An FPRAS FOR TWO TERMINAL RELIABILITY IN DIRECTED ACYCLIC GRAPHS

Heng Guo (University of Edinburgh)
Based on joint work with Weiming Feng (UC Berkeley \rightarrow ETH Zürich)

Institute of Software, Chinese Academy of Sciences, Dec 11, 2023

The complexity of computing quantities

Complexity class \#P by Valiant (1979):
a counting analogue of NP
E.g. counting the number of solutions to CNF formulas

Other examples:
determinants / permanents of matrices;
evaluation of probabilities;
partition functions in statistical physics; counting discrete structures ...

THE COMPLEXITY OF APPROXIMATE COUNTING

What about (multiplicatively) approximating \#P-complete problems?

- at most NP-hard (Stockmeyer 1983; Valiant and Vazirani, 1986);
- typically, polynomial approximation can be amplified into ε-approximation with only polynomial runtime overhead.

Thus, we strive to classify approximate counting problems as either NP-hard or FPRASable.

FPRASes do exist! Famous examples include:

- the number of solutions to DNF formulae
- the volume of convex bodies
(Karp and Luby, 1983); (Dyer, Frieze, and Kannan, 1991)
- the partition function of ferromagnetic Ising models
- the permanent of non-negative matrices
(Jerrum and Sinclair, 1993); (Jerrum, Sinclair, and Vigoda, 2004).
There are still many open problems in approximate counting!

THE COMPLEXITY OF APPROXIMATE COUNTING

What about (multiplicatively) approximating \#P-complete problems?

- at most NP-hard (Stockmeyer 1983; Valiant and Vazirani, 1986);
- typically, polynomial approximation can be amplified into ε-approximation with only polynomial runtime overhead.

Thus, we strive to classify approximate counting problems as either NP-hard or FPRASable.

FPRASes do exist! Famous examples include:

- the number of solutions to DNF formulae (Karp and Luby, 1983);
- the partition function of ferromagnetic Ising models (Jerrum and Sinclair, 1993);
- the volume of convex bodies (Dyer, Frieze, and Kannan, 1991);
- the permanent of non-negative matrices (Jerrum, Sinclair, and Vigoda, 2004).

There are still many open problems in approximate counting!

Network reliability

Network reliability

Given a directed or undirected graph (a.k.a. network) $G=(V, E)$, define a random subgraph $G(p)$ by removing each edge independently with probability p.

Two-terminal reliability: given $s, t \in V$,

$$
\operatorname{Pr}[s \xrightarrow{\mathrm{G}(\mathrm{p})} \mathrm{t}]
$$

Directed and undirected Two-terminal reliability (and a few other variants) are featured in the original list of 13 \# P-complete problems by Valiant (1979).

One may ask the probability of other properties of $G(p)$, such as whether $G(p)$ is connected (Allterminal reliability).

NeTwORK RELIABILITY

Two-terminal reliability: $\operatorname{Pr}[s \xrightarrow{\mathrm{G}(\mathrm{p})} \mathrm{t}]$
In other words, we want to compute

For example:

$$
\begin{aligned}
& =(1-p)^{4}+4 p(1-p)^{3}+2 p^{2}(1-p)^{2}
\end{aligned}
$$

COMPUTATIONAL COMPLEXITY OF RELIABILITY

Exact evaluation of almost all variants of reliability is \#P-complete, shown by the pioneer work of Valiant (1979), Jerrum (1981), Provan and Ball (1983), etc.

Much less is known about their approximation complexity.

A famous breakthrough is by Karger (1999), who gave an FPRAS for All-terminal unreliability. (However, good approximation of unreliability is not necessarily a good approximation for reliability when reliability is exponentially small.)

All-terminal reliability is shown to have an FPRAS by G. and Jerrum (2019), resolving positively conjectures by Provan and Ball (1983), Welsh (1993), Karger (1999), etc.

Main Results

We gave an FPRAS for Two-terminal reliability in directed acyclic graphs (DAGs).

Theorem (Feng and G., 2023)

Let G be a DAG and \mathbf{q} denote failure probabilities. There is a randomized algorithm that takes $(\mathrm{G}, \mathrm{q}, \mathrm{s}, \mathrm{t}, \varepsilon)$ as inputs and outputs a $(1 \pm \varepsilon)$-approximation to $\mathrm{s}-\mathrm{t}$ RELIABILITY with probability at least $3 / 4$ in time $\widetilde{\mathrm{O}}\left(\mathrm{n}^{6} \mathrm{~m}^{4} \max \left\{\mathrm{~m}^{4}, \varepsilon^{-4}\right\}\right)$.

