
Uniform Sampling through the Lovász Local Lemma

Heng Guo
Berkeley, Jun 06 2017

Queen Mary, University of London

1

Draft: arxiv.org/abs/1611.01647

Joint with Mark Jerrum (QMUL) and Jingcheng Liu (Berkeley)

2

arxiv.org/abs/1611.01647

A tale of two algorithms
(Moser and Tardos meet Wilson)

Lovász Local Lemma

Φ: a k-CNF formula with degree d.

Φ = C1 ∧ C2 ∧ · · ·∧ Cm

Degree: any variable x belongs to at most d clauses.

Lovász Local Lemma [Erdős, Lovász 75]:
if d ⩽ 2k

ek , then there always exists a satisfying assignment to Φ.

LLL only guarantees an exponentially small probability.

3

Lovász Local Lemma

Φ: a k-CNF formula with degree d.

Φ = C1 ∧ C2 ∧ · · ·∧ Cm

Degree: any variable x belongs to at most d clauses.

Lovász Local Lemma [Erdős, Lovász 75]:
if d ⩽ 2k

ek , then there always exists a satisfying assignment to Φ.

LLL only guarantees an exponentially small probability.

3

Lovász Local Lemma

Φ: a k-CNF formula with degree d.

Φ = C1 ∧ C2 ∧ · · ·∧ Cm

Degree: any variable x belongs to at most d clauses.

Lovász Local Lemma [Erdős, Lovász 75]:
if d ⩽ 2k

ek , then there always exists a satisfying assignment to Φ.

LLL only guarantees an exponentially small probability.

3

Moser-Tardos resampling algorithm

A remarkable breakthrough is due to [Moser, Tardos 10],
where they found an efficient version of LLL:

1. Initialize all variables randomly.

2. While there exists an unsatisfied clause:
pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under
the same condition as LLL.

4

Moser-Tardos resampling algorithm

A remarkable breakthrough is due to [Moser, Tardos 10],
where they found an efficient version of LLL:

1. Initialize all variables randomly.

2. While there exists an unsatisfied clause:
pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under
the same condition as LLL.

4

Moser-Tardos resampling algorithm

A remarkable breakthrough is due to [Moser, Tardos 10],
where they found an efficient version of LLL:

1. Initialize all variables randomly.

2. While there exists an unsatisfied clause:
pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under
the same condition as LLL.

4

Variable framework

Moser-Tardos works for the general “variable” framework:

Variables X1, . . . , Xn “Bad” events A1, . . . ,Am

The goal is to find a “perfect” assignment of the variables avoiding all
“bad” events.

Equivalently, this is a product distribution conditioned on none of Ai
occurring.

Symmetric LLL condition: ep∆ ⩽ 1

p: probability of Ai ∆: # of dependent events of Ai

For k-CNF, p = 2−k and ∆ ⩽ (d− 1)k.

5

Variable framework

Moser-Tardos works for the general “variable” framework:

Variables X1, . . . , Xn “Bad” events A1, . . . ,Am

The goal is to find a “perfect” assignment of the variables avoiding all
“bad” events.

Equivalently, this is a product distribution conditioned on none of Ai
occurring.

Symmetric LLL condition: ep∆ ⩽ 1

p: probability of Ai ∆: # of dependent events of Ai

For k-CNF, p = 2−k and ∆ ⩽ (d− 1)k.

5

Searching vs. Sampling

Question
Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will
stay unoccupied.

The empty set is favored.

6

Searching vs. Sampling

Question
Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will
stay unoccupied.

The empty set is favored.

6

Searching vs. Sampling

Question
Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will
stay unoccupied.

The empty set is favored.

6

Searching vs. Sampling

Question
Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will
stay unoccupied.

The empty set is favored.

6

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

→ 1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

→ 3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Goal: sample a uniform spanning tree with root r.

1. For each v ̸= r, assign a random arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in the
current graph, resample all vertices
along all cycles.

3. Output.

r

When this process stops, there is no cycle and it results in a spanning
tree.

7

Wilson’s “cycle-popping” algorithm

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? Wilson’s proof is ad hoc. Is there a general criteria?

8

Wilson’s “cycle-popping” algorithm

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? Wilson’s proof is ad hoc. Is there a general criteria?

8

Wilson’s “cycle-popping” algorithm

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? Wilson’s proof is ad hoc. Is there a general criteria?

