On Model Checking Boolean BI

Heng Guo, Hanpin Wang, Zhongyuan Xu, and Yongzhi Cao

Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronics Engineering and Computer Science,
Peking University, Beijing, China
{guoheng, whpxhy, xzvy, caoyz}@pku .edu.cn

Abstract. The logic of bunched implications (BI), introduced by O’Hearn and
Pym, is a substructural logic which freely combines additive and multiplicative
implications. Boolean BI (BBI) denotes BI with classical interpretation of addi-
tives and its model is the commutative monoid. We show that when the monoid
is finitely generated and propositions are recursively defined, or the monoid is
infinitely generated and propositions are restricted to generator propositions, the
model checking problem is undecidable. In the case of finitely related monoid and
generator propositions, the model checking problem is EXPSPACE-complete.

1 Introduction

The logic of bunched implications (BI), introduced by O’Hearn and Pym [26], is a
substructural logic which freely combines additive and multiplicative implications. The
main purpose of Bl is to reason about models which incorporate the notion of resource.
Its best-known application in computer science is separation logic, which is a Hoare
logic for reasoning about imperative program which can manipulate pointers [29]. Sev-
eral other similar resource logics are developed, such as spatial logic [9, 10], which is
introduced independently, and context logic [6, 7], which can be regarded as a general-
ization of BI and spatial logic.

Semantically, the models of BI vary from cartesian doubly closed categories, to
partially ordered commutative monoids [27]. The interpretation of BI in the categori-
cal models is necessarily intuitionistic. But the additive connectives can be interpreted
classically in the monoid models, in which the partial order becomes an equivalence
relation. This version of BI is called Boolean BI (BBI). Its expressivity is quite power-
ful [18], and has been shown to be a convenient way to characterize resource sensitive
systems. Indeed, separation logic is interpreted on a partial monoid of heaps, which
is a BBI model. Also the classical additives alongside multiplicative conjunction and
implication could be found in spatial logic and context logic.

In this paper, we mainly discuss the model checking problem of BBI, i.e. given
an element in a BBI model and a BI formula, decide whether the element satisfies the
formula. It is shown that the provability of BI can be decided by Resource Tablueax
(cf. [19]). However, this method cannot be applied to the model checking problem di-
rectly.

To give a decidable condition, a notion of boundable resource model is introduced
in [2]. It is proved that the model checking problem in a boundable model is decidable.

However, this condition is given implicitly. To decide whether a model is boundable,
one need to check whether the quotient of the monoid divided by some equivalence
relations is finite. It is quite hard (and possibly undecidable) to verify this since there
are infinitely many such relations. Compared with their work, in this paper, we show
more explicit decidable conditions. To our best knowledge, there is not any other work
concerning the model checking problem for BI.

In separation logic, all products are obtained from two heaps with disjoint domains
(cf- [29]). But in general BBI model, the structure is less organized, since the generation
relation can be defined arbitrarily. Hence, we expect that the model checking problem
for BBI is quite complicated and would be decidable only under many restrictions.

First, we consider the propositions appeared in BI formulae. In a BBI model, a
proposition variable is interpreted by the set composed of elements satisfying the for-
mula. Obviously, when such a set is not recursive, we cannot check whether an ele-
ment satisfies this proposition. However, even if propositions are recursively defined,
we show that the model checking problem is undecidable for finitely generated free
commutative monoid, somehow the simplest model, by reduction from Hilbert 10th
problem.

Inspired by the fact that in separation logic atomic assertions are interpreted on one
heap cell, we focus our attention on propositions that is satisfied by only one genera-
tor. But even with this restriction, the model checking problem is still undecidable in
infinitely generated commutative monoid. The technique we use is to simulate Minsky
Machine (cf. [25]), which is a classical and widely adopted method, like in the proof
of the undecidability of full propositional linear logic [23] and the bisimulation relation
between petri nets [20]. We should mention that although total monoid is a special case
of partial monoid, the model checking problem for quantifier free assertion in separa-
tion logic, which is interpreted on an infinitely generated partial monoid, in contrast, is
decidable [8].

To obtain decidable results, we put some additional restrictions on the model. We
consider the case that the monoid is finitely generated. A special case of the model
checking problem in this setting is equivalent to the word problem in monoids, which is
shown to be EXPSPACE-complete in finitely generated commutative monoids (cf. [24]).
This result sheds some light to the general problem and provides a complexity lower
bound. With the help of some results from [21] and [16], we reduce the model checking
problem to the problem of deciding whether two semi-linear sets overlap, which can be
solved with the cost of at most exponential space. It follows that the in this case, the
model checking problem is EXPSPACE-complete.

Furthermore, in the case of infinitely generated finitely related monoid, the model
checking problem can be reduced to the finitely generated case. Indeed, every finitely
generated monoid is finitely related (cf. [17]). Thus, for all finitely related monoid, the
model checking problem is EXPSPACE-complete.