This answers positively a conjecture by Zenklusen and Laumanns (2011).
On the flip side, the corresponding unreliability problem is unlikely to have an FPRAS.

Theorem (Feng and G., 2023)

There is no FPRAS to estimate $\mathrm{s}-\mathrm{t}$ unReLIAbility in DAGs unless there is an FPRAS for \#BIS.
Here \#BIS is the problem of counting independent sets in bipartite graphs. It is conjectured to have no FPRAS.

Simultaneous work

Independently, Amarilli, van Bremen, and Meel (2023) reduce $s-t$ reLIABILITY in DAGs to counting the number of accepting paths of a given length for non-deterministic automata (\#NFA). The latter problem has an FPRAS by Arenas, Croquevielle, Jayaram, and Riveros (2021).

ACJR21's algorithm runs in time $O\left(\left(\frac{n \ell}{\varepsilon}\right)^{17}\right)$ for an n-state NFA and strings of length ℓ. AvBM23 reduces a DAG with n vertices and m edges to a \#NFA instance counting length m accepting strings for an NFA with $\mathrm{O}\left(\mathrm{m}^{2}\right)$ states. Thus their running time is like $\mathrm{O}\left(\frac{\mathrm{m}^{51}}{\varepsilon^{17}}\right)$.

Terminal	Graphs	Type	Complexity	Best run-time
All	Undirected	Unrel	FPRAS (K99)	$\frac{m^{1+o(1)}}{\varepsilon^{2}}+\widetilde{\mathrm{O}}\left(\frac{n^{1.5}}{\varepsilon^{3}}\right)(\mathrm{CHLP23})$
All	Undirected	Rel	FPRAS (GJ19)	$\widetilde{\mathrm{O}}\left(\frac{\mathrm{mn}}{\varepsilon^{2}}\right)(\mathrm{CGZZ23)}$
$\mathrm{s}-\mathrm{t}$	DAG	Rel	FPRAS (FG23, AvBM23)	$\widetilde{\mathrm{O}\left(n^{6} \mathrm{~m}^{4} \max \left\{\mathrm{~m}^{4}, \varepsilon^{-4}\right\}\right)(\mathrm{FG} 23)}$
$\mathrm{s}-\mathrm{t}$	DAG	Unrel	\#BIS-hard (FG23)	-
$\mathrm{S}-\mathrm{t}$	DAG	Rel	NP-hard (upcoming)	-

CHLP23: Cen, He, Li, and Panigrahi (2023)
CGZZ23: Chen, G., Zhang, and Zou (2023)

Some natural attempts

(AND WHY THEY DO Not SUCCEED)

Naive Monte Carlo

A natural unbiased estimator \widetilde{Z} of $Z_{\text {rel }}$:

1. Draw k independent subgraphs $\left(S_{i}\right)_{i \in[k]}$ of $G(p)$.
2. Let

$$
\tilde{Z}:=\frac{1}{k} \sum_{i \in[k]} \mathbb{1}_{s \rightarrow t}\left(S_{i}\right),
$$

where $\mathbb{1}_{s \rightarrow t}(S)$ is the indicator variable whether $s \xrightarrow{(\mathrm{~V}, \mathrm{~S})} \mathrm{t}$.

It is easy to see that $\mathbb{E} \widetilde{Z}=Z_{\text {rel }}$.
However, if $Z_{r e l}$ is exponentially small (e.g. $\left.Z_{r e l}\left(P_{n 2}, p\right)=(1-p)^{n-1}\right)$, then we will almost never see a connected S_{i}

In that case, the relative variance of $\mathbb{1}_{s \rightarrow t}(S)$ is exponentially large, and k has to be exponentially large to yield a good approximation.

Naive Monte Carlo

A natural unbiased estimator \widetilde{Z} of $Z_{\text {rel }}$:

1. Draw k independent subgraphs $\left(S_{i}\right)_{i \in[k]}$ of $G(p)$.
2. Let

$$
\tilde{Z}:=\frac{1}{k} \sum_{i \in[k]} \mathbb{1}_{s \rightarrow t}\left(S_{i}\right),
$$

where $\mathbb{1}_{s \rightarrow t}(S)$ is the indicator variable whether $s \xrightarrow{(V, S)} \mathrm{t}$.

It is easy to see that $\mathbb{E} \tilde{Z}=Z_{\text {rel }}$.
However, if $Z_{r e l}$ is exponentially small (e.g. $\left.Z_{r e l}\left(P_{n}, p\right)=(1-p)^{n-1}\right)$, then we will almost never see a connected S_{i}

In that case, the relative variance of $1_{S \rightarrow t}(S)$ is exponentially large, and k has to be exponentially large to yield a good approximation.

