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A tale of two algorithms

(Moser and Tardos meet Wilson)
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Lovasz Local Lemma

@: a R-CNF formula with degree d.

O=CGNGAN---NCp
Degree: any variable x belongs to at most d clauses.

Lovasz Local Lemma [Erdds, Lovasz 75]:
ifd< 5—2 then there always exists a satisfying assignment to @.

LLL only guarantees an exponentially small probability.
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Moser-Tardos resampling algorithm

A remarkable breakthrough is due to [Moser, Tardos 10],
where they found an efficient version of LLL:

1. Initialize all variables randomly.

2. While there exists an unsatisfied clause:
pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under
the same condition as LLL.
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Moser-Tardos works for the general “variable” framework:
Variables Xi, ..., X, “Bad” events Aq, ..., Am

The goal is to find a “perfect” assignment of the variables avoiding all
“bad” events.

Equivalently, this is a product distribution conditioned on none of A;
occurring.



Variable framework

Moser-Tardos works for the general “variable” framework:
Variables Xi, ..., X, “Bad” events Aq, ..., Am

The goal is to find a “perfect” assignment of the variables avoiding all
“bad” events.

Equivalently, this is a product distribution conditioned on none of A;
occurring.

Symmetric LLL condition: epA <1

p: probability of A; A: # of dependent events of A,
For R-CNF, p=2% and A< (d—1)k
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Searching vs. Sampling

Question
Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will ’—E]
stay unoccupied.

The empty set is favored.
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Wilson's “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

r

1. Foreachv # r,assign arandom arrow
from v to one of its neighbours.

2. While thereis a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

When this process stops, there is no cycle and it results in a spanning
tree.
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Wilson's “cycle-popping” algorithm

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? Wilson's proof is ad hoc. Is there a general criteria?



Why is Wilson's algorithm uniform?
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Dependency Graph

Dependency graph G = (V, E):
V corresponds to events;
(1,)) ¢E = AjandA; are independent.

(In the variable framework, var(A;) N var(4;) = 0.)

Then A is the maximum degree in G.
(A: max # of dependent events of A;)

LLL condition: epA < 1.
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Extremal instances

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

- Moser-Tardos is the slowest on extremal instances.

« Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.
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Extremal instances

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (over-
lapping), then these two cycles must be the same by following the
arrow!

Other extremal instances:

 Sink-free orientations
[Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempidinen, Rybicki, Suomela, Uitto 16]

« Extremal CNF formulas
(dependent clauses contain opposite literals)

n



Resampling table

Associate an infinite stack X; o, X1, ... to each random variable X;

X1 | X0 | X1 | X2 | Xi3 | Xia

Xo | Xoo | Xon | X2 | Xo3 | Xou

X3 | X30 | X310 | X32 | X33 | X34

Xy | Xao | Xaa | Xap | Xag | Xou

When we need to resample, draw the next value in the stack.

12
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X Xia | X2 | X | X
X2 Xon | Xop | X3 | Xou
X3 X3q | X320 | X33 | X34
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Associate an infinite stack X; o, X1, ... to each random variable X;

X Xia | X2 | X | X
X2 Xoa | Xop | Xo3 | Xous
X3 X3q | X320 | X33 | X34
Xy Xaa | Xap | Xas | Xou

When we need to resample, draw the next value in the stack.
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Resampling table

Associate an infinite stack X; o, X1, ... to each random variable X;

X Xz | Xis
X2 Xo3 | Xou
X3 X33 | X34
X4 Xo3 | Xau

When we need to resample, draw the next value in the stack.
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X Xz | Xis
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Resampling table

Associate an infinite stack X; o, X1, ... to each random variable X;

X X1,4
Xo X2.4
X3 X34
X4 Ky

When we need to resample, draw the next value in the stack.

12



Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!
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X4 Ky
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Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X X1,4
Xo X2.4
X3 X34
X4 Ky

For any output o and T, there is a bijection between trajectories

leading to o and . "



Running time of Moser-Tardos

Theorem (Kolipaka, Szegedy 11)

m
Under Shearer’s condition, ET < Z

Q‘Q

(Shearer’s condition: gs > 0 for all S C V, where gs is the independence
polynomial on G\ T*(S) with weight —p;.)
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Running time of Moser-Tardos

Theorem (Kolipaka, Szegedy 11)

m
Under Shearer’s condition, ET < Z

Q‘Q

(Shearer's condition: gs > 0 for all S C V, where gs is the independence
polynomial on G\ T*(S) with weight —p;.)

