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Satisfiability

One of the most important problem in computer science

Input: A formula in conjunctive normal form, like

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Output: Is it satisfiable?

The first NP-complete problem Cook (1971) — Levin (1973)



Sampling solutions

Sometimes we are not satisfied with finding one solution. We want to gen-
erate a uniformly at random solution.

The ability of sampling solutions enables us to

• approximately count the number of solutions;

• estimate the marginal probability of individual variables;

• estimate other quantities of interest …

And sometimes generating random instances satisfying given constraints
can be useful too.

Sampling can beNP-hard even if finding a solution is easy (e.g. under Lovász
local lemma conditions).



A natural (but not working) approach

Standard sampling approach: Glauber dynamics / Gibbs sampling
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??T/FF

x1

??T !

(¬x1 ∨ x2 ∨ x5)∧ (¬x2 ∨ ¬x6 ∨ x7)∧ (x1 ∨ ¬x3 ∨ ¬x7)∧ (¬x4 ∨ x6 ∨ x8)
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Disconnectivity for k-Sat

Suppose we have k variables, and each clause contains all k variables.

Φ = C1 ∧ C2 ∧ · · ·∧ Cm

Each Ci forbids one assignment on k variables.

For example, Ci = x1 ∨ x2 ∨ · · ·∨ xk forbids the all False assignment.

Thus, if we forbade all assignments of Hamming weight i for some 1 ⩽ i ⩽ k − 1

(using
(
k

i

)
clauses), the solution space is not connected via single variable updates.

For example, to remove Hamming weight k− 1 assignments, we only need clauses

C1 = ¬x1 ∨ x2 ∨ . . . xk

C2 = x1 ∨ ¬x2 ∨ . . . xk

...

Ck = x1 ∨ x2∨ . . .¬xk

In this example, the all False assignment is disconnected from the rest.
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Our solution — projection

Projecting from a high dimension to a lower dimension may improve con-
nectivity.

We will run Glauber dynamics on the projected distribution over a suitably
“marked” variables.

The general problem is NP-hard, so we will focus on bounded degree cases.



Bounded degree k-Sat



Lovász local lemma

Theorem (Loász local lemma)
Let E1, . . . , Em be a set of “bad” events, such that Pr[Ei] ⩽ p for all i. More-
over, each Ei is independent from all but at most ∆ events. If ep∆ ⩽ 1, then

Pr
[ m∧
i=1

Ei

]
> 0.

In the setting of k-Sat, each clause Ci defines a bad event Ei, which is the
forbidden assignment of Ci, and p = 2−k.

If every variable appears in at most d clauses, then ∆ ⩽ kd.

ep∆ ⩽ 1 ⇔ e2−kkd ⩽ 1

⇔ k ⩾ logd+ log k+ C
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Moser-Tardos algorithm

We consider k-CNF formula with variable degree at most d.

Theorem (Moser and Tardos, 2011)
If k ⩾ logd + log k + C, then we can always find a satisfying assignment in
polynomial time.

The algorithm is extremely simple: assign variables u.a.r., then keep resam-
ple variables in violating clauses.

Unfortunately, sampling is substantially harder.

Theorem (Bezáková, Galanis, Goldberg, G. and Štefankovič, 2016)
If k ⩽ 2 logd + C, then sampling satisfying assignments is NP-hard, even if
there is no negation in the formula (monotone case).
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Open problem:

Is there an efficient algorithm to
sample satisfying assignments of k-Sat
given k ≳ 2 logd+ C?



Results

Hermon, Sly and Zhang (2016) Glauber dynamics mixes in O(n logn)
time if k ⩾ 2 logd+ C and there is no negation (monotone
formula).

G., Jerrum and Liu (2016) “Partial rejection sampling” terminates inO(n)

time if k ⩾ 2 logd+ C and there is no small intersection.

Moitra (2016) An “exotic” deterministic algorithm in nO(k2d2) time
if k ⩾ 60(logd+ log k) + 300.