Naive Monte Carlo

A natural unbiased estimator \widetilde{Z} of $Z_{\text {rel }}$:

1. Draw k independent subgraphs $\left(S_{i}\right)_{i \in[k]}$ of $G(p)$.
2. Let

$$
\widetilde{Z}:=\frac{1}{k} \sum_{i \in[k]} \mathbb{1}_{s \rightarrow t}\left(S_{i}\right),
$$

where $\mathbb{1}_{s \rightarrow t}(S)$ is the indicator variable whether $s \xrightarrow{(\mathrm{~V}, \mathrm{~S})} \mathrm{t}$.

It is easy to see that $\mathbb{E} \tilde{Z}=Z_{\text {rel }}$.
However, if $Z_{\text {rel }}$ is exponentially small (e.g. $\left.Z_{r e l}\left(P_{n}, p\right)=(1-p)^{n-1}\right)$, then we will almost never see a connected S_{i}.

In that case, the relative variance of $\mathbb{1}_{s \rightarrow t}(S)$ is exponentially large, and k has to be exponentially large to yield a good approximation.

Previous techniques

Karger's method for (undirected) All-terminal unreliability:
Naive Monte Carlo + random contraction
(Undirected) All-terminal reliability:
via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

- Partial rejection sampling (G. and Jerrum, 2019); or
- Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019),

All these techniques rely on some nice structure of the solution space, which Two-TERMINAL RELIABILITY (even in DAG) does not have.

Previous techniques

Karger's method for (undirected) All-terminal unreliability:
Naive Monte Carlo + random contraction
(Undirected) All-terminal reliability:
via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

- Partial rejection sampling (G. and Jerrum, 2019); or
- Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019).

All these techniques rely on some nice structure of the solution space, which Two-TERMINAL RELI-
ABILITY (even in DAG) does not have.

Previous techniques

Karger's method for (undirected) All-terminal unreliability:
Naive Monte Carlo + random contraction
(Undirected) All-terminal reliability:
via the counting to sampling reduction (Jerrum, Valiant, and Vazirani, 1986) and then either

- Partial rejection sampling (G. and Jerrum, 2019); or
- Markov chain Monte Carlo (Anari, Liu, Oveis Gharan, and Vinzant, 2019).

All these techniques rely on some nice structure of the solution space, which Two-terminal reliAbility (even in DAG) does not have.

Markov chain Monte Carlo

Markov chains are the "off the shelf" approach to sampling from complicated distributions. Here we want to sample $R \sim G(p)$ conditioned on $s \xrightarrow{R} t$.

There is a natural Markov chain converging to the desired distribution:

1. Let $C_{0}=E$.
2. Given C_{t}, randomly pick an edge $e \in E$.

$$
\begin{aligned}
& \text { If } \neg\left(s \xrightarrow{C_{t} \backslash\{e\}} t\right) \text { then } C_{t+1}=C_{t} \text {. Otherwise, } \\
& \qquad C_{t+1}= \begin{cases}C_{t} \cup\{e\} & \text { with prob. } 1-p ; \\
C_{t} \backslash\{e\} & \text { with prob. } p .\end{cases}
\end{aligned}
$$

This chain is slow for s and t connected via two length $n / 2$ paths.

Dynamic programming meets Monte Carlo

DYNAMIC PROGRAMMING

Our main inspiration is the \#NFA algorithm of Arenas, Croquevielle, Jayaram, and Riveros (2021), which in turn builds upon a quasi-polynomial time algorithm for generating words in context-free grammars (\#CFG) by Gore, Jerrum, Kannan, Sweedyk, and Mahaney (1997).

Given the topological ordering $s=v_{1}, v_{2}, \ldots, v_{n}=t$ of the input DAG, we estimate $R_{i}:=$ $\operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}(\mathrm{p})} \mathrm{t}\right]$ from $\mathrm{i}=\mathrm{n}$ to 1 .

Note that for ν_{i}, we can safely ignore all vertices unreachable from v_{i}. Call the resulting graph $\mathrm{G}_{v_{i}}$, and we only need to consider $\mathrm{G}_{\nu_{i}}(\mathrm{p})$.

The inductive step

Let v_{i} 's neighbours be u_{1}, \ldots, u_{d}. Then,

$$
\operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t}\right]=\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{\mathrm{G}_{u_{j}}(p)} \mathrm{t}\right)\right] .
$$

This reminds us to use the DNF counting technique of Karp and Luby (1983) and Karp, Luby, and Madras (1989).