Model checking and validity problems for the spatial assertion language of separa-
tion logic are solved in [8]. Several decidable fragments are discovered and discussed
[1,3]. In comparison, the model we considered is more general and its structure can be
more chaotic, and the formula is propositional. Thus, both our decidability and unde-

cidability results are essentially different from those of separation logic. It is easy to
extend our complexity results to the case of partial monoid.

Interesting aspect of our undecidability proof is the explicit way of simulating Min-
sky Machine, which can be viewed as a sign of the strong expressivity of BBI and did
not appear in the literature before. The technique used in our decidability proof reveals
the relationship among BI formulae, rational sets in monoid and regular expressions.
It suggests a way to extend BI and provide the possibility to apply classical algebraic
results on the further analysis of BI or BBI.

In Section 2 we review some basic definitions and notations of BBI and semigroups.
In Section 3 we show undecidability results, and Section 4 decidability and complexity
results. Finally, in Section 5, some additional remarks are provided. For brevity, some
of the proofs are omitted.

2 Preliminaries

We start with some basic definitions and denotations.

2.1 Boolean BI

In BI, there are additive connectives of classical propositional logic (—,V,A,—,T,L1)
and multiplicative connectives (x,—, T *).

Definition 1 (BI formula). The set of BI formulae, denoted BZ and ranged over by
©, 1,2, is defined by:

e =plTILI=0lerVerleiApa]er =@ T [1 *p2 | pr-xp
in which p ranges over P, the set of atomic propositions.

Definition 2 (BBI Model). A BBI model M is a commutative monoid {M, e, 0} (de-
noted M, for brevity), in which o is the multiplication and ¢ its unit.

Henceforth monoid will be used to denote commutative monoid, if not explicitly stated.

An environment mapping is needed to interpret proposition variables. The image of
a proposition variable is the largest set in which every element satisfies it. By P(M) we
denote the power set of M.

Definition 3 (Environment). An environment p s, or p for short, is a function p : P —
P(M).

Definition 4 (Satisfaction Relation). The satisfaction relation for BBI is defined in-
ductively on the structure of the formulae as follows:

m = p < m e p(p)
m =T < always
mE e mpEe
mE 1 Aps & mEprandm = ps
mET " Sm=c¢
mE 1 %03 & Imy,ma. m =my omy s.t. my | @1 and ma = oo
m = o1k < VYmy. my = @1. implies my om = oo

Since the additive connectives are interpreted classically, we treat 1, V, and —
as usual abbreviations. Define 1 +7py = =(p1—*—¢2). Then m = @1+ s iff
Imy. my1 E ¢1 and my o m = @o. It is a existence analogue of multiplicative im-
plication.

Sometimes we use =5 to emphasize the underlying model for the satisfaction re-
lation.

We naturally extend the domain of environment function p from the set of proposi-
tions P to the set of BI formulae BZ, p : BZ — P(M), p(¢p) ={m |m e M Am =
©}. Thus, the model checking problem of deciding whether m = ¢, is equivalent to the
problem of deciding whether m € p(y).

For My, My C M, define:

M10M2={m|3m1,m2.m:mlom2 A mleMl/\mQEMg}
My : My ={m|§|m1.m1€M2/\mom1 'ZMl}

Thus, we get:
ple1 * v2) = p(p1) o p(wz)
p(p1-7p2) = p(p2) : p(1)

Note that 1@y = —(1—+7—¢5). In the following, we will use -+~ when inducting
on the structure of a formula.

Remarks In the general semantics of BI, partial monoid, rather than total monoid, is
more widely adopted, since it is complete and reflects some intrinsic properties of re-
sources. Indeed, the heap model of separation logic is a partial monoid. However, there
is one way to transform a partial model into a total model. Define a special element 7,
which does not satisfy any formulae, and let any undefined product of two elements, or
the product of 7 and any other element equal 7. Then we get a total monoid and only
need to pay some attention for such 7 when handling the model checking problem.
Hence, for the simplicity of analysis, we adopt the notion of total monoid in this paper.

2.2 Semigroup Presentation

Since BBI models are monoids, we need the way to describe a monoid. We assume the
reader is familiar with some basic notions and results.

Let X be a set of generators or so-called alphabet and X™* denotes the free monoid
generated by X. A relation C' on X * is a congruence if it is an equivalence relation and
whenever (v, w) € C then (v + u,w + u) € C. For every relation R, it generates a
congruence =g, which is the smallest congruence contains R.

If a semigroup M =2 X* /=g, then the tuple (X; R) is called a presentation of M.
For a little abuse of language, we write M = (X; R). M is finitely generated (f.g.)
if there exists a presentation (X; R) of M and X is finite, and is finitely related (f.r.)
if finite R exists. By Redei’s theorem (cf. [28, 14], also [17]), every f.g. commutative
semigroup is f.r. . For a f.g. monoid M = (X; R), every element m in M is a congru-
ence class in X*, denoted by [m]g, or [m] for short.

It is easy to see that a f.g. free commutative monoid is isomorphic to N¥, assuming
the cardinality of the generator set is k.