Theorem (Our result)

We give a Markov chain based algorithm in Õ(n1+δk3d2) time if
k ⩾ 20(logd+ log k) + log δ−1 where δ ⩽ 1/60 is an arbitrary constant.
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The algorithm

Goal: to sample from the uniform distributionµ over satisfying assignments

1. Mark a set M of variables;

2. Run Glauber dynamics on the projected distribution µM for
O(n logn) steps. This yields an (approximate) sample σM ∼ µM;

3. Use rejection sampling to sample from σV\M;

4. Output σM ∪ σV\M.



Marking variables

A set M of variables are marked so that:

1. for any clause Ci, |Ci ∩M| ≳ 0.11k;

2. for any clause Ci, |Ci \M| ≳ 0.51k;

The existence of M is guaranteed by the local lemma, and M can be found
by the Moser-Tardos algorithm in linear time.



Two sides of the marking

If |Ci ∩M| is large, then all components are small.

Lemma

For almost all σ ∈ {0, 1}M, V \M scatters into connected components of size
O(poly(dk) logn).

If |Ci \M| is large, then all variables are close to the uniform distribution.

Lemma
Conditioned on any assignment of M, for any v ∈ V \M,∣∣∣∣ Pr

σ∼µV\M

[σ(v) = 1] −
1

2

∣∣∣∣ ⩽ exp(−O(k)).

So the marking is to balance these two effects.



What to prove

1. The Glauber dynamics on the marked variables is rapidly mixing;

2. The Glauber dynamics on the marked variables can be implemented
efficiently;

3. The rejection sampling step in the end terminates quickly.

Item (1) is shown using the path coupling method.

Items (2) and (3) are shown together. In particular, the Glauber dynamics is
implemented using rejection sampling.



Implementing the Glauber dynamics

Glauber dynamics: compute the marginal
probability of a variable conditioned on all
other marked variables, which defines a
smaller instance. (#P-hard in general.)

We approximately implement this by us-
ing rejection sampling on

1. all unmarked variables, and

2. the variable to be updated.

Rejection sampling terminates in O(nδ)

steps with high probability.

Pr[σ(xi) = T ] =??

T F

F

(Every clause here has at least 1 marked
variable and 2 unmarked variable.)



Overview

The marking

|Ci ∩M| is large|Ci \M| is large

Small componentsLocal uniformity

Rej. samplingPath coupling

O(nδ) per iterationO(n logn) iterations

Õ(n1+δ) running time



Why rejection sampling?

Draw σM ∼ µM. For each clause, there are at leastΩ(k) variables assigned.
Many clauses are satisfied, and the remaining clauses scatter into connected
components of size ≍ logn.

However, the size is Ω(dk logn), so a brute-force enumeration takes time
nΩ(dk) which is too slow to our needs.

We use the local lemma once again here to show that uniform at random
assignments satisfies remaining clauses with probability at least Ω(n−δ).
Thus, the rejection sampling succeeds in time Õ(nδ).



Path coupling

Path coupling condition: given two assignment σ0 and σ1 which differ on
only one variable v,∑

u∈M, u ̸=v

dTV(µu(· | σ0), µu(· | σ1)) < 1.

Using the coupling inequality, it suffices to show that for a carefully de-
signed coupling C of µM\{v}(· | σ0) and µM\{v}(· | σ1) such that

E
(τ0,τ1)∼C

∣∣{u | u ∈ M \ {v}, τ0(u) ̸= τ1(u)}
∣∣ < 1.

This “disagreement coupling” C is very similar to the one used by G., Liao,
Lu and Zhang (2018), which is a refined version of Moitra (2016). However,
previous analysis has awhp guarantee, andwe need a new analysis to bound
the expectation.



Disagreement percolation

v

C1 C2 C3 C4

. . . . . . . . . . . .

The disagreement percolation is similar to a branching process with branching factor
dk, and each child survives with probability exp(−O(k)) due to local uniformity.
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Concluding remarks



Random k-Sat

In another recent work, Galanis, Goldberg, G. and Yang (2019) showed that
there is an efficient algorithm to approximately count the number of satis-
fying assignment of a random k-Sat instance with high probability, if the
density is at most 2k/300.

• This improves the previous best algorithm which works for density
⩽ 2 logk

k
(Montanari and Shah 2007).

• The algorithm is based on Moitra (2016), with some extra ingredients
to handle Ω(logn) degree variables.

• Nonetheless, it is not clear if the Markov chain approach works for
random formulas.



Open problems

• Is the conjectured threshold correct?
• Getting rid of the marking?

• Other CSPs, like hypergraph colouring?

• Other applications of this projection method?



Thank you!
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