{-w})^{-d}$

δ -uniqueness

- The requiremnt on fixpoint is not easy to use ⁽²⁾.
- (\hat{x} , d, α , w) determines a unique λ : $\lambda(\hat{x}) = \hat{x}(1 + \alpha(1 + \hat{x})^{-w})^d$
- Change the coordinates: $(\lambda, d, \alpha, w) \leftrightarrow (\hat{x}, d, \alpha, w)$
- F'($\hat{\mathbf{x}}$) $\leq 1 \delta \Leftrightarrow$ (1 - δ)($\hat{\mathbf{x}}$ + 1)(α + (1 + $\hat{\mathbf{x}}$)^w) - $\alpha dw \hat{\mathbf{x}} \geq 0$

 $F(x) = \lambda (1 + \alpha (1 + x)^{-w})^{-d}$

δ -uniqueness

- The requiremnt on fixpoint is not easy to use ⁽²⁾.
- (\hat{x} , d, α , w) determines a unique λ : $\lambda(\hat{x}) = \hat{x}(1 + \alpha(1 + \hat{x})^{-w})^d$
- Change the coordinates: $(\lambda, d, \alpha, w) \leftrightarrow (\hat{x}, d, \alpha, w)$
- $F'(\hat{\mathbf{x}}) \le 1 \delta \Leftrightarrow (1 \delta)(\hat{\mathbf{x}} + 1)(\alpha + (1 + \hat{\mathbf{x}})^{w}) \alpha dw \hat{\mathbf{x}} \ge 0$

 $F(x) = \lambda (1 + \alpha (1 + x)^{-w})^{-d}$

δ -uniqueness

The tuple (λ, d, α) is δ -unique if $\forall w \in \mathbb{R}_{>0}$, and $\forall \hat{x}, F'(\hat{x}) \leq 1 - \delta$.

- The requiremnt on fixpoint is not easy to use ⁽²⁾.
- (\hat{x} , d, α , w) determines a unique λ : $\lambda(\hat{x}) = \hat{x}(1 + \alpha(1 + \hat{x})^{-w})^d$
- Change the coordinates: $(\lambda, d, \alpha, w) \leftrightarrow (\hat{x}, d, \alpha, w)$
- $F'(\hat{\mathbf{x}}) \le 1 \delta \Leftrightarrow (1 \delta)(\hat{\mathbf{x}} + 1)(\alpha + (1 + \hat{\mathbf{x}})^{w}) \alpha dw \hat{\mathbf{x}} \ge 0$

 $\begin{array}{l} \bullet \quad \mbox{fix } d, \, \alpha, \mbox{critical } \hat{x}, w \mbox{ arise when} \\ \begin{cases} T_{\delta}(x) = 0 & \stackrel{\delta=0}{\Longrightarrow} \mbox{ parametric} \\ \partial_w \lambda_2^{\delta}(w) = 0 & \stackrel{\forall v \in V}{\Longrightarrow} \end{cases}$

 $F(x) = \lambda (1 + \alpha (1 + x)^{-w})^{-d}$

δ -uniqueness

- The requiremnt on fixpoint is not easy to use ⁽²⁾.
- (\hat{x} , d, α , w) determines a unique λ : $\lambda(\hat{x}) = \hat{x}(1 + \alpha(1 + \hat{x})^{-w})^d$
- Change the coordinates: $(\lambda, d, \alpha, w) \leftrightarrow (\hat{x}, d, \alpha, w)$

$$F'(\hat{x}) \le 1 - \delta \Leftrightarrow (1 - \delta)(\hat{x} + 1)(\alpha + (1 + \hat{x})^{w}) - \alpha dw \hat{x} \ge 0$$

Open problems

- Uniqueness regime for negative λ.
 May lead to better regime for k-CNF via LLL.
- Remove the depedency on degree Δ in the running time.
- Currently, we are able to show that the Glauber dynamics on μ mixes in time $\widetilde{O}(n^3)$ via a comparison argument.

We want to know whether it actually mixes in $O(n\log n)$ time.

Take home message: considering a bipartite hardcore model with **different fugacities on both side** might result in unexpected flexibility in the analysis