8

Why is Wilson’s algorithm uniform?

Dependency Graph

Dependency graph G = (V, E):

V corresponds to events;

(i, j) ̸∈ E ⇒ Ai and Aj are independent.

(In the variable framework, var(Ai) ∩ var(Aj) = ∅.)

Then ∆ is the maximum degree in G.

(∆: max # of dependent events of Ai)

LLL condition: ep∆ ⩽ 1.

9

Dependency Graph

Dependency graph G = (V, E):

V corresponds to events;

(i, j) ̸∈ E ⇒ Ai and Aj are independent.

(In the variable framework, var(Ai) ∩ var(Aj) = ∅.)

Then ∆ is the maximum degree in G.

(∆: max # of dependent events of Ai)

LLL condition: ep∆ ⩽ 1.

9

Extremal instances

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

• Moser-Tardos is the slowest on extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.

10

Extremal instances

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

• Moser-Tardos is the slowest on extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.

10

Extremal instances

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

• Moser-Tardos is the slowest on extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.

10

Extremal instances

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

• Moser-Tardos is the slowest on extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.

10

Extremal instances

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (given
the same dependency graph). [Shearer 85]

• Moser-Tardos is the slowest on extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
For extremal instances, Moser-Tardos is uniform.

10

Extremal instances

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (over-
lapping), then these two cycles must be the same by following the
arrow!

Other extremal instances:

• Sink-free orientations
[Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
Reintroduced to show distributed LLL lower bound
[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

• Extremal CNF formulas
(dependent clauses contain opposite literals)

11

Extremal instances

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (over-
lapping), then these two cycles must be the same by following the
arrow!

Other extremal instances:

• Sink-free orientations
[Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
Reintroduced to show distributed LLL lower bound
[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

• Extremal CNF formulas
(dependent clauses contain opposite literals)

11

Extremal instances

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (over-
lapping), then these two cycles must be the same by following the
arrow!

Other extremal instances:

• Sink-free orientations
[Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
Reintroduced to show distributed LLL lower bound
[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

• Extremal CNF formulas
(dependent clauses contain opposite literals)

11

Extremal instances

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (over-
lapping), then these two cycles must be the same by following the
arrow!

Other extremal instances:

• Sink-free orientations
[Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
Reintroduced to show distributed LLL lower bound
[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

• Extremal CNF formulas
(dependent clauses contain opposite literals)

11

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

When we need to resample, draw the next value in the stack.

12

Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2
X ′4,1

X ′3,2

X ′2,1

X ′1,0

For any output σ and τ, there is a bijection between trajectories
leading to σ and τ.

13

Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′4,1

X ′3,2

X ′2,1

X ′1,0

For any output σ and τ, there is a bijection between trajectories
leading to σ and τ.

13

Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2
X ′4,1

X ′3,2

X ′2,1

X ′1,0

For any output σ and τ, there is a bijection between trajectories
leading to σ and τ.

13

Change the future, not the past

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2
X ′4,1

X ′3,2

X ′2,1

X ′1,0

For any output σ and τ, there is a bijection between trajectories
leading to σ and τ.

13

Running time of Moser-Tardos

Theorem (Kolipaka, Szegedy 11)

Under Shearer’s condition, E T ⩽
m∑
i=1

qi
q∅
.

(Shearer’s condition: qS ⩾ 0 for all S ⊆ V, where qS is the independence
polynomial on G \ Γ+(S) with weight −pi.)

For extremal instances:
q∅ is the prob. of perfect assignments (no Ai holds);
qi is the prob. of assignments such that only Ai holds.

Thus, m∑
i=1

qi
q∅

=
near-perfect assignments
perfect assignments

14

Running time of Moser-Tardos

Theorem (Kolipaka, Szegedy 11)

Under Shearer’s condition, E T ⩽
m∑
i=1

qi
q∅
.

(Shearer’s condition: qS ⩾ 0 for all S ⊆ V, where qS is the independence
polynomial on G \ Γ+(S) with weight −pi.)

For extremal instances:
q∅ is the prob. of perfect assignments (no Ai holds);
qi is the prob. of assignments such that only Ai holds.

Thus, m∑
i=1

qi
q∅

=
near-perfect assignments
perfect assignments

14

Running time on extremal instances

Theorem (G., Jerrum, Liu 17)
Under Shearer’s condition, for extremal instances,

E T=
m∑
i=1

qi
q∅

=
near-perfect assignments
perfect assignments .

