
An FPRAS for two terminal reliability in directed acyclic
grapHs

Heng Guo (University of Edinburgh)

Based on joint work with Weiming Feng (UC Berkeley → ETH Zürich)

Institute of Software, Chinese Academy of Sciences, Dec 11, 2023



THe complexity of computing quantities

Complexity class #P by Valiant (1979):

a counting analogue of NP

E.g. counting the number of solutions to CNF formulas

Other examples:

determinants / permanents of matrices;
evaluation of probabilities;
partition functions in statistical physics;
counting discrete structures …



THe complexity of approximate counting

What about (multiplicatively) approximating #P-complete problems?

• at most NP-hard (Stockmeyer 1983; Valiant and Vazirani, 1986);

• typically, polynomial approximation can be amplified into ε-approximation with only poly-
nomial runtime overhead.

Thus, we strive to classify approximate counting problems as either NP-hard or FPRASable.

FPRASes do exist! Famous examples include:

• the number of solutions to DNF formulae
(Karp and Luby, 1983);

• the partition function of ferromagnetic Isingmodels
(Jerrum and Sinclair, 1993);

• the volume of convex bodies
(Dyer, Frieze, and Kannan, 1991);

• the permanent of non-negative matrices
(Jerrum, Sinclair, and Vigoda, 2004).

There are still many open problems in approximate counting!



THe complexity of approximate counting

What about (multiplicatively) approximating #P-complete problems?

• at most NP-hard (Stockmeyer 1983; Valiant and Vazirani, 1986);

• typically, polynomial approximation can be amplified into ε-approximation with only poly-
nomial runtime overhead.

Thus, we strive to classify approximate counting problems as either NP-hard or FPRASable.

FPRASes do exist! Famous examples include:

• the number of solutions to DNF formulae
(Karp and Luby, 1983);

• the partition function of ferromagnetic Isingmodels
(Jerrum and Sinclair, 1993);

• the volume of convex bodies
(Dyer, Frieze, and Kannan, 1991);

• the permanent of non-negative matrices
(Jerrum, Sinclair, and Vigoda, 2004).

There are still many open problems in approximate counting!



Network reliability



Network reliability

Given a directed or undirected graph (a.k.a. network)G = (V, E), define a random subgraphG(p)

by removing each edge independently with probability p.

Two-teRminal Reliability: given s, t ∈ V ,

Pr
[
s

G(p)−−−→ t

]

Directed and undirected Two-teRminal Reliability (and a few other variants) are featured in the
original list of 13 #P-complete problems by Valiant (1979).

One may ask the probability of other properties ofG(p), such as whetherG(p) is connected (All-
teRminal Reliability).



Network reliability

Two-teRminal Reliability: Pr
[
s

G(p)−−−→ t

]
In other words, we want to compute

Zrel(G,p) :=
∑

R⊆E:s
(V,R)−−−→t

p|E\R|(1− p)|R|

For example:

Zrel(
s t, p) = = (1− p)n−1

Zrel( s

t

, p) = + + + + + +

= (1− p)4 + 4p(1− p)3 + 2p2(1− p)2



Computational complexity of reliability

Exact evaluation of almost all variants of reliability is #P-complete, shown by the pioneer work of
Valiant (1979), Jerrum (1981), Provan and Ball (1983), etc.

Much less is known about their approximation complexity.

A famous breakthrough is by Karger (1999), who gave an FPRAS for All-teRminal unReliability.

(However, good approximation of unreliability is not necessarily a good approximation for reliability when

reliability is exponentially small.)

All-teRminal Reliability is shown to have an FPRAS by G. and Jerrum (2019), resolving positively
conjectures by Provan and Ball (1983), Welsh (1993), Karger (1999), etc.



Main results

We gave an FPRAS for Two-teRminal Reliability in directed acyclic graphs (DAGs).

Theorem (Feng and G., 2023)
Let G be a DAG and q denote failure probabilities. There is a randomized algorithm that takes
(G, q, s, t, ε) as inputs and outputs a (1 ± ε)-approximation to s− t Reliability with probability
at least 3/4 in time Õ(n6m4 max{m4, ε−4}).

This answers positively a conjecture by Zenklusen and Laumanns (2011).

On the flip side, the corresponding unreliability problem is unlikely to have an FPRAS.

Theorem (Feng and G., 2023)
There is no FPRAS to estimate s− t unReliability in DAGs unless there is an FPRAS for #BIS.

