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Algorithms and phase transitions

 When are phase transitions barriers to efficient algorithms?

* What algorithmic techniques can work in the low-temperature
regime (strong interactions)?

 Based on joint work with many coauthors:



Outline

High and low temperature regimes in the Potts and hard-core
models

What is a ? How are algorithms and phase
transitions connected?

Some low temperature algorithms

Many open problems!



Potts model

Probability distribution on g-colorings o: V(G) — [g] of the vertices of G:
o Pm(G.o)

Z;(p)

u(o) =

m(G, o) is the number of monochromatic edges of G under ¢

Z:(p) = Z e’™G:9) g the partition function.
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p is the inverse temperature. [ > 0 is the ferromagnetic case: same color preferred



Potts model
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Phase transitions

On Z< the Potts model undergoes a phase transition as f increases

For small f diminishes as volume grows;
for large [ influence of boundary conditions persists in infinite volume

For small /3, correlations decay exponentially fast, configurations are
disordered (on, say, the discrete torus)

For large [/, we have long range order (and a dominant color in a typical
configuration)

For small /, Glauber dynamics mix rapidly; for large f/ mix slowly



Hard-core model

The hard-core model is a simple model of a gas.

Probability distribution on independent sets of G:
w,(I) = MM/ Z-(2)

where Z-(A) = Z A1 is the partition function (independence polynomial)
I

A > 0 is the fugacity. Larger A means stronger interaction



Hard-core model

On Z¢ the hard-core model exhibits a phase transition as 4 changes

Unoccupied

. Even occupied

B 0dd occupied

Low fugacity High fugacity
High temperature Low temperature



Ground states

The ground states (maximum weight configurations) of the ferromagnetic
Potts model are simple: they are the g monochromatic configurations.

The ground states of the hard-core model on 7% are also simple: the
and all odd occupied configurations.



Algorithms

 Two main computational problems associated to a statistical physics
model: approximate the partition function (counting) and output an
approximate sample from the model (sampling)

 Many different approaches including
method,



Algorithms

These algorithmic approaches work in great generality at high
temperatures (weak interactions) but are limited by phase transitions

Local Markov chains mix slowly at low temperatures

Long-range correlations emerge on trees and graphs at low
temperatures

of partition functions accumulate at a phase transition
point



Algorithms

e How to circumvent these barriers?

 Design Markov chains on a different state space or with different
transitions to avoid bottlenecks: algorithm for the Ising
model; dynamics for the Potts model

* Joday’s talk: use structure of the phase transition to design efficient
algorithms



Algorithms

Phase transitions come in many different varieties!

Compare hard-core model on random regular graphs to the hard-core
model on random regular bipartite graphs (replica symmetry breaking vs
replica symmetric)

Ferro Potts and hard-core on bipartite graphs: easy to find a ground
state. Does this mean it is easy to count and sample?

Models like these are distinctive for both and



#BIS

No known FPTAS/FPRAS or NP-hardness for counting the number of
independent sets in a bipartite graph G.

. defined a class of problems as hard
to approximate as BIS.

Many natural approximate counting problems are #BIS-hard (counting
stable matchings, ferromagnetic Potts model, counting colorings in
bipartite graphs, etc..)

#BIS-hardness even on graphs of maximum degree A > 3



#BIS

o #BIS plays a role in approximate counting similar to that of Unique
Games in optimization - not known to be hard or easy and captures
complexity of many interesting problems

 Caveat / open problem: many problems are known to be #BIS-hard (like
ferro Potts) but not known to be #BIS equivalent



Algorithms for #BIS-hard problems

* \We can exploit the structure of instances to design efficient algorithms
for models like Potts and hard-core at low temperatures

e Results for subgraphs of Zd, random regular graphs, expander graphs

 Uses techniques from statistical physics and computer science used to
understand and prove slow mixing results for Markov

chains



Algorithms for #BIS-hard problems

* First step Is to separate the state space into pieces dominated by a
single ground state (e.g. mostly red, mostly green, mostly blue
configurations for Potts; mostly even and mostly odd occupied for hard-
core)

* Prove that contributions from intermediate configurations is exponentially
small (a bottleneck!)