For extremal instances:

g is the prob. of perfect assignments (no A; holds);
g; is the prob. of assignments such that only A; holds.

Thus, =z i _ #near-perfect assignments
— do ~ # perfect assignments
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Running time on extremal instances

Theorem (G., Jerrum, Liu 17)
Under Shearer’s condition, for extremal instances,

ET— = g _ #near-perfect assignments

— qy ~ # perfect assignments

In other words, Moser-Tardos on extremal instances is slowest.

New consequences:

1. The expected number of “popped cycles” in Wilson's algorithm is at
most mn.

2. The expected number of “popped sinks” for sink-free orientations is
linear in n if the graph is d-regular where d > 3.

15



Approximating the independence polynomial?

For positive weighted independent sets, Weitz (2006) works up to the
uniqueness threshold, with running time n°°e4) The MCMC approach
runs in time O(n?) for a smaller region. [Efthymiou, Hayes, Stefankovic,

Vigoda, Yin 16]
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Approximating the independence polynomial?

For positive weighted independent sets, Weitz (2006) works up to the
uniqueness threshold, with running time n°°e4) The MCMC approach
runs in time O(n?) for a smaller region. [Efthymiou, Hayes, Stefankovic,
Vigoda, Yin 16]

When p satisfies Shearer’s condition with constant slack in G, we can
approximate gg(G, —p) in time n®log4),
[Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn’t have A in the exponent?
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Approximating the independence polynomial?

Extremal: Pr(perfect assignment) = q4(G, —p).

Given G and p, If there are x;'s and events A;'s so that:

* Pr(A) = p;;

« G is the dependency graph;

« Aj's are extremal,
then we could use the uniform sampler (Moser-Tardos) to estimate
gp. With constant slack, Moser-Tardos runs in expected O(n) time.

dj

A simple construction exists if p; < 2 (in contrast to Shearer’s threshold & L%)

Unfortunately, gaps exist between “abstract” and “variable” versions
of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer’s threshold. The situation
is similar to the positive weight case, but for a different reason.
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What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is @ Hamiltonian cycle.



Can we sample Hamiltonian cycles efficiently?
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In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.
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Can we sample Hamiltonian cycles efficiently?

__ #near-perfect assignments
Recall that ET = # perfect assignments  *

In our setting, a near-perfect assignment is a uni-cyclic arrow set.
Unfortunately, this ratio is exponentially large in a complete graph.
[Dyer, Frieze, Jerrum 98]:

In dense graphs (6 = (1/2 + ¢)n), Hamiltonian cycles are sufficiently

dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles
in some interesting graph families?
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Partial Rejection Sampling

Inspired by [Moser, Tardos 10], we found a new uniform sampler.
Partial Rejection Sampling [G., Jerrum, Liu 17]:

1. Initialize 0 — randomize all variables independently.

2. While o is not perfect:
choose an appropriate subset of events, Resample(o);
re-randomize all variables in Resample(o).

For extremal instances, Resample(o) is simply Bad(o).

How to choose Resample(o) to guarantee uniformity?
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Let T be the stopping time and R = R4, ..., Ry be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

21



What set to resample?

Let T be the stopping time and R = R4, ..., Ry be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment o, a subset S of variables is
unblocking, if all events intersecting S are determined by ols.

(only need to worry about events intersecting both S and S.)

21



What set to resample?

Let T be the stopping time and R = R4, ..., Ry be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment o, a subset S of variables is
unblocking, if all events intersecting S are determined by ols.

(only need to worry about events intersecting both S and S.)

Examples:

The set of all variables is unblocking.

21



What set to resample?

Let T be the stopping time and R = R4, ..., Ry be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment o, a subset S of variables is
unblocking, if all events intersecting S are determined by ols.

(only need to worry about events intersecting both S and S.)

Examples:
The set of all variables is unblocking.

For independent sets, S is unblocking if aS are all unoccupied.