Here #BIS is the problem of counting independent sets in bipartite graphs. It is conjectured to
have no FPRAS.



Simultaneous work

Independently, Amarilli, van Bremen, andMeel (2023) reduce s−t Reliability in DAGs to counting
the number of accepting paths of a given length for non-deterministic automata (#NFA). The latter
problem has an FPRAS by Arenas, Croquevielle, Jayaram, and Riveros (2021).

ACJR21’s algorithm runs in time O
((

nℓ
ε

)17)
for an n-state NFA and strings of length ℓ.

AvBM23 reduces a DAG with n vertices and m edges to a #NFA instance counting length m ac-

cepting strings for an NFA with O(m2) states. Thus their running time is like O
(

m51

ε17

)
.



Computational complexity of reliability

Terminal Graphs Type Complexity Best run-time

All Undirected Unrel FPRAS (K99) m1+o(1)

ε2 + Õ
(

n1.5

ε3

)
(CHLP23)

All Undirected Rel FPRAS (GJ19) Õ
(
mn
ε2

)
(CGZZ23)

s− t DAG Rel FPRAS (FG23, AvBM23) Õ
(
n6m4 max{m4, ε−4}

)
(FG23)

s− t DAG Unrel #BIS-hard (FG23) −

S− t DAG Rel NP-hard (upcoming) −

CHLP23: Cen, He, Li, and Panigrahi (2023)
CGZZ23: Chen, G., Zhang, and Zou (2023)



Some natural attempts
(and wHy tHey do not succeed)



Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Si)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1s→t(Si),

where 1s→t(S) is the indicator variable whether s
(V,S)−−−→ t.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1−p)n−1), then we will almost never
see a connected Si.

In that case, the relative variance of 1s→t(S) is exponentially large, and k has to be exponentially
large to yield a good approximation.



Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Si)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1s→t(Si),

where 1s→t(S) is the indicator variable whether s
(V,S)−−−→ t.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1−p)n−1), then we will almost never
see a connected Si.

In that case, the relative variance of 1s→t(S) is exponentially large, and k has to be exponentially
large to yield a good approximation.



Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

1. Draw k independent subgraphs (Si)i∈[k] of G(p).

2. Let

Z̃ :=
1

k

∑
i∈[k]

1s→t(Si),

where 1s→t(S) is the indicator variable whether s
(V,S)−−−→ t.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1−p)n−1), then we will almost never
see a connected Si.

In that case, the relative variance of 1s→t(S) is exponentially large, and k has to be exponentially
large to yield a good approximation.



Previous tecHniques

Karger’s method for (undirected) All-teRminal unReliability:

Naive Monte Carlo + random contraction

(Undirected) All-teRminal Reliability:

via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

• Partial rejection sampling (G. and Jerrum, 2019); or

• Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019).

All these techniques rely on some nice structure of the solution space, which Two-teRminal Reli-
ability (even in DAG) does not have.



Previous tecHniques

Karger’s method for (undirected) All-teRminal unReliability:

Naive Monte Carlo + random contraction

(Undirected) All-teRminal Reliability:

via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

• Partial rejection sampling (G. and Jerrum, 2019); or

• Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019).

All these techniques rely on some nice structure of the solution space, which Two-teRminal Reli-
ability (even in DAG) does not have.



Previous tecHniques

Karger’s method for (undirected) All-teRminal unReliability:

Naive Monte Carlo + random contraction

(Undirected) All-teRminal Reliability:

via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

• Partial rejection sampling (G. and Jerrum, 2019); or

• Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019).

All these techniques rely on some nice structure of the solution space, which Two-teRminal Reli-
ability (even in DAG) does not have.



Markov cHain Monte Carlo

Markov chains are the “off the shelf” approach to sampling from complicated distributions.

Here we want to sample R ∼ G(p) conditioned on s
R−→ t.

There is a natural Markov chain converging to the desired distribution:

1. Let C0 = E.

2. Given Ct, randomly pick an edge e ∈ E.

If ¬
(
s

Ct\{e}−−−−→ t

)
then Ct+1 = Ct. Otherwise,

Ct+1 =

{
Ct ∪ {e} with prob. 1− p;
Ct \ {e} with prob. p.

This chain is slow for s and t connected via two length n/2 paths.



Dynamic programming
meets Monte Carlo



Dynamic programming

Our main inspiration is the #NFA algorithm of Arenas, Croquevielle, Jayaram, and Riveros (2021),
which in turn builds upon a quasi-polynomial time algorithm for generating words in context-free
grammars (#CFG) by Gore, Jerrum, Kannan, Sweedyk, and Mahaney (1997).