3 Undecidability Results

In this section, we show two undecidability results. For a proposition p, if p(p) is a
recursive set and the model is a f.g. free monoid, the satisfiability problem is not decid-
able. Hence so is the model checking problem. For a given BBI model M = (X; R),
if X and R is infinite, and for every p € P, p(p) = {z} for some z € X, the model
checking problem is also undecidable.

3.1 Recursively Defined Propositions

Obviously, for a proposition p, if p(p) is not recursive, to check m = p is not com-
putable. However, even if p(p) is recursive, the model checking problem is still not
computable. Indeed, there is a recursive set that we cannot decide whether it is empty.
We will illustrate this using the result of Hilbert 10th Problem (H10).

Proposition 1 (Negative Solution of H10). Given a polynomial of several variables
Pk, ..., kny) with integer coefficients, it is undecidable whether there is a vector

(K1y ... k) € N that P(ky,. .. ky) = 0.

Thus, for any given polynomial P(k1, ..., k), let X* =2 N and p(p) = {z§* ...zt

|P(eq, ..., em) = 0}. Clearly p(p) is a recursive set since we can compute P(eq, ..., ep,)
easily. But to model checking ¢ |= T—+7p is equivalent to decide whether the equation
P(k1, ..., kmn) = 0 has solutions. Hence the model checking problem is undecidable.

Redei’s theorem [17] tells that every f.g. monoid is f.r. . But given a recursive re-
lation R, we cannot compute a finite relation R’ that =g is the same as =g/. To see
this, let R = {(z5* ... 2%, ¢)|P(ey, ..., em) = 0} and again H10 reduces to it. Thus,
we cannot decide the structure of a f.g. monoid if the finite generation relation is not
given explicitly. In the following, when a monoid G = (X; R) is finitely generated, we
assume that R is finite.

3.2 Infinitely generated monoid

F.g. free monoid is somehow the simplest monoid. It can be easily embedded into in-
finitely generated monoid and has an empty generation relation set, which is the major
obstacle to the model checking problem. Since in this model to model checking BBI
with recursively defined propositions is undecidable, later discussion will be restricted
on a certain kind of propositions.

In most of the settings, the resource model is discrete and properties of interest can
be decomposed into several atomic assertions based on a single piece of the resource.
For example, in separation logic, every formula is constructed from atomic assertions
interpreted on just one heap cell, like “x — —, —”". Hence, we focus our attention on the
proposition which holds only for one generator element. Given a monoid M = (X; R),
we call a proposition p “generator proposition”, if p(p) = {z}, z € X. Itis an analogue

"'In the original problem, the vector is required to be in Z™. Here we slightly modify the re-
quirement and it is easy to show these two problems are equivalent.

of the assertion “x — —, —" in separation logic. In the following, we will use p,, to
denote the proposition which holds on .

Many propositions can be constructed via generator propositions with BI connec-
tives. Especially, for a proposition p, if p(p) or M\ p(p) is finite, then it can be expressed
through these propositions. The proposition defined in Section 3.1 cannot be expressed
via them, since we cannot construct a formula to compute polynomials.

However, in an infinitely generated monoid, even if only generator propositions
appear in the formula, the model checking problem is still undecidable. We show this
by the reduction from the halting problem of Minsky machine [25]. This technique
of encoding Minsky Machine is widely used to prove undecidability results, like the
undecidability of full propositional linear logic [23] and bisimulation relation between
petri nets [20].

Definition 5 (Minsky Machine). A Minsky machine C' with nonnegative counters c,
..., Cm IS a program
1:COMM;y;...;n: COMM,

where COM M, is a HALT-command and COM M; (i € I,,_1?) are commands of the
Sfollowing two types (assuming k, ki, ke € I,,j € Ip):

I. cj:=cj+1; gotok
2. ifc; = 0 then goto ky else (c; := c; — 1, goto k3)

Note that type 2 command is indeed a branch command. We call “if ¢; = 0 then
goto k1" the zero test part and “c; := ¢; — 1; goto ky” the decrease part.

Minsky machine is a deterministic computation model. During computation, current
value of relating counter determines to take which branch of type-2 command. Every
Minsky machine generates a corresponding sequence of executed command number, or
so called a run. If the machine halts, the sequence will be finite, ended with n. Otherwise
it will be infinite.

The status of a Minsky machine during the computation can be presented by a tu-

ple {k,c1,...,cm}, in which k is the current command line, i.e. next command to be
executed is COM My, and {c1, ..., ¢} expresses the status of counters. The initial
state is {1,¢1,...,¢m} and {c1, ..., ¢} is considered as input. The halting problem

of Minsky machine is to decide with empty input, whether the program halts with empty
counters. It is known that even if a Minsky machine has only two counters, the halting
problem is undecidable. In the following, to construct our reduction, we encode a two-
counter Minsky machine in a countably infinitely generated monoid, and express the
halting property by a satisfaction relation between an element in that monoid and a BBI
formula.

Given Minsky machine C' with two counters c1, co and commands COM M; (i €
I,,). We will construct an infinitely generated monoid M¢c = (X¢; R¢) to simulate the
execution of C'. Indeed, some congruence classes are corresponding to finite runs.

