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AbstRact. We show that themodified log-Sobolev constant for a natural Markov chain which converges
to an r-homogeneous strongly log-concave distribution is at least 1/r. Applications include a sharp
mixing time bound for the bases-exchange walk for matroids, and a concentration bound for Lipschitz
functions over these distributions.

1. IntRoduction

Let π : 2[n] → R⩾0 be a discrete distribution, where [n] = {1, . . . ,n}. Consider the generating
polynomial of π:

gπ(x) =
∑

S⊆[n]

π(S)
∏
i∈S

xi.

We call a polynomial log-concave if its logarithm is concave, and strongly log-concave (SLC) if it is log-
concave at the all-ones vector 1 after taking any sequence of partial derivatives. The distribution π is
homogeneous and strongly log-concave if gπ is.

An important example of homogeneous strongly log-concave distributions is the uniform distribu-
tion over the bases of a matroid (Anari et al., 2019; Brändén and Huh, 2019).1 This discovery leads to
the breakthrough result that the exchange walk over the bases of a matroid is rapidly mixing (Anari
et al., 2019), which implies the existence of a fully polynomial-time randomised approximation scheme
(FPRAS) for the number of bases of any matroid (given by an independence oracle).

The bases-exchange walk, denoted by PBX, is defined as follows. In each step, we remove an element
from the current basis uniformly at random to get a set S. Then, we move to a basis containing S

uniformly at random.2 This chain is irreducible and it converges to the uniform distribution over the
bases of a matroid. Brändén and Huh (2019) showed that the support of an r-homogeneous strongly
log-concave distribution πmust be the set of bases of a matroid. Thus, to sample from π, we may use a
random walk PBX,π similar to the above. The only change required is that in the second step we move
to a basis B ⊃ S with probability proportional to π(B).

Let P be a Markov chain over a state space Ω, and π be its stationary distribution. To measure the
convergence rate of P, we use the total variation mixing time,

tmix(P, ε) := min
t

{
t | ∥Pt(x0, ·) − π∥TV ⩽ ε

}
,

where x0 ∈ Ω is the initial state and the subscript TV denotes the total variation distance between two
distributions. The main goal of this paper is to show that for any r-homogeneous strongly log-concave
distribution π,

tmix(PBX,π, ε) ⩽ r

(
log log 1

πmin
+ log 1

2ε2

)
,(1)

whereπmin = minx∈Ω π(x). Thiswill improve the previous bound tmix(PBX,π, ε) ⩽ r
(

log 1
πmin

+ log 1
ε

)
due to Anari et al. (2019). Since πmin is most commonly exponentially small in the input size (e.g. when
π is the uniform distribution), the improvement is usually a polynomial factor. Our upper bound is

1For other examples, such as the determinantal point process and its variants, see (Anari et al., 2019).
2Notice that to implement this step it may require more than constant time. The chain considered here is sometimes

called the modified bases-exchange walk. A common alternative in the literature is to randomly propose an element and
then apply a rejection filter.
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sharp, as it is achieved (up to constant factors) when π is the uniform distribution over the bases of
some matroids (Jerrum, 2003).3

Our main improvement is a modified log-Sobolev inequality (mLSI) for π and PBX,π. To introduce
this inequality, we define the Dirichlet form of a reversible Markov chain P, over state space Ω, as

EP (f,g) :=
∑

x,y∈Ω

π(x)f(x)
[
I − P

]
(x,y)g(y),

where f,g are two functions overΩ, and I denotes the identity matrix. Moreover, let the (normalised)
relative entropy of f : Ω → R⩾0 be

Entπ (f) := Eπ(f log f) − Eπ f logEπ f,

where we follow the convention that 0 log 0 = 0. If we normaliseEπ f = 1, then Entπ (f) is the relative
entropy (or Kullback–Leibler divergence) between π(·)f(·) and π(·).

The modified log-Sobolev constant (Bobkov and Tetali, 2006) is defined as

ρ(P) := inf
{
EP (f, log f)
Entπ (f)

| f : Ω → R⩾0 , Entπ (f) ̸= 0
}

.

Our main theorem is the following, which is a special case of Theorem 7.

Theorem 1. Let π be an r-homogeneous strongly log-concave distribution, and PBX,π is the corresponding
bases-exchange walk. Then

ρ(PBX,π) ⩾
1
r

.

Since tmix(P, ε) ⩽ 1
ρ(P)

(
log log 1

πmin
+ log 1

2ε2

)
(cf. Bobkov and Tetali, 2006), Theorem 1 directly

implies the mixing time bound (1).
In fact, we show more than Theorem 1. Following Anari et al. (2019) and Kaufman and Oppenheim

(2018), we stratify independent sets of the matroid M by their sizes, and define two random walks for
each level, depending on whether they add or delete an element first. For instance, the bases-exchange
walk PBX,π is the “delete-add” or “down-up” walk for the top level. We give lower bounds for the
modified log-Sobolev constants of both random walks for all levels. For the complete statement, see
Section 3 and Theorem 7.

The previous work of Anari et al. (2019), building upon (Kaufman and Oppenheim, 2018), focuses on
the spectral gap of PBX,π. It is well known that lower bounds of the modified log-Sobolev constant are
stronger than those of the spectral gap. Thus, we need to seek a different approach. Our key lemma,
Lemma 11, shows that the relative entropy decays by a factor of 1− 1

k
when we go from level k to level

k − 1. Theorem 1 is a simple consequence of this lemma and Jensen’s inequality. In order to prove
this lemma, we used a decomposition idea to inductively bound the relative entropy. Although similar
ideas have appeared before (Lee and Yau, 1998; Jerrum et al., 2004b; Morris, 2009, 2013), our approach
does not seem to fall into any existing framework.

Prior to our work, similar bounds have been obtained mostly for strong Rayleigh distributions,
which, introduced by Borcea et al. (2009), are a proper subset of strongly log-concave distributions. Her-
mon and Salez (2019) showed a lower bound on the modified log-Sobolev constant for strong Rayleigh
distributions,4 improving upon the spectral gap bound of Anari et al. (2016). The work of Hermon and
Salez (2019) builds upon the previous work of Jerrum et al. (2004b) for balanced matroids (Feder and
Mihail, 1992). All of these results follow an inductive framework inspired by Lee and Yau (1998), which
is apparently difficult to carry out in the case of general matroids or strongly log-concave distributions.
Our analysis of the relative entropy took a different path from this line of work.

3One such example is the matroid defined by a graph which is similar to a path but with two parallel edges connecting
every two successive vertices instead of a single edge. Equivalently, this can be viewed as the partition matroid where each
block has two elements and each basis is formed by choosing exactly one element from every block. The Markov chain PBX,π
in this case is just the 1/2-lazy random walk on the Boolean hypercube.