21



Resampling set

Given an assignment o, we want Resample(o) to satisfy:

Res Bad

22



Resampling set

Given an assignment o, we want Resample(o) to satisfy:

1. Resample(o) contains Bad(o);
Res Bad

22



Resampling set

Given an assignment o, we want Resample(o) to satisfy:

1. Resample(o) contains Bad(o);
Res Bad
2. Resample(o) is unblocking;

22



Resampling set

Given an assignment o, we want Resample(o) to satisfy:

1. Resample(o) contains Bad(o);
Res Bad
2. Resample(o) is unblocking;

3. What is revealed has to be resampled.

22



Resampling set

Given an assignment o, we want Resample(o) to satisfy:

1. Resample(o) contains Bad(o);
Res Bad
2. Resample(o) is unblocking;

3. What is revealed has to be resampled.

Resample(o) can be found by a breadth-first search.

In the worst case we may resample all variables.

22



Partial Rejection Sampling vs Markov chains

Markov chain is a random walk in the space.
(The solution space has to be connected!)
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Partial Rejection Sampling vs Markov chains

PRS is a local search on the space.
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Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Connectivity is not an issue.)

O
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Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Uniformity is guaranteed by the bijection.)

®
@
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Partial Rejection Sampling

Partial Rejection Sampling:
repeatedly resample the appropriately chosen Resample(o).
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Partial Rejection Sampling

Partial Rejection Sampling:
repeatedly resample the appropriately chosen Resample(o).

Theorem (G., Jerrum, Liu 17)
When PRS halts, its output is uniform.

Some applications beyond extremal instances:
- Weighted independent sets.
« R-CNF formulas.
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Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Resample = Bad U dBad.

4, Resample Resample.
Check independence.
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) g IR N\
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Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Resample = Bad U dBad.

4, Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.
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Running time — independent sets

Set-up

Vertex weight A. “Bad” events are occupied edges: p = (1%)2
Dependency graph is the line graph. A=2d-2.
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Running time — independent sets

Set-up

Vertex weight A. “Bad” events are occupied edges: p = (1%)2
Dependency graph is the line graph. A=2d-2.

Suppose kR = [Resample,|.

Then E|Bad:, 1| < epA-k

1. Both Resample; and 0Resample; are
“dangerous”, and [0Resample; < A - k.

2. Under LLL condition, for any event E,
Pr(E| AA) < ePr(E).
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Set-up

Vertex weight A. “Bad” events are occupied edges: p = (1%)2
Dependency graph is the line graph. A=2d-2.

Suppose kR = [Resample,|.

Then E|Badiq| < epA-k = [E|Resample,, | < epA?- k.
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Running time — independent sets

Set-up

Vertex weight A. “Bad” events are occupied edges: p = (1%)2
Dependency graph is the line graph. A=2d-2.

Suppose kR = [Resample,|.
Then E|Badiq| < epA-k = [E|Resample,, | < epA?- k.

The resampling region shrinks if
epA’ <1 < A=0(1/d)

(Recall that the local lemma requires epA < 1.)
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Phase transition of independent sets

Sampling independent sets with weight A and maximum degree d:

o IfA < A(d) = §, there is a deterministic, approximate, and polynomial-
time algorithm [Weitz 06]. (Best randomized algorithm (based on Markov
chains) has a worse range but O(nlogn) running time.)

« IfA>Ac(d) = £, itis NP-hard [Sly 10].
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Phase transition of independent sets

Sampling independent sets with weight A and maximum degree d:

o IfA < A(d) = §, there is a deterministic, approximate, and polynomial-
time algorithm [Weitz 06]. (Best randomized algorithm (based on Markov
chains) has a worse range but O(nlogn) running time.)

« IfA>Ac(d) = £, itis NP-hard [Sly 10].

. S S .
Our algorithm has linear expected running time if A < 3ol

The range is off by a constant, but it is fast, simple, exact, and distributed.
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Running time — general case

3 constant C st if pA? > C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than epA < 1.
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Indenependent sets are nice in that Resample is just BaduodBad. In general,
Resample can expand more than one hop. Denote by r; the probability that
A; may expand to A;. Let r = max{r}.

Theorem (G., Jerrum, Liu 17)
If epA? < 1/6 and erA < 1/3, then ET = O(m).

The expected number of rounds is O(log m).

The expected number of variable resamples is O(nlog m).
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Running time — general case

3 constant C st if pA? > C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than epA < 1.