Given the topological ordering s = v1, v2, . . . , vn = t of the input DAG, we estimate Ri :=

Pr
[
vi

G(p)−−−→ t

]
from i = n to 1.

Note that for vi, we can safely ignore all vertices unreachable from vi. Call the resulting graph
Gvi

, and we only need to consider Gvi
(p).



THe inductive step

G

s

tvi

u1

u2
...
ud

Let vi’s neighbours be u1, . . . , ud. Then,

Pr
[
vi

Gvi
(p)

−−−−→ t

]
= Pr

[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
.

This reminds us to use the DNF counting technique of Karp and Luby (1983) and Karp, Luby, and
Madras (1989).



Karp-Luby in action

Given DNF Φ = C1 ∨ C2 ∨ · · · ∨ Cm, counting the number of solutions to Φ is equivalent to
evaluating

Pr[σ |= Φ] = Pr[∃i ∈ [m], σ |= Ci],

where σ is a uniformly at random assignment.

Let Ωi be the set of solutions to Ci, and pi := Pr[σ |= Ci] =
|Ωi|

2n = 2−|Ci|.

Karp-Luby goes as follows:

1. Draw i with probability proportional to pi;

2. draw uniformly σ such that σ |= Ci (namely uniformly from Ωi);

3. Let tσ be the number of clauses σ satisfies. Output Z := 1
tσ

.

Then E[Z] =
∑

σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1
|Ωi|

· 1
tσ

.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (continued)

E[Z] =
∑
σ

∑
Ci:σ|=Ci

pi∑
i∈[m] pi

· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

∑
σ

∑
Ci:σ|=Ci

|Ωi|

2n
· 1

|Ωi|
· 1

tσ

=
1∑

i∈[m] pi

· 1

2n

∑
σ

1

tσ

∑
Ci:σ|=Ci

1

=
1∑

i∈[m] pi

· 1

2n

∑
σ:∃i∈[m], σ|=Ci

tσ

tσ

=
1∑

i∈[m] pi

· Pr[∃i ∈ [m], σ |= Ci]

Also, E[Z] ⩾ 1
m

, implying that Var(Z)
E[Z]2

⩽ m2.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Karp-Luby in action (for reliability)

We want to estimate Pr
[
∃j ∈ [d], ((vi, uj) ∈ Gvi

(p))∧ (uj

Guj
(p)

−−−−−→ t)

]
= Pr [∃j ∈ [d], Ej].

Let pj := Pr [Ej] = Pr [(vi, uj) ∈ Gvi
(p)]× Pr

[
uj

Guj
(p)

−−−−−→ t

]
= (1− p)Ruj

.

Then we can

1. draw j ∈ [d] with probability proportional to pj;

2. draw S ∼ Guj
(p) conditioned on uj

S−→ t; for j ′ ̸= j, draw (vi, uj′) independently with
probability 1− p; let the set of these edges together with (vi, uj) be S ′;

3. let tS′ be the number of events Ej occurring under S ′; output Z := 1
tS′

.

The same analysis implies that the expectation of this estimator is what we want and the relative
variance is small.



Are we tHere yet?

To implement Karp-Luby, we need to do two things:

• calculate pj = (1− p)Ruj
, which can be done as Ruj

is known in previous steps;

• sample S ∼ Guj
(p) conditioned on uj

S−→ t.

How do we sample?

The sampling to counting reduction a la Jerrum, Valiant, and Vazirani (1986) to the rescue!

We maintain a set of samples Svi
in addition to Rvi

.



Are we tHere yet?

To implement Karp-Luby, we need to do two things:

• calculate pj = (1− p)Ruj
, which can be done as Ruj

is known in previous steps;

• sample S ∼ Guj
(p) conditioned on uj

S−→ t.

How do we sample?

The sampling to counting reduction a la Jerrum, Valiant, and Vazirani (1986) to the rescue!

We maintain a set of samples Svi
in addition to Rvi

.