4The result of Hermon and Salez (2019) in fact requires a weaker assumption, namely the stochastic covering property
(SCP). We construct examples in Appendix A to show that SCP and SLC are in fact incomparable.
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By the standard Herbst argument (see, e.g., Goel, 2004; Sammer, 2005; Boucheron et al., 2013), The-
orem 1 also implies the following concentration bound.

Corollary 2. Let π be an r-homogeneous strongly log-concave distribution with support Ω ⊂ 2[n], and
PBX,π be the corresponding bases-exchange walk. For any observable function f : Ω → R and a ⩾ 0,

Prx∼π(|f(x) − Eπ f| ⩾ a) ⩽ 2 exp
(
−

a2

2rv(f)

)
,

where v(f) is the maximum of one-step variances,

v(f) := max
x∈Ω

∑
y∈Ω

PBX,π(x,y)(f(x) − f(y))2

 .

There have been a number of results concerning concentration inequalities for Lipshitz functions of
negatively correlated variables. Pemantle and Peres (2014) showed concentration for variables satisfy-
ing the stochastic covering property (SCP), which includes strong Rayleigh distributions as special cases.
(See also Hermon and Salez, 2019.) Correcting an earlier proof of Dubhashi and Ranjan (1998), Garbe
and Vondrák (2018) showed concentration for variables with negative regression (NR), a property even
weaker than SCP.

For a c-Lipschitz function (under the graph distance in the bases-exchange graph), v(f) ⩽ c2. Thus,
Corollary 2 generalises the concentration bound for Lipschitz functions in strong Rayleigh distribu-
tions. However, SLC is not a negative correlation property. We construct examples in Appendix A to
show that SCP and SLC are in fact incomparable. Thus, Corollary 2 is incomparable to the results of
Pemantle and Peres (2014); Hermon and Salez (2019); Garbe and Vondrák (2018). It is not clear whether
there is a larger class of distributions, generalising bothNR and SLC, which retains this concentration
bound.

It is an interesting open problem to extend our result to more general settings. SLC distributions
are special cases of high-dimensional expanders, where all local spectral gaps are at least 1. For more
general cases, “local-to-global” bounds for spectral gaps have been obtained (Kaufman and Oppenheim,
2018; Alev and Lau, 2020), whereas local-to-global mLSI on high-dimensional expanders is still elusive.
Another interesting setting is the uniform distribution over common bases or independent sets of two
matroids. Is there a Markov chain that converges rapidly to such distributions? Note that this setting
includes the important problem of sampling perfect matchings of bipartite graphs, where the only
known efficient algorithm is through an annealing process and its running time is a polynomial with
high exponent (Jerrum et al., 2004a).

In Section 2 we introduce necessary notions and briefly review relevant background. In Section 3
we formally state our main results. In Section 4 we show the decay of relative entropy and modified
log-Sobolev constant lower bounds for the “down-up” and “up-down” walks. In Section 5 we show the
concentration bound. In Appendix Awe discuss stochastic covering property and strong log-concavity.

2. PReliminaRies

In this section we define and give some basic properties of Markov chains, strongly log-concave
distributions, and matroids.

2.1. Markov chains. Let Ω be a discrete state space and π be a distribution over Ω. Let P : Ω ×
Ω → R⩾0 be the transition matrix of a Markov chain whose stationary distribution is π. Then,∑

y∈Ω P(x,y) = 1 for any x ∈ Ω. We say P is reversible with respect to π if

π(x)P(x,y) = π(y)P(y, x).(2)

We adopt the standard notation of Eπ for a function f : Ω → R, namely

Eπ f =
∑
x∈Ω

π(x)f(x).
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We also view the transitionmatrix P as an operator that maps functions to functions. More precisely,
let f be a function f : Ω → R and P acting on f is defined as

Pf(x) :=
∑
y∈Ω

P(x,y)f(y).

This is also called the Markov operator corresponding to P. We will not distinguish the matrix P from
the operator P as it will be clear from the context. Note that Pf(x) is the expectation of f with respect
to the distribution P(x, ·). We can regard a function f as a column vector in RΩ, in which case Pf is
simply matrix multiplication.

The Hilbert space L2(π) is given by endowing RΩ with the inner product

⟨f,g⟩π :=
∑
x∈Ω

π(x)f(x)g(x),

where f,g ∈ RΩ. In particular, the norm in L2(π) is given by ∥f∥π :=
√

⟨f, f⟩π.
The adjoint operator P∗ of P is defined as P∗(x,y) = π(y)P(y,x)

π(x) . This is the (unique) operator which
satisfies ⟨f,Pg⟩π = ⟨P∗f,g⟩π. It is easy to verify that if P satisfies the detailed balanced condition (2)
(so P is reversible), then P is self-adjoint, namely P = P∗.

The Dirichlet form is defined as:

EP (f,g) := ⟨(I − P)f,g⟩π ,(3)

where I stands for the identity matrix of the appropriate size. Let the Laplacian L := I − P. Then,

EP (f,g) =
∑

x,y∈Ω

π(x)g(x)L(x,y)f(y)

= gT diag(π)Lf,

where in the last line we regard f, g, and π as (column) vectors over Ω. In particular, if P is reversible,
then L∗ = L and

EP (f,g) = ⟨Lf,g⟩π = ⟨f,L∗g⟩π = ⟨f,Lg⟩π = EP (g, f)
= fT diag(π)Lg.(4)

In this paper all Markov chains are reversible and we will most commonly use the form (4). Another
common expression of the Dirichlet form for reversible P is

EP (f,g) = 1
2
∑
x∈Ω

∑
y∈Ω

π(x)P(x,y)(f(x) − f(y))(g(x) − g(y)),(5)

but we will not need this expression until Section 5. It is well known that the spectral gap of P, or
equivalently the smallest positive eigenvalue of L, controls the convergence rate of P. It also has a
variational characterisation. Let the variance of f be

Varπ (f) := Eπ f2 − (Eπ f)2 .

Then

λ(P) := inf
{
EP (f, f)
Varπ (f)

| f : Ω → R , Varπ (f) ̸= 0
}

.

The usefulness of λ(P) is due to the fact that, if, say, all eigenvalues of P are non-negative, then

tmix(P, ε) ⩽ 1
λ(P)

(
1
2

log 1
πmin

+ log 1
2ε

)
,(6)

where πmin = minx∈Ω π(x). See, for example, Levin and Peres (2017, Theorem 12.4).
The (standard) log-Sobolev inequality relates EP

(√
f,
√
f
)
with the following entropy-like quantity:

Entπ (f) := Eπ(f log f) − Eπ f logEπ f,(7)
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for a non-negative function f, where we follow the convention that 0 log 0 = 0. Also, log always stands
for the natural logarithm in this paper. The log-Sobolev constant is defined as

α(P) := inf

EP

(√
f,
√
f
)

Entπ (f)
| f : Ω → R⩾0 , Entπ (f) ̸= 0

 .