» Control each piece by showing that deviations from the ground state
behave like a new high-temperature spin model



Unbalanced bipartite graphs

Example: hard-core model on unbalanced bipartite graphs (different
degrees or fugacities for left/right vertices (paper w/ )

Setting: G is a biregular, bipartite graph with degrees A;, A fugacity
A =1.

Condition: Ap > 10A; log(A;)

This includes regimes with non-uniqueness on the infinite biregular tree
and slow mixing in random graphs

We obtain an FPTAS and point-to-point on all graphs



Unbalanced bipartite graphs

* \We expect to see many left occupied vertices and few right occupied
vertices In a typical independent set

* We think of the ground state’ as the collection of independent sets with

no right occupied vertices: these contribute (1 + /1)‘” to the partition
function

* Deviations from this ground state are occupied right vertices



Unbalanced bipartite graphs

e A y is a 2-linked set of vertices from R

217
. The weight of a polymeris w, = m

* Two polymers are compatible if their union is not 2-linked

Zoy =1+ HH Y | [w,

I yel

where the sum is over collections of compatible polymers



Unbalanced bipartite graphs

How to analyze this new model?

AR R |y
|N(;/)|>—\y\ sow, <2 a at A =1
Ap

Exponentially decaying weights when A, > A,

We have switched from strong interactions to weak interactions! Low
temperature to high temperature



Cluster expansion

* The cluster expansion is a tool from mathematical physics for analyzing
probability laws on ‘dilute’ collections of geometric objects.

* |t applies to a very general weighted independent set model — on a
graph with inhomogeneous weights and unbounded vertex degrees. Each
vertex represents a geometric object, neighboring objects overlap.

z= ) 11w

I yel



Cluster expansion

* The cluster expansion says that, under some conditions,

log Z = ZCD(F )Hw

yel,

 The sum is over connected collections of polymers. Informally, the

conditions say that the weights are exponentially small in the size of the
contours.

* The algorithm is to truncate the cluster expansion (like
algorithm of truncating the Taylor series)



Algorithms

Making the cluster expansion algorithmic requires:

of size O(log n): essentially enumerating connected
subgraphs in a bounded degree graph

Computing polymer weights

Sampling is done via self-reducibility on the level of polymers



Markov chains

The results and techniques suggest a simpler and

. start with the all left occupied independent set and run
Glauber dynamics.

This chain may mix slowly from a worst-case start but converge close to
stationarity from a good start.

More generally for models with multiple dominant ground states, start
chains from each. Fast mixing within a state

How to prove that this works?



Markov chains

Some progress w/ . define a
Markov chain on polymer configurations, adding or removing a single
polymer at a time

Under weaker conditions than cluster expansion convergence, this chain
mixes rapidly

Need stronger than cluster expansion conditions to implement a single
step efficiently

Comparison techniques give polynomial-time mixing within a state (with
rejection) but not O(n log n) as we’d expect



Perturbative Approach

The cluster expansion is a perturbative tool in statistical physics: needs
some parameter to get large to ensure sufficient exponential decay

In general we can’t expect the techniques to work in a sharp range of
parameters

Semi-exception is large q Potts and random cluster models: can get

efficient algorithms at all temperatures (on 7% w/
; on random graphs w/ )

Can we sample from the hard-core model on random bipartite graphs for
all fugacities A?



Summary

The connection between phase transitions and algorithms is fascinating
and complex

captures a class of counting problems in which ground states are
easy to find but complexity of approximate counting is unknown

On structured instances probabilistic tools can be made algorithmic at
low temperatures

Two tools: polymer models and the cluster expansion



Open Questions

More algorithms for #BIS - more classes of graphs, better running times
(subexponential?) see for exponential-time
algorithms

Markov chains beyond mixing times - using well chosen starting
configurations to sample efficiently despite slow mixing

Deeper understanding of the relationship between phase transitions and
algorithms: explanation for ‘coincidence’ of and
theorems and efficient algorithms for ferro Ising and matchings

Make non-perturbative tools algorithmic
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Thank you!