In other words, Moser-Tardos on extremal instances is slowest.

New consequences:

1. The expected number of “popped cycles” in Wilson’s algorithm is at
most mn.

2. The expected number of “popped sinks” for sink-free orientations is
linear in n if the graph is d-regular where d ⩾ 3.

15

Approximating the independence polynomial?

For positive weighted independent sets, Weitz (2006) works up to the
uniqueness threshold, with running time nO(log∆). TheMCMC approach
runs in time Õ(n2) for a smaller region. [Efthymiou, Hayes, Štefankovič,
Vigoda, Yin 16]

When p satisfies Shearer’s condition with constant slack in G, we can
approximate q∅(G,−p) in time nO(log∆).
[Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn’t have ∆ in the exponent?

16

Approximating the independence polynomial?

For positive weighted independent sets, Weitz (2006) works up to the
uniqueness threshold, with running time nO(log∆). TheMCMC approach
runs in time Õ(n2) for a smaller region. [Efthymiou, Hayes, Štefankovič,
Vigoda, Yin 16]

When p satisfies Shearer’s condition with constant slack in G, we can
approximate q∅(G,−p) in time nO(log∆).
[Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn’t have ∆ in the exponent?

16

Approximating the independence polynomial?

For positive weighted independent sets, Weitz (2006) works up to the
uniqueness threshold, with running time nO(log∆). TheMCMC approach
runs in time Õ(n2) for a smaller region. [Efthymiou, Hayes, Štefankovič,
Vigoda, Yin 16]

When p satisfies Shearer’s condition with constant slack in G, we can
approximate q∅(G,−p) in time nO(log∆).
[Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn’t have ∆ in the exponent?

16

Approximating the independence polynomial?

Extremal: Pr(perfect assignment) = q∅(G,−p).

Given G and p, if there are xj’s and events Ai’s so that:
• Pr(Ai) = pi;
• G is the dependency graph;
• Ai’s are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate
q∅. With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if pi ⩽ 2−di (in contrast to Shearer’s threshold ≈ 1
e∆).

Unfortunately, gaps exist between “abstract” and “variable” versions
of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer’s threshold. The situation
is similar to the positive weight case, but for a different reason.

17

Approximating the independence polynomial?

Extremal: Pr(perfect assignment) = q∅(G,−p).

Given G and p, if there are xj’s and events Ai’s so that:
• Pr(Ai) = pi;
• G is the dependency graph;
• Ai’s are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate
q∅. With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if pi ⩽ 2−di (in contrast to Shearer’s threshold ≈ 1
e∆).

Unfortunately, gaps exist between “abstract” and “variable” versions
of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer’s threshold. The situation
is similar to the positive weight case, but for a different reason.

17

Approximating the independence polynomial?

Extremal: Pr(perfect assignment) = q∅(G,−p).

Given G and p, if there are xj’s and events Ai’s so that:
• Pr(Ai) = pi;
• G is the dependency graph;
• Ai’s are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate
q∅. With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if pi ⩽ 2−di (in contrast to Shearer’s threshold ≈ 1
e∆).

Unfortunately, gaps exist between “abstract” and “variable” versions
of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer’s threshold. The situation
is similar to the positive weight case, but for a different reason.

17

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

→ 1. For each v, assign a random arrow
from v to one of its neighbours.

2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

→ 2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

→ 3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

What else can we sample?

1. For each v, assign a random arrow
from v to one of its neighbours.

2. While there is a “small” cycle, resam-
ple all vertices along all cycles.

3. Output.

When this process stops, there is no small cycle and what is left
is a Hamiltonian cycle.

18

Can we sample Hamiltonian cycles efficiently?

Recall that E T = # near-perfect assignments
perfect assignments .

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs (δ = (1/2+ ε)n), Hamiltonian cycles are sufficiently
dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles
in some interesting graph families?

19

Can we sample Hamiltonian cycles efficiently?

Recall that E T = # near-perfect assignments
perfect assignments .

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs (δ = (1/2+ ε)n), Hamiltonian cycles are sufficiently
dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles
in some interesting graph families?

19

Can we sample Hamiltonian cycles efficiently?

Recall that E T = # near-perfect assignments
perfect assignments .