The constant α(P) gives a better control of the mixing time of P. Again, if all eigenvalues of P are
non-negative, then5

tmix(P, ε) ⩽ 1
4α(P)

(
log log 1

πmin
+ log 1

2ε2

)
.(8)

The saving seems modest comparing to (6), but it is quite common that πmin is exponentially small in
the instance size, in which case the saving is a polynomial factor.

What we are interested in, however, is the following modified log-Sobolev constant introduced by
Bobkov and Tetali (2006):

ρ(P) := inf
{
EP (f, log f)
Entπ (f)

| f : Ω → R⩾0 , Entπ (f) ̸= 0
}

.

Similar to (8), if all eigenvalues of P are non-negative, then

tmix(P, ε) ⩽ 1
ρ(P)

(
log log 1

πmin
+ log 1

2ε2

)
,(9)

as shown by Bobkov and Tetali (2006, Corollary 2.8). (Recall Footnote 5.)
For reversible P, the following relationships among these constants are known,

2λ(P) ⩾ ρ(P) ⩾ 4α(P).

See, for example, Bobkov and Tetali (2006, Proposition 3.6).
Thus, lower bounds on these constants are increasingly difficult to obtain. However, to get the

best asymptotic control of the mixing time, one only needs to lower bound the modified log-Sobolev
constant ρ(P) instead of α(P) by comparing (8) and (9). Indeed, as observed by Hermon and Salez
(2019), by taking the indicator function 1

π(x)1x for all x ∈ Ω,

α(P) ⩽ min
x∈Ω

{
1

− logπ(x)

}
.

In our setting of r-homogeneous strongly log-concave distributions, we cannot hope for a uniform
bound for α(P) similar to Theorem 1, as the right hand side of the above can be arbitrarily small for
fixed r.

By (3) and (7), it is clear that if we replace f by cf for some constant c > 0, then both EP (f, log f)
and Entπ (f) increase by the same factor c. Thus, in order to bound ρ, we may further assume that
Eπ f = 1. This assumption allows the simplification Entπ (f) = Eπ(f log f). In this case, π(·)f(·) is
a distribution, and Entπ (f) is the relative entropy (or Kullback–Leibler divergence) between π(·)f(·)
and π(·).

2.2. Strongly log-concave distributions. We write ∂i as shorthand for ∂
∂xi

, and ∂I for an index set
I = {i1, . . . , ik} as shorthand for ∂i1 . . .∂ik .

Definition 3. A polynomial p ∈ R[x1, . . . , xn]with non-negative coefficients is log-concave at x ∈ R⩾0
if its Hessian ∇2 log p is negative semi-definite at x. We call p strongly log-concave if for any index set
I ⊆ [n], ∂Ip is log-concave at the all-1 vector 1.

5Diaconis and Saloff-Coste (1996) showed (8) for continuous-time Markov chains. When all eigenvalues of the Markov
chain are non-negative, Corollary 2.2, (ii) by Diaconis and Saloff-Coste (1996) implies that the mixing-time of the discrete-
time chain is bounded by that of the continuous time chain. Note that the chains we consider in this paper are all “lazy”,
which does not have negative eigenvalues.
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The notion of strong log-concavity was introduced by Gurvits (2009a,b). There are also notions
of complete log-concavity introduced by Anari et al. (2018), and Lorentzian polynomials introduced
by Brändén and Huh (2019). It turns out that for homogeneous polynomials the three notions are
equivalent (Brändén and Huh, 2019, Theorem 5.3). (See also Anari et al., 2019.)

The following property of strongly log-concave polynomials is particularly useful (Anari et al., 2018;
Brändén and Huh, 2019).
Proposition 4. If p is strongly log-concave, then for any I ⊆ [n], the Hessian matrix ∇2∂Ip(1) has at
most one positive eigenvalue.

In fact, when p is homogeneous, ∇2∂Ip(1) having at most one positive eigenvalue is equivalent to
∇2 log ∂Ip(1) being negative semi-definite (Anari et al., 2018), but we will only need the proposition
above.

A distribution π is called r-homogeneous (or strongly log-concave) if gπ is.

2.3. Matroids. Amatroid is a combinatorial structure that abstracts the notion of linear independence.
We shall define it in terms of its independent sets, although many different equivalent definitions exist.
Formally, a matroid M = (E, I) consists of a finite ground set E and a collection I of subsets of E
(independent sets) that satisfy the following:

• ∅ ∈ I;
• if S ∈ I, T ⊆ S, then T ∈ I;
• if S, T ∈ I and |S| > |T |, then there exists an element i ∈ S \ T such that T ∪ {i} ∈ I.

The first condition guarantees that I is non-empty, the second implies that I is downward closed, and
the third is usually called the augmentation axiom. We direct the reader to Oxley (1992) for a reference
book on matroid theory. In particular, the augmentation axiom implies that all the maximal indepen-
dent sets have the same cardinality, namely the rank r of M. The set of bases B is the collection of
maximal independent sets of M. Furthermore, we denote by M(k) the collection of independent sets
of size k, where 0 ⩽ k ⩽ r. If we dropped the augmentation axiom, the resulting structure would
be a non-empty collection of subsets of E that is downward closed, known as an (abstract) simplicial
complex.

Brändén and Huh (2019, Theorem 7.1) showed that the support of an r-homogeneous strongly log-
concave distribution π is the set of bases of a matroid M = (E, I) of rank r. We equip I with a weight
function w(·) recursively defined as follows:6

w(I) :=

{
π(I)Zr if |I| = r,∑

I ′⊃I, |I ′|=|I|+1 w(I ′) if |I| < r,

for some normalisation constant Zr > 0. For example, we may choose w(B) = 1 for all B ∈ B and
Zr = |B|, which corresponds to the uniform distribution over B. It follows that

w(I) = (r− |I|)!
∑

B∈B, I⊆B

w(B).

Let πk be the distribution over M(k) such that πk(I) ∝ w(I) for I ∈ M(k). Thus π = πr. For any
I ∈ M(k), πk(I) is proportional to the probability of generating a superset of I under π. Let Zk =∑

I∈M(k)w(I) be the normalisation constant of πk. In fact, for any 0 ⩽ k ⩽ r, k!Zk = Z0 = w(∅).
It is straightforward to verify that for any I ∈ I,

∂Igπ(1) =
∑

B∈B,I⊂B

π(B) =
1
Zr

∑
B∈B,I⊂B

w(B).(10)

We also write w(v) as shorthand for w({v}) for any v ∈ E.
For an independent set I ∈ I, the contraction MI = (E \ I, II) is also a matroid, where II = {J |

J ⊆ E \ I, J ∪ I ∈ I}. We equip MI with a weight function wI(·) such that wI(J) = w(I ∪ J). We
6One may definew(I) to be a k!

r! fraction of the current definition for I ∈ M(k). This alternative definition will eliminate
many factorial factors in the rest of the paper. However, it is inconsistent with the literature (Anari et al., 2019; Kaufman and
Oppenheim, 2018), so we do not adopt it.
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may similarly define distributions πI,k for k ⩽ r − |I| such that πI,k(J) ∝ wI(J) for J ∈ MI(k).
For convenience, instead of defining πI,k over MI(k), we define it over M(k + |I|) such that for any
J ∈ M(k+ |I|),

πI,k(J) :=

{
k!w(J)
w(I) if I ⊂ J;

0 otherwise.
(11)

Notice that the normalising constant ZI,k =
w(I)
k! .