IN ACTION

Given DNF $\Phi=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$, counting the number of solutions to Φ is equivalent to evaluating

$$
\operatorname{Pr}[\sigma \models \Phi]=\operatorname{Pr}\left[\exists i \in[m], \sigma \models C_{i}\right],
$$

where σ is a uniformly at random assignment.
Let Ω_{i} be the set of solutions to C_{i}, and $p_{i}:=\operatorname{Pr}\left[\sigma \models C_{i}\right]=\frac{\left|\Omega_{i}\right|}{2^{n}}=2^{-\left|C_{i}\right|}$.
Karp-Luby goes as follows:

1. Draw i with probability proportional to p_{i};
2. draw uniformly σ such that $\sigma \models C_{\mathfrak{i}}$ (namely uniformly from $\Omega_{\mathfrak{i}}$);
3. Let t_{σ} be the number of clauses σ satisfies. Output $Z:=\frac{1}{t_{\sigma}}$.

Then $\mathbb{E}[Z]=\sum \sigma C_{i}: \sigma \left\lvert\,=C_{i} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}}\right.$.

$$
\mathbb{E}[Z]=\sum_{\sigma} \sum_{C_{i}: \sigma \models C_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{\mathrm{t}_{\sigma}}
$$

Also, $\mathbb{E}[Z]$
implying that $\frac{\operatorname{Var}(Z)}{\mathbb{E}[Z]^{2}} \leqslant m^{2}$

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\sigma} \sum_{C_{i}: \sigma \mid=C_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{\mathfrak{i}}\right|} \cdot \frac{1}{\mathrm{t}_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \sum_{\sigma} \sum_{c_{i}: \sigma \mid=C_{i}} \frac{\left|\Omega_{i}\right|}{2^{n}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{\mathrm{t}_{\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\sigma} \sum_{c_{i}: \sigma \models C_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \sum_{\sigma} \sum_{c_{i}: \sigma \mid=c_{i}} \frac{\left|\Omega_{i}\right|}{2^{n}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma} \frac{1}{t_{\sigma}} \sum_{c_{i}: \sigma \mid=c_{i}} 1
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\sigma} \sum_{c_{i}: \sigma \models C_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \sum_{\sigma} \sum_{c_{i}: \sigma \mid=c_{i}} \frac{\left|\Omega_{i}\right|}{2^{n}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma} \frac{1}{t_{\sigma}} \sum_{C_{i}: \sigma \mid=c_{i}} 1 \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma: \exists i \in[m], \sigma \mid=c_{i}} \frac{t_{\sigma}}{t_{\sigma}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\sigma} \sum_{c_{i}: \sigma \mid=c_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \sum_{\sigma} \sum_{c_{i}: \sigma \mid=c_{i}} \frac{\left|\Omega_{i}\right|}{2^{n}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma} \frac{1}{t_{\sigma}} \sum_{c_{i}: \sigma \models c_{i}} 1 \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma: \exists i \in[m],}{ }_{\sigma \models=c_{i}} \frac{t_{\sigma}}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \operatorname{Pr}\left[\exists i \in[m], \sigma \models C_{i}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{\sigma} \sum_{c_{i}: \sigma \mid=C_{i}} \frac{p_{i}}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \sum_{\sigma} \sum_{c_{i}: \sigma \models=c_{i}} \frac{\left|\Omega_{i}\right|}{2^{n}} \cdot \frac{1}{\left|\Omega_{i}\right|} \cdot \frac{1}{\mathrm{t}_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma} \frac{1}{\mathrm{t}_{\sigma}} \sum_{c_{i}: \sigma \mid=c_{i}} 1 \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \frac{1}{2^{n}} \sum_{\sigma: \exists i \in[m], \sigma \models c_{i}} \frac{t_{\sigma}}{t_{\sigma}} \\
& =\frac{1}{\sum_{i \in[m]} p_{i}} \cdot \operatorname{Pr}\left[\exists i \in[m], \sigma \models C_{i}\right]
\end{aligned}
$$

Also, $\mathbb{E}[Z] \geqslant \frac{1}{m}$, implying that $\frac{\operatorname{Var}(Z)}{\mathbb{E}[Z]^{2}} \leqslant m^{2}$.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \mathcal{E}_{j}\right]$.
Let $p_{j}:=\operatorname{Pr}\left[\mathcal{E}_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.