Sampling to counting reduction

JVV’86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

Gvi
vi

tu1

u2

...

ud

The marginal of e = (vi, u1) is

Pr [e ∈ Gvi
(p)]Pr

[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
Pr [e ∈ Gvi

(p)]Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
+ Pr [e ̸∈ Gvi

(p)]Pr
[
vi

Gvi
(p)

−−−−→ t | e ̸∈ Gvi
(p)

]



Sampling to counting reduction

JVV’86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

Gvi
vi

tu1

u2

...

ud

The marginal of e = (vi, u1) is

Pr [e ∈ Gvi
(p)]Pr

[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
Pr [e ∈ Gvi

(p)]Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
+ Pr [e ̸∈ Gvi

(p)]Pr
[
vi

Gvi
(p)

−−−−→ t | e ̸∈ Gvi
(p)

]



Sampling to counting reduction

JVV’86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

Gvi
vi

tu1

u2

...

ud

The marginal of e = (vi, u1) is

(1− p)Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
(1− p)Pr

[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
+ pPr

[
vi

Gvi
(p)

−−−−→ t | e ̸∈ Gvi
(p)

]



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

tu1

u2

...

ud



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

tu1

u2

...

ud

Contract vi and u1. Call it v ′
i. Note that we would have already computed (Ruj

, Suj
) for j ⩾ 2.



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

tu1

u2

...

ud

Contract vi and u1. Call it v ′
i. Note that we would have already computed (Ruj

, Suj
) for j ⩾ 2.

That’s all Karp-Luby needs to estimate Pr
[
v ′
i

Gv′
i
(p)

−−−−→ t

]
!



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

tu1

u2

...

ud

Contract vi and u1. Call it v ′
i. Note that we would have already computed (Ruj

, Suj
) for j ⩾ 2.

That’s all Karp-Luby needs to estimate Pr
[
v ′
i

Gv′
i
(p)

−−−−→ t

]
!

The case for Pr
[
vi

Gvi
(p)

−−−−→ t | e ̸∈ Gvi
(p)

]
is similar. Then move on to the next edge and repeat.



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

t

Contract vi and u1. Call it v ′
i. Note that we would have already computed (Ruj

, Suj
) for j ⩾ 2.

That’s all Karp-Luby needs to estimate Pr
[
v ′
i

Gv′
i
(p)

−−−−→ t

]
!

The case for Pr
[
vi

Gvi
(p)

−−−−→ t | e ̸∈ Gvi
(p)

]
is similar. Then move on to the next edge and repeat.



Computing tHe marginal

How do we estimate Pr
[
vi

Gvi
(p)

−−−−→ t | e ∈ Gvi
(p)

]
?

Gvi
vi

t

• Blue edges: those chosen using the marginal by Karp-Luby, forming a tree.

• Green edges: conditioned on the blue edges, they have no affect on reaching t, and thus have
marginal 1− p.

• Red edges: the current frontier, whose tails have been processed (namely (Ru, Su) has been
computed already).



Efficiency of tHe algoritHm

The self-reduction to generate one sample uses, say, k samples for each Karp-Luby step. If we
generate fresh samples each time, in total at least kn samples are required. The key to be efficient
here is that samples can be reused!

Reusing samples introduces subtle correlation among Rvi
’s and the samples. However:

• accurate marginals
union bound over all edges
==============⇒ accurate samples;

• accurate samples
union bound over all possibilities
=================⇒ accurate marginals.

Accurate marginals come from accurate estimation of the Rvi
’s. The samples are subtly correlated,

but they can be coupled with independent fresh samples with small error.



Efficiency of tHe algoritHm

The self-reduction to generate one sample uses, say, k samples for each Karp-Luby step. If we
generate fresh samples each time, in total at least kn samples are required. The key to be efficient
here is that samples can be reused!

Reusing samples introduces subtle correlation among Rvi
’s and the samples. However:

• accurate marginals
union bound over all edges
==============⇒ accurate samples;

• accurate samples
union bound over all possibilities
=================⇒ accurate marginals.

Accurate marginals come from accurate estimation of the Rvi
’s. The samples are subtly correlated,

but they can be coupled with independent fresh samples with small error.



THe overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the
error δ := n−1 min{m−1, ε} in Karp-Luby, and we needO(nδ−2) samples each time. (In fact here we use the
self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need O(m) time,
so one Karp-Luby step takes O(mnδ−2) time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a
union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we
repeat Karp-luby O(m) times to achieve exp(−O(m)) failure probability.

How many samples do we need for each Si?

On average, we need ℓ := O(mnδ−2)
n

= O(mδ−2) samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in
turn, calls approximate counting O(m) times.

Thus, the overall running time is

n×mℓ×m×O(mnδ−2) = O(m4n2δ−4) = O(m4n6 max{m4, ε−4}).