The generator set X is composed of four parts: set) for the current command
line, A; and A, for the current status of the two counters, S for the current position in
a command sequence, and a special generator halt.

2 I,, denote the set {1,2,...,n}.

We let Q = {q;|i € I,}. Here g; represents that the next command is COM M;.
Let A; = {a,;;|i € N} (j € 1), a;; represents that the current value of counter c; is .
In our construction, the product g; o a1 ,, © g, corresponds to the state tuple (4, n, m).

The set S is a little more complex. Let I], = {1/,2/,...,n'}. We use A\, € (I, U
I',_1)* to denote a command sequence of length k£ and A\ [i] to denote the ith element
in Ag. If Ag[i] € I,,_1, then it represents the ith command in this sequence is type 1
or the decrease part of type 2, and if A\;[i] € I/, it represents zero test part of type
2. A\g[i] = n means the ith command is the HALT-command. We denote the command
sequence generated by the Minsky Machine C' by A¢. Every element in set S has two
indices, ¢ and Ay, denoted by s; »,, which means the command sequence is A\ and
the current command is Ak [i]. It is easy to see that the cardinality of X¢ is countably
infinite.

Then we define the generation relation R¢. Every equation in R¢ corresponds to
one step execution of C'. For type-1 command COM M, “c; := c¢; + 1;goto r” (j €
L), if \i[i] = m (i # k), then R¢ contains the following equations:

Sidp ©Qm ©@jt = Sit1a, Oqr © aj41(t €N)

For type-2 command COM M,, “if ¢; = 0 then goto 7 else (¢; := ¢; — 1; goto r2)”
(j € Ip), if Ag[i] = m (i # k), then:

Sip © Gm O Qjt = Sit1,0 © Qry © @ji—1(t € NT)
or A\i[i] = m’ (i # k), then:
Si, Ak ©Gm © Q50 = Si+1,\, ©qr, © Q50
Finally, if \x[k] = n, then:
SkAr ©Qn ©Q1,000a2,0 = Sk, ©halt

Example We have finished the construction of the infinitely generated monoid Mo =
(Xc¢; Re) corresponding to a Minsky machine C'. Before proceeding to the reduction,
let’s give a simple example to illustrate how our construction goes. Let a Minsky ma-
chine C' as following:

1. ¢1 :=¢1 + 1; goto 3.

2. ¢g 1= co + 1; goto 2.

3. If ¢; = 0 then goto 4 else (¢; := ¢; — 1; goto 2).
4. HALT.

Note that C never halts, and A¢ is the infinite sequence {1, 3,2,2,2,...}.
In our construction, @ = {¢;|i € I4}. The generation relation R¢ contains: (i # k)

SiX, ©q1 01 = Siy1n, ©q3 0 a1 41 (f Ag[i] = 1,1 €N)
Side ©Q2002; = Siy1x, ©q2 0 agy1 (f Ag[i] = 2,1 € N)
SiaR ©Q30a1,e = Siq1,0, ©q2 0 a1 —1 (if \g[i] = 3,¢ € NT)
SiX, ©Q30a1,0 = Siy1n, Oqaoary (f Ag[i] =3")

Sk A, ©G400a1,00a20 = Sk,», © halt Gf Ax[k] = 4)

For A3 = {1/, 3,5}, we can see that [s1 ,0¢10a1,00a2,0] contains only one element,
since the first command is not type 2. For Ay = {1,3',2,2}, s1 5, o1 0 a1 90 azo =
52 2, ©¢30a1,1 0a2 o. The congruence class contains only these two elements, since the
zero test in COM M3 fails. Generally, the elements contained in the congruence class
[$1,A, © q1 © a1,0 © ag,o] correspond to the longest common prefix of A and Ac.

Lemma 1. For A, assume the length of the longest common prefix of A\, and \¢ is k.
Every element in congruence class [s1,x, © q1 © a1,0 © az,0] has the form “s; x, o ¢; o
ai j, ©asj,”, where t < k' + 1 and the tuple (i, j1, j2) is the state after executing first
t — 1 elements in \c, or “sy_x, o halt”, when A\, = Ac.

Proof. Tt can be verified straightforwardly by induction on %'. a

Thus, the Minsky machine C halts if and only if there exists some A, such that
Sk, © halt € [s15, © g1 0 a1,0 © azp]. All we left to do is to express this property
through some satisfaction relation of BBI.

First define ¢os = (—(=T* % =T%)) A (A; 7Pg;) A (7Phatt). For m = ¢aq, m =
—(=T* % =T*). Thus m cannot be a product of any two non-unit elements in M¢,
it follows that m € X. But m = (A; =Pg;) AN (—Phait), it implies that m € S or
m € Ay U As. The reverse obviously holds. So p(p.s) = S U Ay U As.

We claim that the Minsky machine C halts if and only if g1 o a1 g0 as,¢ = ¢, where
o= (bas_*a(phalt * (g5). Clearly, ¢ is constructed via generator propositions.