If |I| ⩽ r − 2, let WI be the matrix such that Wuv = wI({u, v}) for any u, v ∈ E \ I. Then, notice
that

wI({u, v}) = w(I ∪ {u, v})

= (r− |I|− 2)!
∑

B∈B, I∪{u,v}⊆B

w(B)

= (r− |I|− 2)!Zr · ∂u∂v∂Igπ(1).(by (10))

In other words,WI is∇2∂Igπ multiplied by the scalar (r− |I|−2)!Zr. Thus, Proposition 4 implies the
following.

Proposition 5. Let π be an r-homogeneous strongly log-concave distribution over M = (E, I). If I ∈ I

and |I| ⩽ r− 2, then the matrix WI has at most one positive eigenvalue.

Proposition 5 implies the following bound for a quadratic form, which will be useful later.

Lemma 6. Let π be an r-homogeneous strongly log-concave distribution over M = (E, I), and let I ∈ I

such that |I| ⩽ r− 2. Let f : MI(1) → R be a function such that EπI,1 f = 1. Then

fTWIf ⩽ w(I).

Proof. Let wI = {wI(v)}v∈E\I. The constraint EπI,1 f = 1 implies that
∑

v∈E\IwI(v)f(v) = w(I).
Let D = diag(wI) and A = D−1/2WID

−1/2. Then A is a real symmetric matrix. By Proposition 5,
WI has at most one positive eigenvalue, and thus so does A (see, e.g., Anari et al., 2019, Lemma 2.4).
We may decompose A as

A =

|E\I|∑
i=1

λigig
T
i ,(12)

where {gi} is an orthonormal basis and λi ⩽ 0 for all i ⩾ 2. Moreover, notice that √wI is an eigen-
vector of A with eigenvalue 1. Thus, λ1 = 1 and g1 can be taken as √πI,1.

The decomposition (12) directly implies that

W =

|E\I|∑
i=1

λihih
T
i ,

where hi = D1/2gi. In particular, h1 = 1√
w(I)

wI.

The assumption
∑

v∈E\IwI(v)f(v) = w(I) can be rewritten as ⟨h1, f⟩ =
√

w(I). Thus,

fTWIf =

|E\I|∑
i=1

λi ⟨hi, f⟩2 ⩽ ⟨h1, f⟩2 = w(I),

where the inequality is due to the fact that λ1 = 1 and λi ⩽ 0 for all i ⩾ 2. The lemma follows. □
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3. Main Results

There are two natural random walks P∧
k and P∨

k on M(k) by starting with adding or deleting an
element and coming back toM(k). Given the current I ∈ M(k), the “up-down” random walk P∧

k first
chooses I ′ ∈ M(k+ 1) such that I ′ ⊃ I with probability proportional to w(I ′), and then removes one
element from I ′ uniformly at random. More formally, for 1 ⩽ k ⩽ r−1 and I, J ∈ M(k), we have that

P∧
k (I, J) =


1

k+1 if I = J;
w(I∪J)

(k+1)w(I) if I ∪ J ∈ M(k+ 1);
0 otherwise.

(13)

The “down-up” random walk P∨
k removes an element of I uniformly at random to get I ′ ∈ M(k − 1),

and then moves to J such that J ∈ M(k), J ⊃ I ′ with probability proportional to w(J). More formally,
for 2 ⩽ k ⩽ r,

P∨
k (I, J) =


∑

I ′∈M(k−1),I ′⊂I
w(I)

kw(I ′) if I = J;
w(J)

kw(I∩J) if |I ∩ J| = k− 1;
0 if |I ∩ J| < k− 1.

(14)

Thus, the bases-exchange walk PBX,π according to π is just P∨
r . The stationary distribution of both P∧

k

and P∨
k is πk(I) =

w(I)
Zk

=
k!w(I)
r!Zr

.

Theorem 7. Let π be an r-homogeneous strongly log-concave distribution, andM the associated matroid.
Let P∨

k and P∧
k be defined as above on M(k). Then the following hold:

• for any 2 ⩽ k ⩽ r, ρ(P∨
k ) ⩾ 1

k
;

• for any 1 ⩽ k ⩽ r− 1, ρ(P∧
k ) ⩾ 1

k+1 .

Theorem 7 is shown in Section 4. Interestingly, we do not know how to directly relate ρ(P∧
k ) with

ρ(P∨
k+1), although it is straightforward to see that both walks have the same spectral gap (see (17) and

(18) below).
By (9), we have the following corollary.

Corollary 8. In the same setting as Theorem 7, we have that

• for any 2 ⩽ k ⩽ r, tmix(P
∨
k , ε) ⩽ k

(
log logπ−1

k,min + log 1
2ε2

)
;

• for any 1 ⩽ k ⩽ r− 1, tmix(P
∧
k , ε) ⩽ (k+ 1)

(
log logπ−1

k,min + log 1
2ε2

)
.

In particular, for the bases-exchange walk PBX,π according to π,

tmix(PBX,π, ε) ⩽ r

(
log logπ−1

min + log 1
2ε2

)
.

LetM be a matroid of rank rwith a ground set of size n. For the uniform distribution over the bases
of M, Corollary 8 implies that the mixing time of the bases-exchange walk is O(r(log r + log logn)),
which improves upon the O(r2 logn) bound of Anari et al. (2019). The mixing time bound in Corol-
lary 8 is sharp, as there are matroids where the upper bound is achieved (Jerrum, 2003, Ex. 9.14). As
mentioned in the introduction, one such example is the graphic matroid defined by a graph which is
similar to a path but with two parallel edges connecting every two successive vertices instead of a sin-
gle edge. Equivalently, this can be viewed as the partition matroid where each block has two elements
and each basis is formed by choosing exactly one element from every block. The rank of this matroid
is r = n/2, and πmin = 1

2n/2 . The Markov chain PBX,π in this case is just the 1/2-lazy random walk
on the n/2-dimensional Boolean hypercube, which has mixing time Θ(n logn), matching the upper
bound in Corollary 8.