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs (δ = (1/2+ ε)n), Hamiltonian cycles are sufficiently
dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles
in some interesting graph families?

19

Beyond Extremal Instances

Partial Rejection Sampling

Inspired by [Moser, Tardos 10], we found a new uniform sampler.

Partial Rejection Sampling [G., Jerrum, Liu 17]:
1. Initialize σ — randomize all variables independently.

2. While σ is not perfect:
choose an appropriate subset of events, Resample(σ);
re-randomize all variables in Resample(σ).

For extremal instances, Resample(σ) is simply Bad(σ).

How to choose Resample(σ) to guarantee uniformity?

20

Partial Rejection Sampling

Inspired by [Moser, Tardos 10], we found a new uniform sampler.

Partial Rejection Sampling [G., Jerrum, Liu 17]:
1. Initialize σ — randomize all variables independently.

2. While σ is not perfect:
choose an appropriate subset of events, Resample(σ);
re-randomize all variables in Resample(σ).

For extremal instances, Resample(σ) is simply Bad(σ).

How to choose Resample(σ) to guarantee uniformity?

20

Partial Rejection Sampling

Inspired by [Moser, Tardos 10], we found a new uniform sampler.

Partial Rejection Sampling [G., Jerrum, Liu 17]:
1. Initialize σ — randomize all variables independently.

2. While σ is not perfect:
choose an appropriate subset of events, Resample(σ);
re-randomize all variables in Resample(σ).

For extremal instances, Resample(σ) is simply Bad(σ).

How to choose Resample(σ) to guarantee uniformity?

20

Partial Rejection Sampling

Inspired by [Moser, Tardos 10], we found a new uniform sampler.

Partial Rejection Sampling [G., Jerrum, Liu 17]:
1. Initialize σ — randomize all variables independently.

2. While σ is not perfect:
choose an appropriate subset of events, Resample(σ);
re-randomize all variables in Resample(σ).

For extremal instances, Resample(σ) is simply Bad(σ).

How to choose Resample(σ) to guarantee uniformity?

20

What set to resample?

Let T be the stopping time and R = R1, . . . ,RT be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment σ, a subset S of variables is
unblocking, if all events intersecting S are determined by σ|S.

(only need to worry about events intersecting both S and S.)

Examples:

The set of all variables is unblocking.

For independent sets, S is unblocking if ∂S are all unoccupied.

21

What set to resample?

Let T be the stopping time and R = R1, . . . ,RT be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment σ, a subset S of variables is
unblocking, if all events intersecting S are determined by σ|S.

(only need to worry about events intersecting both S and S.)

Examples:

The set of all variables is unblocking.

For independent sets, S is unblocking if ∂S are all unoccupied.

21

What set to resample?

Let T be the stopping time and R = R1, . . . ,RT be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment σ, a subset S of variables is
unblocking, if all events intersecting S are determined by σ|S.

(only need to worry about events intersecting both S and S.)

Examples:

The set of all variables is unblocking.

For independent sets, S is unblocking if ∂S are all unoccupied.

21

What set to resample?

Let T be the stopping time and R = R1, . . . ,RT be the set sequence of
resampled variables.

Goal: conditioned on R, all perfect assignments are reachable.

Unblocking: under an assignment σ, a subset S of variables is
unblocking, if all events intersecting S are determined by σ|S.

(only need to worry about events intersecting both S and S.)

Examples:

The set of all variables is unblocking.

For independent sets, S is unblocking if ∂S are all unoccupied.

21

Resampling set

Given an assignment σ, we want Resample(σ) to satisfy:

1. Resample(σ) contains Bad(σ);

2. Resample(σ) is unblocking;

3. What is revealed has to be resampled.

BadRes

σ

Resample(σ) can be found by a breadth-first search.
In the worst case we may resample all variables.

22

Resampling set

Given an assignment σ, we want Resample(σ) to satisfy:

1. Resample(σ) contains Bad(σ);

2. Resample(σ) is unblocking;

3. What is revealed has to be resampled.

BadRes

σ

Resample(σ) can be found by a breadth-first search.
In the worst case we may resample all variables.

22

Resampling set

Given an assignment σ, we want Resample(σ) to satisfy:

1. Resample(σ) contains Bad(σ);

2. Resample(σ) is unblocking;

3. What is revealed has to be resampled.

BadRes

σ

Resample(σ) can be found by a breadth-first search.
In the worst case we may resample all variables.