If ¢1 0 a1,0 0 azo = ¢ holds, then there exists some s1,s2 € SU A; U Ao, that
Sg 0 halt € [s10q1 0a1,0 0 ago]. If s € Ay U A, then the congruence class s o
¢1 © a1, © ag,0] contains only one element since no generation relation can be applied,
contradiction. Then s; € S, without loss of generality we can assume that s; = s7 3,
for some Ay, since we can discard the elements before s; to get a new sequence. By
Lemma 1, s3 = sy, »,, and hence C' halts. On the other hand, if C halts and |A\¢| = &,
then by Lemma 1, sy, o halt € [s1,5. ©q1 0a1,00az20]. Hence ¢1 o ajgoasg = ¢
holds.

Theorem 1. The model checking problem for countable infinitely generated monoid
against BI formulae in which only generator propositions appear is not decidable.

Remarks Since total monoid is a special case of partial monoid, our undecidability
result is instantly generalized to the case of partial monoid. In separation logic, the
underlying model is a partially defined countably infinitely generated monoid. However,
unlike our result, the model checking problem for quantifier free assertions of separation
logic is decidable. This difference results from the organized structure of the model of
separation logic, whereas an arbitrary monoid could be far more chaotic.

4 Decidability and Complexity Results

In this section we show that the model checking problem for finite related monoid
against BI formulae, under the restriction of generator propositions, is decidable and
EXPSPACE-complete.

First we claim that for a infinitely generated finitely related monoid, the problem can
be reduced to the f.g. case. In fact, there are finitely many generation relations in such a
monoid. Thus only finitely many generators will appear in one congruence class. Then
there will be only finitely many generators involved in a model checking problem under
our assumptions. Every other generator can be treated as the same irrelevant generator.

Formally, given a monoid M = (X; R), an element m, and a formula ¢, where
X is infinite, R is finite, and m € M. Without loss of generality, we can assume
that generators appeared in m and R and generators whose corresponding propositions
appeared in ¢ are first k generators. Let 4 be the homomorphism that maps every other
generator to the k + 1th generator. Then by the induction on the structure of ¢, the
following lemma holds:

Lemma 2. m = ¢ iff m =5y .

In the following, we will deal with the f.g. monoid. We prove that in this case,
to check m = ¢ is equivalent to check whether [m|r and some set related to ¢ in
X* overlap. Indeed, [m] g or every such set is computable semi-linear set and we can
decide whether their intersection is empty. To show this, first we cite some notations
and results about rational sets and semi-linear sets in [16].

Definition 6 (Rational Sets). Let M be a monoid (not necessarily be commutative).
The class of rational subsets of M is the least class & of subsets of M satisfying the
following conditions:

The empty set is in &;

Each single element set is in &
IfFX,)Y €e&then X UY € &;

IfX,)Y €c8&then X oY € &;

If X € &then X* € &.

LR LN~

Here X* denotes the submonoid of M generated by X . Note that a f.g. monoid M itself
is a rational set.

Definition 7 (Semi-linear Sets). A subset X = {a} o B* witha € M, B C M, and B
finite, is called linear. A finite union of linear sets is called semi-linear.

Clearly every semi-linear set is completely determined by the series of a; and B;. Let
A={ai,...,an}, B={By,...,B,}. We call (A; B) the closed representation of a
semi-linear set.

Then we tabulate several useful results from [16].

Proposition 2. For a f.g. commutative monoid M, A subset X C M is rational iff it is
semi-linear.

Proposition 3 (Th III, Cor III.1 Cor II1.4 in [16]). If X and Y are rational subsets
of a commutative monoid M, then their intersection X NY, difference Y\ X (hence
X =M\X)andY : X are rational.

Recall that p(p; * p2) = p(p1) © p(p2), plp1—+"pa) = p(w2) : p(1). By induc-
tion, it follows that for all formulae @, p(¢p) is semi-linear set.

Thus, if we can generate a closed representation of p(¢) and decide whether m
belongs to it, we can check m |= ¢. However, we are not aware of a constructive way
to generate the closed representation of X NY, X,XoY,and Y : X in the literature.
We transform this problem to a corresponding problem in X*, in order to avoid the
complicated structure in M, which is caused by R.

Consider the canonical surjective morphism « : X* +— M. It is easy to see that
a~t(m) = [m]gr and m € p(yp) is equivalent to [m]g C a~(p(p)). If 3w,z €
[m]r N a™(p(p)), then a(x) € p(p). Thus, [m]g = [x]r € a"(p(p)). It implies
that m € p(y) is equivalent to [m]g N a ™ (p(¢)) # 0.

Next we will show how to decide whether [m]g N a1 (p(¢)) # 0. Indeed, [m] g is
also a semi-linear set. In [21], an algorithm has been developed to compute the closed
representation of a congruence class with the cost of at most exponential space.

Proposition 4 (Th.10 in [21]). Let f.g. monoid M = (X;R), m € M. There is
an algorithm which generates a closed representation of [m|r using at most space
2csize(m.R) \where ¢ > 0 is some constant independent of m and R.