For more details on the concentration result, Corollary 2, see Section 5.
8



4. Decay of Relative entRopy

In this section and what follows, we always assume that the matroid M and the weight function
w(·) correspond to an r-homogeneous strongly log-concave distribution π = πr.

We first give some basic decompositions of P∨
k and P∧

k . LetAk be a matrix whose rows are indexed
by M(k) and columns by M(k+ 1) such that

Ak(I, J) :=

{
1 if I ⊂ J;
0 otherwise,

and wk be the vector of {w(I)}I∈M(k). Moreover, let

P
↑
k := diag(wk)

−1Ak diag(wk+1),(15)

P
↓
k+1 :=

1
k+ 1

AT
k.(16)

Then

P∧
k = P

↑
kP

↓
k+1,(17)

P∨
k+1 = P

↓
k+1P

↑
k.(18)

Let Dk = diag(πk). Using (15) and (16), we get that

Dk+1P
↓
k+1 = (P↑

k)
TDk.(19)

By multiplying equation (19) by the all-ones vector, we also get that

πk+1P
↓
k+1 = πk,(20)

πkP
↑
k = πk+1.(21)

For k ⩾ 2 and a function f(k) : M(k) → R⩾0, define f(i) : M(i) → R⩾0 for 1 ⩽ i ⩽ k− 1 such that

f(i) :=

k−1∏
j=i

P
↑
j f

(k).(22)

Intuitively, f(i) is the function f(k) “going down” to level i. The key lemma, namely Lemma 11, is that
this operation contracts the relative entropy by a factor of 1 − 1

i
from level i to level i− 1.

In fact, recall that if we normalise Eπk
f(k) = 1, then

(
f(k)

)T
Dk is a distribution (viewed as a row

vector). Then, it is easy to verify that(
f(k−1)

)T
Dk−1 =

(
f(k)

)T
DkP

↓
k.(23)

Namely, the corresponding distribution of f(k−1) is that of f(k) after the random walk P
↓
k.

We first establish some properties of f(i) for i < k.

Lemma 9. Let k ⩾ 2 and f(k) : M(k) → R⩾0 be a non-negative function on M(k). Then we have the
following:

(1) for any 1 ⩽ i < k, J ∈ M(i), f(i)(J) = EπJ,k−i
f(k);

(2) for any 1 ⩽ i ⩽ k, Eπi
f(i) = Eπk

f(k).

Proof. For (1), first notice that

δT
J

k−1∏
j=i

P
↑
j = δT

J

k−1∏
j=i

[
diag(wj)

−1Aj diag(wj+1)
]
=

δT
J

w(J)

k−1∏
j=i

Aj diag(wk) = πJ,k−i,

where δJ is the Dirac vector that equals 1 at J and 0 elsewhere. The last equality holds due to the
fact that the product of the adjacency matrices counts the paths from independent sets at level i to

9



independent sets at level k. For every such pair of sets, the number of these paths is (k − i)! if one is
contained in the other, or 0 otherwise. It follows that

EπJ,k−i
f(k) = πJ,k−if

(k) = δT
J

k−1∏
j=i

P
↑
j f

(k) = δT
Jf

(i) = f(i)(J).

For (2), we have that

Eπi
f(i) = πi

k−1∏
j=i

P
↑
j f

(k)

= πkf
(k)(by Equation (21))

= Eπk
f(k). □

Now we are ready to establish the base case of the entropy’s contraction.

Lemma 10. Let f(2) : M(2) → R⩾0 be a non-negative function defined onM(2). Then,

Entπ2

(
f(2)
)
⩾ 2Entπ1

(
f(1)
)

.

Proof. Without loss of generality we may assume that Eπ2 f
(2) = 1 and therefore Eπ1 f

(1) = 1 by (2)
of Lemma 9. Note that for v ∈ E,

f(1)(v) =
∑

S∈M(2):v∈S

w(S)

w(v)
f(2)(S).

We will use the following inequality, which is valid for any a ⩾ 0 and b > 0,

a log a

b
⩾ a− b.(24)

Noticing that Z1 = 2Z2, we have

Entπ2

(
f(2)
)
− 2Entπ1

(
f(1)
)

=
∑

S∈M(2)

π2(S)f
(2)(S) log f(2)(S) − 2

∑
v∈E

π1(v)

 ∑
S∈M(2):v∈S

w(S)

w(v)
f(2)(S)

 log f(1)(v)

=
∑

S∈M(2)

(
π2(S)f

(2)(S) log f(2)(S) − 2
∑
v∈S

π1(v)
w(S)

w(v)
f(2)(S) log f(1)(v)

)

=
∑

S∈M(2)

(
w(S)

Z2
f(2)(S) log f(2)(S) − 2

∑
v∈S

w(v)

Z1
· w(S)

w(v)
f(2)(S) log f(1)(v)

)

=
∑

S={u,v}∈M(2)

w(S)

Z2
f(2)(S)

(
log f(2)(S) − log f(1)(v) − log f(1)(u)

)
⩾

∑
S={u,v}∈M(2)

w(S)

Z2

(
f(2)(S) − f(1)(v)f(1)(u)

)
=

∑
S∈M(2)

π2(S)f
(2)(S) −

∑
S={u,v}∈M(2)

w(S)

Z2
· f(1)(v)f(1)(u)

= 1 −
1

2Z2
·
(
f(1)
)T

W∅f
(1),

where the inequality is by (24) with a = f(2)(S) and b = f(1)(u)f(1)(v) when b > 0, and when b = 0
we have a = 0 as well. Thus, the lemma follows from Lemma 6 with I = ∅ andw(∅) = Z1 = 2Z2. □

We generalise Lemma 10 as follows.
10



Lemma 11. Let k ⩾ 2 and f(k) : M(k) → R⩾0 be a non-negative function defined onM(k). Then

Entπk

(
f(k)

)
⩾ k

k− 1
Entπk−1

(
f(k−1)

)
.

Proof. We do an induction on k. The base case of k = 2 follows from Lemma 10.
For the induction step, assume the lemma holds for all integers at most k for any matroid M. Let

f(k+1) : M(k+ 1) → R⩾0 be a non-negative function such that Eπk+1 f
(k+1) = 1.

Recall (11), where we define πv,k overM(k+1) instead of overMv(k). For I ∈ M(k+1), v ∈ M(1)
and v ∈ I,

πk+1(I) =
w(I)

Zk+1
= (k+ 1) · w(v)

(k+ 1)!Zk+1
· k!w(I)

w(v)
= (k+ 1)π1(v)πv,k(I),

as Z1 = (k+ 1)!Zk+1. This means that

πk+1(I) =
∑

v∈M(1),v∈I

π1(v)πv,k(I) =
∑

v∈M(1)

π1(v)πv,k(I).(25)

Thus πk+1 is a mixture of πv,k.
We use the “chain rule” of entropy to decompose Entπk+1

(
f(k+1)) with respect to the entropy of

f(1) (“projection”) and the entropy conditioned on having each v (“restriction”). To be more precise,
we have

Eπk+1 f
(k+1) log f(k+1) =

∑
v∈M(1)

π1(v)Eπv,k f
(k+1) log f(k+1).