22

Resampling set

Given an assignment σ, we want Resample(σ) to satisfy:

1. Resample(σ) contains Bad(σ);

2. Resample(σ) is unblocking;

3. What is revealed has to be resampled.

BadRes

σ

Resample(σ) can be found by a breadth-first search.
In the worst case we may resample all variables.

22

Resampling set

Given an assignment σ, we want Resample(σ) to satisfy:

1. Resample(σ) contains Bad(σ);

2. Resample(σ) is unblocking;

3. What is revealed has to be resampled.

BadRes

σ

Resample(σ) can be found by a breadth-first search.
In the worst case we may resample all variables.

22

Partial Rejection Sampling vs Markov chains

Markov chain is a random walk in the solution space.
(The solution space has to be connected!)

23

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.

σ

23

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Connectivity is not an issue.)

σ

23

Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Uniformity is guaranteed by the bijection.)

σ

τ

23

Partial Rejection Sampling

Partial Rejection Sampling:
repeatedly resample the appropriately chosen Resample(σ).

Theorem (G., Jerrum, Liu 17)
When PRS halts, its output is uniform.

Some applications beyond extremal instances:

• Weighted independent sets.

• k-CNF formulas.

24

Partial Rejection Sampling

Partial Rejection Sampling:
repeatedly resample the appropriately chosen Resample(σ).

Theorem (G., Jerrum, Liu 17)
When PRS halts, its output is uniform.

Some applications beyond extremal instances:

• Weighted independent sets.

• k-CNF formulas.

24

Partial Rejection Sampling

Partial Rejection Sampling:
repeatedly resample the appropriately chosen Resample(σ).

Theorem (G., Jerrum, Liu 17)
When PRS halts, its output is uniform.

Some applications beyond extremal instances:

• Weighted independent sets.

• k-CNF formulas.

24

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

→ 1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

→ 2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

→ 3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

→ 4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

→ 4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

→ 2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

→ 3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

→ 4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

→ 4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

3. Resample = Bad ∪ ∂Bad.

4. Resample Resample.
Check independence.

When the algorithm stops, it is a uniform independent set.

25

Running time — independent sets

Set-up

Vertex weight λ. “Bad” events are occupied edges: p =
(

λ
1+λ

)2.
Dependency graph is the line graph. ∆ = 2d− 2.

Suppose k = |Resamplet|.
Then E |Badt+1| ⩽ ep∆ · k ⇒ E

∣∣Resamplet+1∣∣ ⩽ ep∆2 · k.

The resampling region shrinks if
ep∆2 < 1 ⇔ λ = O(1/d)

(Recall that the local lemma requires ep∆ ⩽ 1.)

26

Running time — independent sets

Set-up

Vertex weight λ. “Bad” events are occupied edges: p =
(

λ
1+λ

)2.
Dependency graph is the line graph. ∆ = 2d− 2.

Suppose k = |Resamplet|.
Then E |Badt+1| ⩽ ep∆ · k

⇒ E
∣∣Resamplet+1∣∣ ⩽ ep∆2 · k.

The resampling region shrinks if
ep∆2 < 1 ⇔ λ = O(1/d)

(Recall that the local lemma requires ep∆ ⩽ 1.)

26

Running time — independent sets

Set-up

Vertex weight λ. “Bad” events are occupied edges: p =
(

λ
1+λ

)2.
Dependency graph is the line graph. ∆ = 2d− 2.

Suppose k = |Resamplet|.
Then E |Badt+1| ⩽ ep∆ · k ⇒ E

∣∣Resamplet+1∣∣ ⩽ ep∆2 · k.

The resampling region shrinks if
ep∆2 < 1 ⇔ λ = O(1/d)

(Recall that the local lemma requires ep∆ ⩽ 1.)

26

1. Both Resamplet and ∂Resamplet are
“dangerous”, and |∂Resamplet| ⩽ ∆ · k.

2. Under LLL condition, for any event E,
Pr(E |

∧
Ai) ⩽ ePr(E).

Running time — independent sets

Set-up

Vertex weight λ. “Bad” events are occupied edges: p =
(

λ
1+λ

)2.
Dependency graph is the line graph. ∆ = 2d− 2.