THe overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the
error δ := n−1 min{m−1, ε} in Karp-Luby, and we needO(nδ−2) samples each time. (In fact here we use the
self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need O(m) time,
so one Karp-Luby step takes O(mnδ−2) time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a
union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we
repeat Karp-luby O(m) times to achieve exp(−O(m)) failure probability.

How many samples do we need for each Si?

On average, we need ℓ := O(mnδ−2)
n

= O(mδ−2) samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in
turn, calls approximate counting O(m) times.

Thus, the overall running time is

n×mℓ×m×O(mnδ−2) = O(m4n2δ−4) = O(m4n6 max{m4, ε−4}).



THe overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the
error δ := n−1 min{m−1, ε} in Karp-Luby, and we needO(nδ−2) samples each time. (In fact here we use the
self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need O(m) time,
so one Karp-Luby step takes O(mnδ−2) time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a
union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we
repeat Karp-luby O(m) times to achieve exp(−O(m)) failure probability.

How many samples do we need for each Si?

On average, we need ℓ := O(mnδ−2)
n

= O(mδ−2) samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in
turn, calls approximate counting O(m) times.

Thus, the overall running time is

n×mℓ×m×O(mnδ−2) = O(m4n2δ−4) = O(m4n6 max{m4, ε−4}).



THe overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the
error δ := n−1 min{m−1, ε} in Karp-Luby, and we needO(nδ−2) samples each time. (In fact here we use the
self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need O(m) time,
so one Karp-Luby step takes O(mnδ−2) time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a
union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we
repeat Karp-luby O(m) times to achieve exp(−O(m)) failure probability.

How many samples do we need for each Si?

On average, we need ℓ := O(mnδ−2)
n

= O(mδ−2) samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in
turn, calls approximate counting O(m) times.

Thus, the overall running time is

n×mℓ×m×O(mnδ−2) = O(m4n2δ−4) = O(m4n6 max{m4, ε−4}).



THe overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the
error δ := n−1 min{m−1, ε} in Karp-Luby, and we needO(nδ−2) samples each time. (In fact here we use the
self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need O(m) time,
so one Karp-Luby step takes O(mnδ−2) time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a
union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we
repeat Karp-luby O(m) times to achieve exp(−O(m)) failure probability.

How many samples do we need for each Si?

On average, we need ℓ := O(mnδ−2)
n

= O(mδ−2) samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in
turn, calls approximate counting O(m) times.

Thus, the overall running time is

n×mℓ×m×O(mnδ−2) = O(m4n2δ−4) = O(m4n6 max{m4, ε−4}).



Hardness results



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability

s t



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability

s t



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability

s t



#BIS-Hardness for Two-terminal vertex unreliability in DAGs

#BIS ⩽ Two-teRminal veRtex unReliability

s t



From vertex to edge unreliability in DAGs

VeRtex unReliability

s t

Edge unReliability



From vertex to edge unreliability in DAGs

VeRtex unReliability

s t

Edge unReliability

s t



From vertex to edge unreliability in DAGs

VeRtex unReliability

s t

Edge unReliability

s t



From vertex to edge unreliability in DAGs

VeRtex unReliability

s t

Edge unReliability

s t



From vertex to edge unreliability in DAGs

VeRtex unReliability

s t

Edge unReliability

s t

Black edges have failure probability 0. Colored edges have failure probability 1/2.



NP-Hardness for S− t reliability in DAGs

We reduce from Minimum diRected SteineR tRee in DAGs with unit weights, which is NP-hard by
reducing from Set CoveRs.

Note that minimum Steiner trees are the extremal configurations for S−t Reliability. Thus, if the
failure probability of edges is 1−exp(−O(n)), then, drawing from the corresponding distribution,
we would only see the minimizers.

Exponentially small success probability can be simulated by gadgets, such as replacing a normal
edge by a path (sometimes called a stretching).



Concluding remarks



Open problems

• Faster than O(m4n6 max{m4, ε−4})?

• Deterministic algorithms?

This would require derandomise the Karp-Luby algorithm, which has been open for decades.

• Approximation complexity for Two-teRminal Reliability in directed and undirected graphs?

• Improve the quasi-polynomial time algorithm for #CFG by Gore, Jerrum, Kannan, Sweedyk,
and Mahaney (1997).



THank you!
arXiv:2310.00938

arXiv:2310.00938

	Network reliability
	Some natural attempts [-0.3cm] (and why they do not succeed)
	Dynamic programming  meets Monte Carlo
	Hardness results
	Concluding remarks