This implies that

Entπk+1

(
f(k+1)

)
=

∑
v∈M(1)

π1(v)Entπv,k

(
f(k+1)

)
+

∑
v∈M(1)

π1(v)
(
Eπv,k f

(k+1)
)

log
(
Eπv,k f

(k+1)
)

=
∑

v∈M(1)

π1(v)Entπv,k

(
f(k+1)

)
+ Entπ1

(
f(1)
)

,(26)

where we use (1) and (2) of Lemma 9. Similarly,

Entπk

(
f(k)

)
=

∑
v∈M(1)

π1(v)Entπv,k−1

(
f(k)

)
+ Entπ1

(
f(1)
)

.(27)

For any v ∈ M(1), the contracted matroidMv with weight functionwv(I) = w(I∪v) for I ⊆ E\{v}

corresponds to an (r− 1)-homogeneous strongly log-concave distribution. (Recall Definition 3.) Thus,
we can apply the induction hypothesis on Mv at level k and get

Entπv,k

(
f(k+1)

)
⩾ k

k− 1
· Entπv,k−1

(
f(k)

)
.(28)

Strictly speaking, in (28) we should apply the induction hypothesis to f
(k)
v which is the restriction of

f(k+1) to J ∈ M(k+ 1) and J ∋ v, and then “push it down” to f(k−1)
v defined over I ∈ M(k) and I ∋ v

as

f
(k−1)
v (I) :=

∑
J∈M(k+1):J⊃I

w(J)

w(I)
· f(k)v (J) =

∑
J∈M(k+1):J⊃I

w(J)

w(I)
· f(k+1)(J).

However, f(k)v agrees with f(k+1) on the support of πv,k, and f
(k−1)
v agrees with f(k) on the support

of πv,k−1. This validates (28).
Furthermore, using the induction hypothesis on M from level k to level 1, we have that

Entπk

(
f(k)

)
⩾ k · Entπ1

(
f(1)
)

.(29)

11



Thus, (27) and (29) together imply that∑
v∈M(1)

π1(v)Entπv,k−1

(
f(k)

)
⩾ (k− 1)Entπ1

(
f(1)
)

.(30)

Putting everything together,

Entπk+1

(
f(k+1)

)
=

∑
v∈M(1)

π1(v)Entπv,k

(
f(k+1)

)
+ Entπ1

(
f(1)
)

(by (26))

⩾ k

k− 1
∑

v∈M(1)

π1(v)Entπv,k−1

(
f(k)

)
+ Entπ1

(
f(1)
)

(by (28))

=

(
k+ 1
k

+
1

k(k− 1)

) ∑
v∈M(1)

π1(v)Entπv,k−1

(
f(k)

)
+ Entπ1

(
f(1)
)

⩾ k+ 1
k

∑
v∈M(1)

π1(v)Entπv,k−1

(
f(k)

)
+

k+ 1
k

Entπ1

(
f(1)
)

(by (30))

=
k+ 1
k

Entπk

(
f(k)

)
.(by (27))

This concludes the inductive step and thus the proof. □

Remark. We remark that our decomposition of the relative entropy (26) is “horizontal” with respect to
elements of M(1). This decomposition is different from the decomposition by Kaufman and Oppenheim
(2018, Theorem 5.2) in a similar context, where they decompose “vertically” across all levels.

The decomposition (25) of πk appears to be the key to Lemma 11. An alternative way to understand
it is the following. Consider the process which first draws a basis B ∼ π, and then repeatedly removes
an element from the current set uniformly at random for at most r repetitions. Let Xk be the outcome
of this process after removing r − k elements. Then |Xk| = k, and πk(I) = Pr(Xk = I) for I ∈ M(k).
Moreover,

Pr(X1 = {v} | Xk = I) =

{
1
k

if v ∈ I;
0 otherwise.

By Bayes’ rule,

Pr(Xk = I | X1 = {v})Pr(X1 = {v}) = Pr(X1 = {v} | Xk = I)Pr(Xk = I).

Summing over v, since
∑

v∈M(1) Pr(X1 = {v} | Xk = I) = 1, we have∑
v∈M(1)

Pr(Xk = I | X1 = {v})Pr(X1 = {v})

= Pr(Xk = I)
∑

v∈M(1)

Pr(X1 = {v} | Xk = I)

= Pr(Xk = I).(31)

Noticing that Pr(Xk = I | X1 = {v}) = πv,k−1(I), equation (31) recovers (25).
By recalling (22) and (23), we observe that the analysis of the “going-down” half—and, similarly, the

“going-up” half—of P∨
k and P∧

k−1 corresponds to premultiplying by P
↑
k−1—or, accordingly, P↓

k—to a
function f. Hence, Lemma 11 implies that the relative entropy contracts by 1− 1

k
in the “going-down”

half of the random walks P∨
k and P∧

k−1. What we show next is that the other half will not increase the
relative entropy; a fact which is a special case of the so-called “data processing inequality”.

Lemma 12. For any k ⩾ 2 and f : M(k− 1) → R⩾0,

Entπk

(
P
↓
kf
)
⩽ Entπk−1 (f) .(32)
12



Proof. Firstly, we verify that

Eπk
P
↓
kf = πkP

↓
kf

= πk−1f = Eπk−1 f.(by Equation (20))
Thus, we can assume both are 1 without loss of generality. Then,

Entπk

(
P
↓
kf
)
= πk(P

↓
kf⊙ log P↓

kf)

⩽ πkP
↓
k(f⊙ log f)(by Jensen’s inequality on x log x)

= πk−1(f⊙ log f)(by Equation (20))
= Entπk−1 (f) ,

where ⊙ stands for the Hadamard product. □

With Lemmas 11 and 12 in hand, we can show the decay of relative entropy for P∨
k and P∧

k .

Corollary 13. For any distribution τ on M(k),
• if 2 ⩽ k ⩽ r, then D

(
τP∨

k ∥ πk

)
⩽
(
1 − 1

k

)
D(τ ∥ πk);

• if 1 ⩽ k ⩽ r− 1, then D
(
τP∧

k ∥ πk

)
⩽
(
1 − 1

k+1
)
D(τ ∥ πk).

Proof. We will only prove this corollary for P∨
k as the case of P∧

k is similar. We have thatD(τ ∥ πk) =

Entπk

(
D−1

k τT) where Dk := diag(πk). Since P∨
k is reversible, D−1

k (P∨
k )T = P∨

k D−1
k . Therefore,

D
(
τP∨

k ∥ πk

)
= Entπk

(
D−1

k (P∨
k )TτT

)
= Entπk

(
P∨
k D−1

k τT
)

⩽ Entπk−1

(
P
↑
k−1D

−1
k τT

)
(by Lemma 12)

⩽
(

1 −
1
k

)
Entπk

(
D−1

k τT)(by Lemma 11)

=

(
1 −

1
k

)
D (τ ∥ πk) . □

It is well-known that the decay of relative entropy implies a mLSI.