Indenependent sets are nice in that Resample is just BaduodBad. In general,
Resample can expand more than one hop. Denote by r; the probability that
A; may expand to A;. Let r = max{r}.

Theorem (G., Jerrum, Liu 17)
If epA? < 1/6 and erA < 1/3, then ET = O(m).

The expected number of rounds is O(log m).

The expected number of variable resamples is O(nlog m).

Our proof is a supermartingale argument on [Resample].

The condition on ris necessary.
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Sampling k-CNF

NP-Hardness for sampling:
d > 3 — decision hardness for general formula
d > 6,k =2 (monotone formula) [Sly 10]
d > 5-2%/2 (monotone formula) [Bezakova, Galanis, Goldberg, G., Stefankovi¢ 16]
(LLL condition is d < Z;.)
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Sampling k-CNF

NP-Hardness for sampling:
d > 3 — decision hardness for general formula
d > 6,k =2 (monotone formula) [Sly 10]
d > 5-2%/2 (monotone formula) [Bezakova, Galanis, Goldberg, G., Stefankovi¢ 16]
(LLL condition is d < Z;.)

Theorem (G., Jerrum, Liu 17)

PRS has linear expected running time if d < g - 282 and any two
dependent clauses share at least min{log dk, k/2} variables.

NP-hard even if d > 5-2//2 and intersection = k/2 [BGGGS 16]
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Sampling k-CNF

NP-Hard if d > 3 (decision); ord > 6,k = 2 (monotone) [Sly 10];

ord > 5-2k/2 (monotone) and intersection — k/2 [BGGGS 16].

Ref. Condition Restriction Method
[Bubley, Dyer 97] d=2 Markov chain
[BE;(:E;I:EQ’ODg]er’ d<k-2 monotone Markov chain

[Liu, Lu 15] d<5 monotone Correlation decay
[BGGGS 16] : o:r SQZI? 3 monotone Correlation decay
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ord > 6,k =2 (monotone) [Sly 10];
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Ref. Condition Restriction Method
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! ’ d< k— Markov chain

Karpinski 06] = 2 monotone
[Liu, Lu 15] d<5s monotone Correlation decay
- d=6,k=3 .
BGGGS 16 ’ Correlation deca
[ ] ord <k monotone y
[Hermon, Sly, Zhang 17] d < c2k/? monotone Markov chain

[Moitra 17]

d < 5(2&’/60)

Correlation decay + LP
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Sampling k-CNF

NP-Hard if d > 3 (decision); ord > 6,k = 2 (monotone) [Sly 10];

ord > 5-2k/2 (monotone) and intersection — k/2 [BGGGS 16].

Ref. Condition Restriction Method
[Bubley, Dyer 97] d=2 Markov chain
[Bordewich, Dyer, .

! ’ d< k— Markov chain

Karpinski 06] = 2 monotone

[Liu, Lu 15] d<5s monotone Correlation decay

- d=6,k=3 .
BGGGS 16 ’ Correlation deca
[ ] ord <k monotone y
[Hermon, Sly, Zhang 17] d < c2k/? monotone Markov chain
[Moitra 17] d < 0(2"/0) Correlation decay + LP
q Int i >
[G., Jerrum, Liu 17] d < 2f/? ntersection > PRS

min{log dk, R/2}

All other methods are approximate, whereas PRS is exact.
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Concluding remarks




Summary

 For extremal instances, Moser-Tardos is uniform, with expected

: : # “near-perfect” assignments
running time # "perfect” assignments
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 For extremal instances, Moser-Tardos is uniform, with expected

: : # “near-perfect” assignments
running time # "perfect” assignments

« For general instances, we need to carefully choose a resampling
set to ensure uniformity.

+ The expected running time is linear if pA? = O(1) and rA = O(1).

31



Sampling threshold under LLL?

Existence threshold [Erdds, Lovasz 75]
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Sampling threshold under LLL?

Searching threshold [Moser, Tardos 10]
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Sampling threshold under LLL?

Sampling threshold?

0(1/4?) ~ L p
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Open problems

+ 0(n®) algorithm for the independence polynomial with negative
weights?

« Can we sample Hamiltonian cycles exactly and efficiently in some
interesting graph families?

« How to remove the side condition on intersections?

« Where is the transition threshold for k-CNF of degree d?
+ Beyond the variable model - resampling permutations???
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Thank you!
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