Thus, we can generate the representation of [m]g for every m € M. In order to
compute the closed representation of a~!(p()), we need to make induction on the
structure of (. It is easy to verify the following lemma.

Lemma 3. For af.g. monoid M = (X; R) and BI formulae , p1, and s, the follow-
ing holds:

Since o~ (p(p.)) = [z]r, Proposition 4 also builds up the basis of our induction.
To compute the closed representations of X, XNY,XoY,and X : Y, we consider
the case of N*, since for a generator set X, | X| =k, X* and N¥ are isomorphic.

The case of generating the closed representation of X is the most complicated. We
need to compute the representation of a set in which every element is not larger than
any element in a given set.

Formally, define a partial order < on N¥. For two vectors v = {vy,...,v,},v =
{vi,... v} inNF v <o iff Vi, v; < v, and v < o' iff v < v and Fi, v; # v).
Lemma 4. For a set of vectors B = {by,...,b,} in N¥, the set m(B) = {ala €

NF Wb; € B, a < b; or a and b; are not comparable. Y} is a semi-linear set, and there is
an algorithm which generates a closed representation of it.

Proof (sketch). Consider the kth component of one element in m(B). It must be sand-
wiched between the counterparts of two divisions of the vectors. Then the first £ — 1
components of it should be smaller than or not comparable with the counterparts of the
smaller division. These elements compose an instance of lower dimension. Thus, the
closed representation can be generated inductively on the dimension k. a

Lemma 5. For two semi-linear sets X,Y C NF, given their closed representation
(Ax; Bx), (Ay; By), there is an algorithm which generates a closed representation
of X, XNY,X+Y,andY — X.3

Proof. For two semi-linear sets X = J;(a; + B}) and Y = |J;(a; + Bj), itis easy to
see that

X+Y=U;;((a; + B}) + (a; + B}))
XﬂY:U”((a BY) N (a; + BY))
Y—{=U,J((+ Bj) — (ai + B}))

X =(;(a; + B})

Then we only have to deal with linear sets.
“X +Y: For two linear sets a + B* and a’ + B’*, their summation is:

(a+d)+ (BUB')*

“X NY™: For two linear sets a + B*,a’ + B"* C N¥. Assume B = {b1,...,b,}
and B" = {b},...,b],}, then every element in X N'Y corresponds to two vectors x;,
x, € N¥, which satisfies the following system of linear diophantine equations:

n

be,—Zb’v i=d —a

Jj=1

Indeed, the solution of this system forms a semi-linear set, and there are many algo-
rithms devoted to this problem, e.g. [15,22].

“Y — X”: For two linear sets X =a+B*and Y = d + B, assume B =
{b1,...,b,} and B = {b/,... b, }. We can see that

° ’VL

Y — X ={(d —a) +th’ = (t;bj)|ti,t; € Ny N

j=1

It is similar to the “X N'Y” case. We can get the representation after solving the system
of linear diophantine equations:

n

n’ k
(a/ —a)+ Z (.0} Z :inei
i=1 i=1

Jj=1

3 Note that the addition in N* corresponds to the multiplication in free monoid. Thus, X + Y
and Y — X correspond X oY and Y : X, respectively.

in which t., t;, x; are variables.

“X”: Assume X = a + B*. For ¢z € N¥, if 3b; < z, then we can get the vector
x — b; still in N¥, Repeat this operation and finally we will get some 2’ € m(B). By
Lemma 4, a closed representation of m(B) is computable, denoted by J;(a; + B;).

Thus, N¥ is decomposed as:

N¥ = J(a; + B; + B")

J

Assume we geta’ € m(B) froma,a = o'+, rib;, and o’ € a;+ Bj. Such a’ might
not be unique but computable and the quantity is finite. Since X C (a; + Bf + B*), X
can be expressed as:

X= U (@B +B0N\0)0U@+ B +5)
a€as+Bf+B* At

(ar + Bf) N B* = (follows that (a; + B; + B*)\ X contains two part: elements that
do not belong to @’ + B*, and elements that belong to a’ + B* but are smaller than
a. The former can be expressed as ((a; + B)\{a'}) + B*, and the latter is finite, all
semi-linear sets. It is easy to see that if there are more than one such a’ belong to the
same a; + B}, we only need to consider one of them. This concludes our argument. O

Mention that to decide whether two semi-linear sets overlap, we only need to compute
their intersection, which is already solved. Thus, we have provided a way to decide
whether [m]r € a1 (p(y)), which is equivalent to m = ¢. It follows that the model
checking problem in this case is decidable.

As stated in Proposition 4, generating the closed representation of a congruence
class or the set defining a proposition costs exponential space. Solving the system of
linear diophantine system and other operations do not exceed the exponential space
upper bound. Thus the overall space cost is at most exponential w.r.t. the length of ¢
and the sizes of m, R, and all propositions appeared in ¢.