Suppose k = |Resamplet|.
Then E |Badt+1| ⩽ ep∆ · k ⇒ E

∣∣Resamplet+1∣∣ ⩽ ep∆2 · k.

The resampling region shrinks if
ep∆2 < 1 ⇔ λ = O(1/d)

(Recall that the local lemma requires ep∆ ⩽ 1.)

26

Running time — independent sets

Set-up

Vertex weight λ. “Bad” events are occupied edges: p =
(

λ
1+λ

)2.
Dependency graph is the line graph. ∆ = 2d− 2.

Suppose k = |Resamplet|.
Then E |Badt+1| ⩽ ep∆ · k ⇒ E

∣∣Resamplet+1∣∣ ⩽ ep∆2 · k.

The resampling region shrinks if
ep∆2 < 1 ⇔ λ = O(1/d)

(Recall that the local lemma requires ep∆ ⩽ 1.)

26

Phase transition of independent sets

Sampling independent sets with weight λ and maximum degree d:

• If λ < λc(d) ≈ e
d , there is a deterministic, approximate, and polynomial-

time algorithm [Weitz 06]. (Best randomized algorithm (based onMarkov
chains) has a worse range but O(n log n) running time.)

• If λ > λc(d) ≈ e
d , it is NP-hard [Sly 10].

Our algorithm has linear expected running time if λ ⩽ 1
2
√
ed−1 .

The range is off by a constant, but it is fast, simple, exact, and distributed.

27

Phase transition of independent sets

Sampling independent sets with weight λ and maximum degree d:

• If λ < λc(d) ≈ e
d , there is a deterministic, approximate, and polynomial-

time algorithm [Weitz 06]. (Best randomized algorithm (based onMarkov
chains) has a worse range but O(n log n) running time.)

• If λ > λc(d) ≈ e
d , it is NP-hard [Sly 10].

Our algorithm has linear expected running time if λ ⩽ 1
2
√
ed−1 .

The range is off by a constant, but it is fast, simple, exact, and distributed.

27

Running time — general case

∃ constant C s.t. if p∆2 ⩾ C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than ep∆ ⩽ 1.

Indenependent sets are nice in that Resample is just Bad∪∂Bad. In general,
Resample can expand more than one hop. Denote by rij the probability that
Ai may expand to Aj. Let r = max{rij}.

Theorem (G., Jerrum, Liu 17)
If ep∆2 ⩽ 1/6 and er∆ ⩽ 1/3, then E T = O(m).

The expected number of rounds is O(logm).

The expected number of variable resamples is O(n logm).

Our proof is a supermartingale argument on |Resample|.

The condition on r is necessary.

28

Running time — general case

∃ constant C s.t. if p∆2 ⩾ C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than ep∆ ⩽ 1.

Indenependent sets are nice in that Resample is just Bad∪∂Bad. In general,
Resample can expand more than one hop. Denote by rij the probability that
Ai may expand to Aj. Let r = max{rij}.

Theorem (G., Jerrum, Liu 17)
If ep∆2 ⩽ 1/6 and er∆ ⩽ 1/3, then E T = O(m).

The expected number of rounds is O(logm).

The expected number of variable resamples is O(n logm).

Our proof is a supermartingale argument on |Resample|.

The condition on r is necessary.

28

Running time — general case

∃ constant C s.t. if p∆2 ⩾ C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than ep∆ ⩽ 1.

Indenependent sets are nice in that Resample is just Bad∪∂Bad. In general,
Resample can expand more than one hop. Denote by rij the probability that
Ai may expand to Aj. Let r = max{rij}.

Theorem (G., Jerrum, Liu 17)
If ep∆2 ⩽ 1/6 and er∆ ⩽ 1/3, then E T = O(m).

The expected number of rounds is O(logm).

The expected number of variable resamples is O(n logm).

Our proof is a supermartingale argument on |Resample|.

The condition on r is necessary.

28

Running time — general case

∃ constant C s.t. if p∆2 ⩾ C, then even approximate sampling is NP-hard.
Hence we have to assume stronger conditions than ep∆ ⩽ 1.

Indenependent sets are nice in that Resample is just Bad∪∂Bad. In general,
Resample can expand more than one hop. Denote by rij the probability that
Ai may expand to Aj. Let r = max{rij}.

Theorem (G., Jerrum, Liu 17)
If ep∆2 ⩽ 1/6 and er∆ ⩽ 1/3, then E T = O(m).