Proof of Theorem 7. Given any f(k) : M(k) → R⩾0 such that Eπk
f(k) = 1, let τ = (Dkf

(k))T be the
distribution corresponding to f(k). Then,

D (τ ∥ πk) −D
(
τP∨

k ∥ πk

)
=

∑
S∈M(k)

τ(S) log
(

τ(S)

πk(S)

)
−

∑
S∈M(k)

τP∨
k (S) log

(
τP∨

k (S)

πk(S)

)

=
∑

S∈M(k)

[
τ
(

I − P∨
k

)]
(S) log

(
τ(S)

πk(S)

)
−

∑
S∈M(k)

τP∨
k (S) log

(
τP∨

k (S)

τ(S)

)
= EP∨

k

(
f(k), log f(k)

)
−D

(
τP∨

k ∥ τ
)
⩽ EP∨

k

(
f(k), log f(k)

)
.

Thus,

EP∨
k

(
f(k), log f(k)

)
⩾ D (τ ∥ πk) −D

(
τP∨

k ∥ πk

)
⩾ 1

k
D (τ ∥ πk) =

1
k
Entπk

(
D−1

k τT)(by Corollary 13)

=
1
k
Entπk

(
f(k)

)
.

This proves the statement for P∨
k . The same proof can be used for P∧

k by replacing every occurrence
of P∨

k with P∧
k , and the factor 1

k
with 1

k+1 . □
13



In fact, the contraction of relative entropy (Corollary 13) directly implies the mixing time bound of
Corollary 8, as illustrated by the following.

A direct proof of Corollary 8. We will only prove this for P∨
k ; the case of P∧

k is similar. Notice that
Corollary 13 implies that

D

(
τ0

(
P∨
k

)t ∥∥ πk

)
⩽
(

1 −
1
k

)t

D (τ0 ∥ πk)

⩽ e−t/kD (τ0 ∥ πk) = e−t/k logπk(x0)
−1,

where τ0 is the initial distribution with τ0(x0) = 1 for some x0 ∈ M(k). Then, we use Pinsker’s
inequality (2 ∥τ− σ∥2

TV ⩽ D(τ ∥ σ) for any two distributions τ,σ on the same state space), to show

2
∥∥∥∥τ0

(
P∨
k

)t
− πk

∥∥∥∥2

TV
⩽ D

(
τ0

(
P∨
k

)t ∥∥ πk

)
.

Setting e−t/k logπk(x0)
−1 ⩽ 2ϵ2, we conclude that∥∥∥∥τ0

(
P∨
k

)t
− πk

∥∥∥∥
TV

⩽ ϵ,

whenever

t ⩾ k

(
log logπk(x0)

−1 + log 1
2ϵ2

)
.

This gives us Corollary 8 for P∨
k . □

At the end of this section, let us comment that it is possible to prove the decay of variances similar
to Lemma 11, with Ent (·) replaced by Var (·). This provides an alternative proof for the spectral gap of
PBX,π to (Kaufman and Oppenheim, 2018; Anari et al., 2019). Indeed, the induction proof of Lemma 11
does not require any change when one replaces Ent (·) by Var (·), as both of them obey the same
decomposition rules. However, the base case (namely Lemma 10) needs to be edited as follows.

Lemma 14. Let f(2) : M(2) → R. Then,

Varπ2

(
f(2)
)
⩾ 2Varπ1

(
f(1)
)

.

Proof. We begin by observing that

diag(w1)
(

2P∧
1 − I

)
= W∅.(33)

From this identity and Proposition 5, we deduce that the symmetric matrix diag(w1)
(
2P∧

1 − I
)
has

at most one positive eigenvalue. Premultiplying by the positive semidefinite matrix diag(w1)
−1, we

get that 2P∧
1 − I also has at most one positive eigenvalue (see, e.g., Anari et al., 2019, Lemma 2.6).

Furthermore, the spectra of 2P∧
1 − I and 2P∨

2 − I are the same up to some extra−1s. So, if |M(2)| ⩾ 2
(otherwise the lemma holds trivially), λ2(P

∨
2 ) ⩽ 1/2 where λ2 is the second largest eigenvalue. Then,

the spectral gap λ(P∨
2 ) = 1 − λ2(P

∨
2 ) ⩾ 1/2, which means that

EP∨
2

(
f(2), f(2)

)
⩾ 1

2
Varπ2

(
f(2)
)

.

However, this is equivalent to the statement of the lemma, as can be seen by the following equalities:

Varπ1

(
f(1)
)
=
(
f(1)
)T

D1f
(1) −

(
Eπ1 f

(1)
)2

=
(
f(2)
)T (

P
↑
1

)T
D1P

↑
1f

(2) −
(
Eπ2 f

(2)
)2

(by Lemma 9)

=
(
f(2)
)T

D2P
∨
2 f(2) −

(
Eπ2 f

(2)
)2

(by (19))

= Varπ2

(
f(2)
)
− EP∨

2

(
f(2), f(2)

)
. □
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5. ConcentRation

One application of the modified log-Sobolev inequalities is to show concentration inequalities, via
the Herbst argument (see, e.g., Bobkov and Tetali, 2006; Boucheron et al., 2013). In the discrete set-
ting, concentration inequalities have been obtained by Goel (2004, Section 5) and can also be obtained
by combining various results by Bobkov and Götze (1999); Sammer (2005); Bobkov et al. (2006). The
following lemma and its proof are a small modification of (Hermon and Salez, 2019, Lemma 5). For
completeness, we include all details.

Lemma 15. Let P be the transition matrix of a reversible Markov Chain with stationary distribution π

on a finite set Ω, and f : Ω → R be some observable function. Then,

Prx∼π(f(x) − Eπ f ⩾ a) ⩽ exp
(
−
ρ(P)a2

2v(f)

)
,

where a ⩾ 0 and

v(f) := max
x∈Ω

∑
y∈Ω

P(x,y)(f(x) − f(y))2

 .

Proof. For any x ∈ Ω and t ∈ (0,+∞), let
Ft(x) := exp

(
tf(x) − ct2) ,

where c :=
v(f)

2ρ(P) . We will use the inequality

z(ez + 1) ⩾ 2(ez − 1),(34)
which holds for z ⩾ 0. To see this, notice that at z = 0 the equality holds, and for z > 0 the derivative
of the left is larger than that of the right.