To get the complexity lower bound, we need to introduce the word problem of
monoid. For a monoid, the word problem is to decide whether two words are in the
same congruence class. In a f.g. commutative monoid M = (X; R), for two words u
and v, ifu =[],] andv =[], 2’ (14, s; € N), then the word problem is equal
to check whether v =[], pii ore = [[;, ph =1, p5i. It is known that the
word problem in a commutative monoid is EXPSPACE-complete (cf. [24]). Thus, the
model checking problem is EXPSPACE-hard.

In summary, the model checking problem for f.g. monoids under our restriction of
propositions is EXPSPACE-complete. Together with Lemma 2 and Redei’s theorem
[17], we conclude that:

Theorem 2. The model checking problem for finitely related monoid against BI formu-
lae in which only generator propositions appear is EXPSPACE-complete.

Remarks If we want to do model checking in a partial monoid, first define a special
element 7 as stated before (Section 2). Then generate p(y) normally, except that after

computing every representation of the set specified by the subformula of ¢, eliminate
the component corresponding to 7. Compute the congruence class [m] normally and it
is easy to see it does not contain 7. Thus the partial monoid can be model checked like
total monoid.

5 Additional Remarks

In this section we provide additional remarks, along with some discussion of related
works and future work.

5.1 Fragments and Complexity

It is natural to ask whether the complexity lower bound of EXPSPACE could be reduced
if we only concern about some fragment of BI or for some special monoid. From our
reduction, as long as the multiplicative conjunction or implication is considered, the
complexity cannot be lower.

For f.g. free monoid under our restriction of propositions, the model checking prob-
lem is PSPACE-complete. Indeed, the PSPACE-hardness follows from the result in [§],
since their proof of PSPACE-hardness does not employ any essential property of the
predicate or the partiality. For example, we can treat x +— nil,nil as generator
proposition p,.. The upper bound results from the fact that the cost of exponential space
is caused by computing the congruence class, which is a singleton set in free monoid.

5.2 Automata Theory

Recall that Kleene theorem asserts that in a free commutative monoid, the class of
rational set is equal to the class of set which can be recognized by finite automata. It
is shown that in the case of finitely generated commutative monoid, Kleene Theorem
holds in a monoid iff it is rational (cf. [30]). For a BI formular ¢, p(¢) is a rational set
in f.g. monoid. Thus p(¢p) is recognizable by finite automata in a rational monoid. If
we extend BI with a new connective to characterize the set X* in the monoid, then a
set S is rational iff there is a ¢ that S = p(¢). Hence the language generated by this
kind of BI formula cannot be recognizable by finite automata in non-rational monoid.
As a comparison, it is shown that all languages generated by context logic formulae are
recognizable by finite automata (cf. [5]).

5.3 Model Checking Mobile Ambient

In [12, 13, 11], it is shown that if the calculus contains repetition or the logic contains
guarantee, the model checking problem is not decidable. The model they treated is a free
monoid if we omit the nesting of ambients. The guarantee connective is a counterpart of
multiplicative implication in BBI. The repetition is just a counterpart of the connective
discussed in Section 5.2 above. Introducing such a connective in BBI does not affect the
decidability of model checking problem for rational monoids, and hence free monoids.
Thus, the undecidability of their problem resulted from the nesting of ambients.

5.4 Model Checking BI and CBI

Our discussion is restricted in the domain of BBI. In the general monoid model of
BI, the interpretation of a formula is intuitionistic, according to a partial order, which
makes the structure of the model and the model checking problem more complicated.
The result showed here is just a special case. Maybe some requirement like ascending
chain condition is needed to obtain a decidability result.

Another line of future work is to solve the model checking problem for Classical BI
(CBI]) (cf: [4]), which is an extension of BBI. In CBI, the model is more organized, sim-
ilar as an inverse monoid or a cancellative monoid. Thus, the decidable condition might
be loosened and the complexity might be reduced. Furthermore, the model adopted in
CBI is relational monoid. It is a generalization of partial and total monoid and was in-
troduced in [18]. The model checking problem in this semantic setting needs further
analysis.

Acknowledgment

This work is supported by the National Grand Fundamental Research 973 Program
of China under Grant No.2009CB320701, the National Natural Science Foundation of
China under Grant No.60873061, and the National 863 Plans Projects of China under
Grant No.2006AA01Z160.

References

1. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation logic. In
Proc. 24th Found. of Software Tech. and Theor. Comp. Sci. (FSTTCS’04), volume 3328 of
Lecture Notes in Computer Science, pages 97-109. Springer, 2004.

2. N. Biri and D. Galmiche. A separation logic for resource distribution. In Proc. 23th Found.
of Software Tech. and Theor. Comp. Sci. (FSTTCS’03), volume 2914 of Lecture Notes in
Computer Science, pages 23-37. Springer, 2003.

3. M. Bozga, R. losif, and S. Perarnau. Quantitative separation logic and programs with lists.
In Proc. 4th Int. Joint Conf. Auto. Reasoning (IJCAR’08), volume 5195 of Lecture Notes in
Computer Science, pages 34—49. Springer, 2008.