The expected number of rounds is O(logm).

The expected number of variable resamples is O(n logm).

Our proof is a supermartingale argument on |Resample|.

The condition on r is necessary.

28

Sampling k-CNF

NP-Hardness for sampling:
d ⩾ 3 — decision hardness for general formula
d ⩾ 6, k = 2 (monotone formula) [Sly 10]
d ⩾ 5 · 2k/2 (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16]
(LLL condition is d ⩽ 2k

ek .)

Theorem (G., Jerrum, Liu 17)
PRS has linear expected running time if d ⩽ 1

6e · 2
k/2, and any two

dependent clauses share at least min{log dk, k/2} variables.

NP-hard even if d ⩾ 5 · 2k/2 and intersection = k/2 [BGGGŠ 16]

29

Sampling k-CNF

NP-Hardness for sampling:
d ⩾ 3 — decision hardness for general formula
d ⩾ 6, k = 2 (monotone formula) [Sly 10]
d ⩾ 5 · 2k/2 (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16]
(LLL condition is d ⩽ 2k

ek .)

Theorem (G., Jerrum, Liu 17)
PRS has linear expected running time if d ⩽ 1

6e · 2
k/2, and any two

dependent clauses share at least min{log dk, k/2} variables.

NP-hard even if d ⩾ 5 · 2k/2 and intersection = k/2 [BGGGŠ 16]

29

Sampling k-CNF

NP-Hardness for sampling:
d ⩾ 3 — decision hardness for general formula
d ⩾ 6, k = 2 (monotone formula) [Sly 10]
d ⩾ 5 · 2k/2 (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16]
(LLL condition is d ⩽ 2k

ek .)

Theorem (G., Jerrum, Liu 17)
PRS has linear expected running time if d ⩽ 1

6e · 2
k/2, and any two

dependent clauses share at least min{log dk, k/2} variables.

NP-hard even if d ⩾ 5 · 2k/2 and intersection = k/2 [BGGGŠ 16]

29

Sampling k-CNF

NP-Hard if d ⩾ 3 (decision); or d ⩾ 6, k = 2 (monotone) [Sly 10];
or d ⩾ 5 · 2k/2 (monotone) and intersection = k/2 [BGGGŠ 16].

Ref. Condition Restriction Method

[Bubley, Dyer 97] d = 2 Markov chain

[Bordewich, Dyer,
Karpinski 06] d ⩽ k− 2 monotone Markov chain

[Liu, Lu 15] d ⩽ 5 monotone Correlation decay

[BGGGŠ 16] d = 6, k = 3
or d ⩽ k monotone Correlation decay

[Hermon, Sly, Zhang 17] d ⩽ c2k/2 monotone Markov chain

[Moitra 17] d ⩽ Õ(2k/60) Correlation decay + LP

[G., Jerrum, Liu 17] d ⩽ c2k/2 Intersection ⩾
min{log dk, k/2}

PRS

All other methods are approximate, whereas PRS is exact.
30

Sampling k-CNF

NP-Hard if d ⩾ 3 (decision); or d ⩾ 6, k = 2 (monotone) [Sly 10];
or d ⩾ 5 · 2k/2 (monotone) and intersection = k/2 [BGGGŠ 16].

Ref. Condition Restriction Method

[Bubley, Dyer 97] d = 2 Markov chain

[Bordewich, Dyer,
Karpinski 06] d ⩽ k− 2 monotone Markov chain

[Liu, Lu 15] d ⩽ 5 monotone Correlation decay

[BGGGŠ 16] d = 6, k = 3
or d ⩽ k monotone Correlation decay

[Hermon, Sly, Zhang 17] d ⩽ c2k/2 monotone Markov chain

[Moitra 17] d ⩽ Õ(2k/60) Correlation decay + LP

[G., Jerrum, Liu 17] d ⩽ c2k/2 Intersection ⩾
min{log dk, k/2}

PRS

All other methods are approximate, whereas PRS is exact.
30

Sampling k-CNF

NP-Hard if d ⩾ 3 (decision); or d ⩾ 6, k = 2 (monotone) [Sly 10];
or d ⩾ 5 · 2k/2 (monotone) and intersection = k/2 [BGGGŠ 16].