If f(x) ⩾ f(y), we set z = t(f(x) − f(y)) in (34) and obtain
t(f(x) − f(y))(Ft(x) + Ft(y)) ⩾ 2(Ft(x) − Ft(y)),

which in turn implies that

(Ft(x) − Ft(y))(f(x) − f(y)) ⩽ t

2
(Ft(x) + Ft(y))(f(x) − f(y))2.(35)

Notice that (35) also holds even if f(x) < f(y) by swapping x and y. Thus, we have that

EP (Ft, log Ft) =
t

2
∑
x∈Ω

∑
y∈Ω

π(x)P(x,y)(Ft(x) − Ft(y))(f(x) − f(y))(by (5))

⩽ t2

4
∑
x∈Ω

∑
y∈Ω

π(x)P(x,y)(Ft(x) + Ft(y))(f(x) − f(y))2(by (35))

=
t2

2
∑
x∈Ω

π(x)Ft(x)
∑
y∈Ω

P(x,y)(f(x) − f(y))2(by the reversibility of P)

⩽ t2

2
v(f)Eπ Ft.

This, together with EP (Ft, log Ft) ⩾ ρ(P)Entπ (Ft) (recall the definition of ρ(P)), yields
Entπ (Ft) ⩽ ct2 Eπ Ft.

By noticing that
d

dt

(
logEπ Ft

t

)
=

Entπ (Ft) − ct2 Eπ Ft

t2 Eπ Ft
⩽ 0,

we deduce that for any t > 0,
logEπ Ft

t
⩽ lim

h→0+
logEπ Fh

h
= Eπ f,
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or equivalently,
Eπ Ft ⩽ exp (tEπ f) .

Finally, by Markov inequality, for any a ⩾ 0,

Prx∼π(f(x) − Eπ f ⩾ a) = Prx∼π
(
Ft(x) ⩾ exp(tEπ f− ct2 + at)

)
⩽ exp

(
ct2 − at

)
,

where the right hand side is minimized for t = a
2c =

aρ(P)
v(f) . □

Corollary 2 follows from applying Lemma 15 to both f and −f together with Theorem 1. We could
also apply Lemma 15 together with Theorem 7 to get concentration inequalities for all πk.

For a Lipschitz function f : Ω → Rwith Lipschitz constant c (under the graph distance in the bases-
exchange graph), we have that v(f) ⩽ c2. Thus, by Corollary 2, such a Lipschitz function satisfies the
following concentration inequality:

Prx∼π(|f(x) − Eπ f| ⩾ a) ⩽ 2 exp
(
−

a2

2rc2

)
,

when π is an r-homogeneous strongly log-concave distribution.
For general matroids, an example is the function that counts the number of elements belonging to a

specified subset of the ground set, which has Lipschitz constant c = 1. More examples were given by
Pemantle and Peres (2014) for graphic matroids, such as functions that count the number of leaves in
a spanning tree (c = 2), or the number of vertices with odd degrees (c = 4).
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Appendix A. Stochastic coveRing pRopeRty and stRong log-concavity

The results obtained by Pemantle and Peres (2014) and Hermon and Salez (2019) only require a prop-
erty which is weaker than the strong Rayleigh property (SRP), namely the stochastic covering property
(SCP). Since strong log-concavity (SLC) is also a generalisation of SRP, it is natural to wonder about
the relationship between SLC and SCP. In this section we show that SLC is incomparable to SCP. As a
result, Theorem 1 and Corollary 2 do not subsume the results of Hermon and Salez (2019) and Pemantle
and Peres (2014), respectively. Moreover, Corollary 2 is also incomparable to the concentration bound
of Garbe and Vondrák (2018), whose result requires only negative regression, a property weaker than
SCP.

First, let us define SCP. For S ⊆ [n] and x,y ∈ {0, 1}S, we say x covers y, denoted by x ▷ y, if x = y

or x = y+ ei for some i, where ei is the unit vector of coordinate i. In other words, x is obtained from
y by increasing at most one coordinate. For two distributions µ and ν, we say µ stochastically covers
ν, if there is a coupling such that PrX∼µ,Y∼ν(X ▷ Y) = 1. With slight overload of notation, we also
write µ ▷ ν. A distribution µ : {0, 1}[n] → R⩾0 satisfies the SCP if for any S ⊆ [n] and x,y ∈ {0, 1}S
such that x ▷ y, µy ▷ µx, where µx is the distribution of µ conditioned on agreeing with x over the
index set S.

Furthermore, µ is said to satisfy the negative cylinder dependence (NCD), if for any S ⊆ [n],

E
∏
i∈S

Xi ⩽
∏
i∈S

EXi,

E
∏
i∈S

(1 − Xi) ⩽
∏
i∈S

E(1 − Xi),
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where Xi is the indicator variable of coordinate i. It is known that SCP implies NCD (Pemantle and
Peres, 2014). However, such negative dependence even when |S| = 2 is known not to hold for the
uniform distribution over the bases of somematroids. See (Huh et al., 2018) for themost comprehensive
list of such examples that we are aware of. As the uniform distribution over a matroid’s bases is SLC,
SLC does not imply SCP.

On the other hand, SCP does not imply SLC either. We give a concrete example here. Let µ be
supported on the bases of the uniform matroid of rank 2 over 4 elements. We choose µ such that

µ({1, 1, 0, 0}) ∝ θ, µ({1, 0, 1, 0}) ∝ 2, µ({1, 0, 0, 1}) ∝ 1,
µ({0, 1, 1, 0}) ∝ 1, µ({0, 1, 0, 1}) ∝ 1, µ({0, 0, 1, 1}) ∝ 1.

It is straightforward to verify that if 0 ⩽ θ < 3 − 2
√

2 ≈ 0.17157 or θ > 3 + 2
√

2 ≈ 5.82843, then
SLC fails. However, SCP holds as long as 0 ⩽ θ ⩽ 6. To see the latter claim, first verify that the
distribution conditioned on choosing any i ∈ [4] stochastically dominates the one conditioned on not
choosing i. Then notice that in a homogeneous distribution, such stochastic dominance is the same as
stochastic covering.

Here is some insight on how to find an example such as the above. When the generating polynomial
gµ is homogeneous and quadratic, it is SLC if and only if it has the SRP (Brändén andHuh, 2019), which
in turn is equivalent to the following condition as gµ ∈ R[x1, . . . , xn] is multiaffine:

∂

xi
gµ(x) ·

∂

xj
gµ(x) ⩾ gµ(x) ·

∂2

∂xi∂xj
gµ(x),(36)

for any i, j ∈ [n] and x ∈ Rn. See (Brändén, 2007). If we plug in x = 1, then (36) becomes negative
dependence for a pair of variables, which is a special case of NCD and thus a necessary condition for
SCP. In our example, we choose µ so that (36) holds for x = 1 but not for an arbitrary x ∈ Rn. It turns
out that our choice is also sufficient for SCP in this particular setting.
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