4. J. Brotherston and C. Calcagno. Classical bi: a logic for reasoning about dualising resources.
In Proc. 36th ACM Symp. Principles of Prog. Lang. (POPL’09), pages 328-339. ACM, 2009.

5. C. Calcagno, T. Dinsdale-Young, and P. Gardner. Decidability of context logic. unpublished,
available at http://www.doc.ic.ac.uk/~ccris/ftp/decidCL.pdf, 2008.

6. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In Proc. 32th ACM
Symp. Principles of Prog. Lang. (POPL’05), pages 271-282. ACM, 2005.

7. C. Calcagno, P. Gardner, and U. Zarfaty. Context logic as modal logic: completeness and
parametric inexpressivity. In Proc. 34th ACM Symp. Principles of Prog. Lang. (POPL’07),
pages 123-134. ACM, 2007.

8. C. Calcagno, H. Yang, and P. W. O’Hearn. Computability and complexity results for a
spatial assertion language for data structures. In Proc. 21th Found. of Software Tech. and
Theor. Comp. Sci. (FSTTCS’01), volume 2245 of Lecture Notes in Computer Science, pages
108-119. Springer, 2001.

10.
. W. Charatonik, S. Dal-Zilio, A. D. Gordon, S. Mukhopadhyay, and J.-M. Talbot. The com-

12.

13.

14.

15.

16.
17.

18.

20.

21.

22.

23.

24.

25.
26.

217.
28.
29.

30.

. L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In

Proc. 27th ACM Symp. Principles of Prog. Lang. (POPL’00), pages 365-377, 2000.
L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177-213, 2000.

plexity of model checking mobile ambients. In Proc. 4th Found. of Software Sci. and Comp.
Struct. (FOSSACS’01), volume 2030 of Lecture Notes in Computer Science, pages 152—167.
Springer, 2001.

W. Charatonik, S. Dal-Zilio, A. D. Gordon, S. Mukhopadhyay, and J.-M. Talbot. Model
checking mobile ambients. Theor. Comput. Sci., 308(1-3):277-331, 2003.

W. Charatonik and J.-M. Talbot. The decidability of model checking mobile ambients. In
Proc. 15th Comp. Sci. Logic (CSL’01), volume 2142 of Lecture Notes in Computer Science,
pages 339-354. Springer, 2001.

A. H. Clifford and G. B. Preston. The Algebraic Theory of Semigroups. Volume 2. The
American Mathematical Society, 1967.

E. Domenjoud and I. Lorraine. Solving systems of linear diophantine equations: An algebraic
approach. In Proc. 16th Math. Found. of Comp. Sci. (MFCS’91), volume 520 of Lecture
Notes in Computer Science, pages 141-150. Springer, 1991.

S. Eilenberg and M.-P. Schutzenberger. Rational sets in commutative monoids. J. Algebra,
13(2):173-191, October 1969.

P. Freyd. Redei’s finiteness theorem for commutative semigroups. Proc. of the AMS, 19:1003,
1968.

D. Galmiche and D. Larchey-Wendling. Expressivity properties of boolean bi through rela-
tional models. In Proc. 26th Found. of Software Tech. and Theor. Comp. Sci. (FSTTCS’06),
volume 4337 of Lecture Notes in Computer Science, pages 357-368. Springer, 2006.

. D. Galmiche, D. Méry, and D. J. Pym. Resource tableaux. In Proc. 16th Comp. Sci. Logic

(CSL’02), volume 2471 of Lecture Notes in Computer Science, pages 183—-199. Springer,
2002.

P. Jan¢ar. Undecidability of bisimilarity for petri nets and some related problems. Theor.
Comput. Sci., 148(2):281-301, 1995.

U. Koppenhagen and E. W. Mayr. The complexity of the coverability, the containment,
and the equivalence problems for commutative semigroups. In Proc. 11th Symp. Fund. of
Comp. Theory (FCT’97), volume 1279 of Lecture Notes in Computer Science, pages 257—
268. Springer, 1997.

D. Lankford. Non-negative integer basis algorithms for linear equations with integer coeffi-
cients. J. Automated Reasoning, 5(1):25-35, March 1989.

P. Lincoln, J. C. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional
linear logic. In Proc. 31st Symp. Found. of Comp. Sci. (FOCS ’90), volume II, pages 662—
671. IEEE, 1990.

E. Mayr and A. Meyer. The complexity of the word problems for commutative semigroups
and polynomial ideals. Adv. in Math., 46(3):305-329, 12 1982.

M. L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, 1967.

P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215-244, 1999.

D. J. Pym, P. W. O’Hearn, and H. Yang. Possible worlds and resources: the semantics of bi.
Theor. Comput. Sci., 315(1):257-305, 2004.

L. Redei. The Theory of Finitely Generated Commutative Semigroups. Oxford University
Press, NY, 1965.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. 17th
IEEE Symp. Logic in Comp. Sci. (LICS’02), pages 55-74. IEEE Computer Society, 2002.
C. P. Rupert. On commutative kleene monoids. Semigroup Forum, 43(1):163-177, December
1991.