Ref. Condition Restriction Method

[Bubley, Dyer 97] d = 2 Markov chain

[Bordewich, Dyer,
Karpinski 06] d ⩽ k− 2 monotone Markov chain

[Liu, Lu 15] d ⩽ 5 monotone Correlation decay

[BGGGŠ 16] d = 6, k = 3
or d ⩽ k monotone Correlation decay

[Hermon, Sly, Zhang 17] d ⩽ c2k/2 monotone Markov chain

[Moitra 17] d ⩽ Õ(2k/60) Correlation decay + LP

[G., Jerrum, Liu 17] d ⩽ c2k/2 Intersection ⩾
min{log dk, k/2}

PRS

All other methods are approximate, whereas PRS is exact.
30

Sampling k-CNF

NP-Hard if d ⩾ 3 (decision); or d ⩾ 6, k = 2 (monotone) [Sly 10];
or d ⩾ 5 · 2k/2 (monotone) and intersection = k/2 [BGGGŠ 16].

Ref. Condition Restriction Method

[Bubley, Dyer 97] d = 2 Markov chain

[Bordewich, Dyer,
Karpinski 06] d ⩽ k− 2 monotone Markov chain

[Liu, Lu 15] d ⩽ 5 monotone Correlation decay

[BGGGŠ 16] d = 6, k = 3
or d ⩽ k monotone Correlation decay

[Hermon, Sly, Zhang 17] d ⩽ c2k/2 monotone Markov chain

[Moitra 17] d ⩽ Õ(2k/60) Correlation decay + LP

[G., Jerrum, Liu 17] d ⩽ c2k/2 Intersection ⩾
min{log dk, k/2}

PRS

All other methods are approximate, whereas PRS is exact.
30

Sampling k-CNF

NP-Hard if d ⩾ 3 (decision); or d ⩾ 6, k = 2 (monotone) [Sly 10];
or d ⩾ 5 · 2k/2 (monotone) and intersection = k/2 [BGGGŠ 16].

Ref. Condition Restriction Method

[Bubley, Dyer 97] d = 2 Markov chain

[Bordewich, Dyer,
Karpinski 06] d ⩽ k− 2 monotone Markov chain

[Liu, Lu 15] d ⩽ 5 monotone Correlation decay

[BGGGŠ 16] d = 6, k = 3
or d ⩽ k monotone Correlation decay

[Hermon, Sly, Zhang 17] d ⩽ c2k/2 monotone Markov chain

[Moitra 17] d ⩽ Õ(2k/60) Correlation decay + LP

[G., Jerrum, Liu 17] d ⩽ c2k/2 Intersection ⩾
min{log dk, k/2}

PRS

All other methods are approximate, whereas PRS is exact.
30

Concluding remarks

Summary

• For extremal instances, Moser-Tardos is uniform, with expected
running time # “near-perfect” assignments

“perfect” assignments .

• For general instances, we need to carefully choose a resampling
set to ensure uniformity.

• The expected running time is linear if p∆2 = O(1) and r∆ = O(1).

31

Summary

• For extremal instances, Moser-Tardos is uniform, with expected
running time # “near-perfect” assignments

“perfect” assignments .

• For general instances, we need to carefully choose a resampling
set to ensure uniformity.

• The expected running time is linear if p∆2 = O(1) and r∆ = O(1).

31

Summary

• For extremal instances, Moser-Tardos is uniform, with expected
running time # “near-perfect” assignments

“perfect” assignments .

• For general instances, we need to carefully choose a resampling
set to ensure uniformity.

• The expected running time is linear if p∆2 = O(1) and r∆ = O(1).

31

Sampling threshold under LLL?

p≈ 1
e∆

Existence threshold [Erdős, Lovász 75]

32

Sampling threshold under LLL?

p≈ 1
e∆

Searching threshold [Moser, Tardos 10]

32

Sampling threshold under LLL?

p≈ 1
e∆O(1/∆2)

Sampling threshold?

32

Open problems

• O(nc) algorithm for the independence polynomial with negative
weights?

• Can we sample Hamiltonian cycles exactly and efficiently in some
interesting graph families?

• How to remove the side condition on intersections?

• Where is the transition threshold for k-CNF of degree d?

• Beyond the variable model - resampling permutations???

33

Thank you!

33

	A tale of two algorithms (Moser and Tardos meet Wilson)
	Why is Wilson's algorithm uniform?
	Beyond Extremal Instances
	Concluding remarks