Then we can

1. draw $j \in[d]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s} t ;$ for $j^{\prime} \neq j$, draw $\left(v_{i}, u_{j^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(\nu_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events \mathcal{E}_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{\mathrm{s}^{\prime}}}$

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $\mathrm{j} \in[\mathrm{d}]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(\mathfrak{p})$ conditioned on $\mathfrak{u}_{\mathfrak{j}} \xrightarrow{s} \mathfrak{t}$; for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, \mathfrak{u}_{\mathfrak{j}^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events ε_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $j \in[d]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s} t ;$ for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, u_{j^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events ε_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $\mathrm{j} \in[\mathrm{d}]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{S} t ;$ for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, u_{\mathfrak{j}^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events \mathcal{E}_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\mathcal{E}_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{\mathrm{G}_{u_{j}}(p)} \mathrm{t}\right]=(1-\mathfrak{p}) \mathrm{R}_{\mathbf{u}_{j}}$.
Then we can

1. draw $\mathrm{j} \in[\mathrm{d}]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s}$ t; for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, u_{j^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events \mathcal{E}_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $\mathrm{j} \in[\mathrm{d}]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s} t ;$ for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, u_{j^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events \mathcal{E}_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $\mathrm{j} \in[\mathrm{d}]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(\mathfrak{p})$ conditioned on $\mathfrak{u}_{\mathfrak{j}} \xrightarrow{s} \mathfrak{t}$; for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, \mathfrak{u}_{\mathfrak{j}^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events ε_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

We want to estimate $\operatorname{Pr}\left[\exists j \in[d],\left(\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right) \wedge\left(u_{j} \xrightarrow{G_{u_{j}}(p)} t\right)\right]=\operatorname{Pr}\left[\exists j \in[d], \varepsilon_{j}\right]$. Let $p_{j}:=\operatorname{Pr}\left[\varepsilon_{j}\right]=\operatorname{Pr}\left[\left(v_{i}, u_{j}\right) \in G_{v_{i}}(p)\right] \times \operatorname{Pr}\left[u_{j} \xrightarrow{G_{u_{j}}(p)} t\right]=(1-p) R_{u_{j}}$.
Then we can

1. draw $j \in[d]$ with probability proportional to p_{j};
2. draw $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s} t ;$ for $\mathfrak{j}^{\prime} \neq \mathfrak{j}$, draw $\left(v_{i}, u_{j^{\prime}}\right)$ independently with probability $1-p$; let the set of these edges together with $\left(v_{i}, u_{j}\right)$ be S^{\prime};
3. let $t_{S^{\prime}}$ be the number of events ε_{j} occurring under S^{\prime}; output $Z:=\frac{1}{t_{S^{\prime}}}$.

The same analysis implies that the expectation of this estimator is what we want and the relative variance is small.

ARE WE THERE YET?

To implement Karp-Luby, we need to do two things:

- calculate $p_{j}=(1-p) R_{u_{j}}$, which can be done as $R_{\mathfrak{u}_{j}}$ is known in previous steps;
- sample $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{S} t$.

How do we sample?

The sampling to counting reduction a la Jerrum, Valiant, and Vazirani (1986) to the rescue!

We maintain a set of samples $S_{v_{i}}$ in addition to $R_{v_{i}}$

ARE WE THERE YET?

To implement Karp-Luby, we need to do two things:

- calculate $p_{j}=(1-p) R_{u_{j}}$, which can be done as $R_{\mathfrak{u}_{j}}$ is known in previous steps;
- sample $S \sim G_{u_{j}}(p)$ conditioned on $u_{j} \xrightarrow{s} t$.

How do we sample?

The sampling to counting reduction a la Jerrum, Valiant, and Vazirani (1986) to the rescue!

We maintain a set of samples $S_{v_{i}}$ in addition to $R_{v_{i}}$.

SAMPLING TO COUNTING REDUCTION

JVV'86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

The marginal of $e=\left(v_{i}, u_{1}\right)$ is
$\frac{\operatorname{Pr}\left[e \in G_{v_{i}}(p)\right] \operatorname{Pr}\left[\nu_{i} \xrightarrow{G_{v_{i}}(p)} t \mid e \in G_{v_{i}}(p)\right]}{\operatorname{Pr}\left[e \in G_{v_{i}}(p)\right] \operatorname{Pr}\left[v_{i} \xrightarrow{G_{v_{i}}(p)} t \mid e \in G_{v_{i}}(p)\right]+\operatorname{Pr}\left[e \notin G_{v_{i}}(p)\right] \operatorname{Pr}\left[v_{i} \xrightarrow{G_{v_{i}}(p)} t \mid e \notin G_{v_{i}}(p)\right]}$

SAMPLING TO COUNTING REDUCTION

JVV'86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

The marginal of $e=\left(v_{i}, u_{1}\right)$ is

$$
\frac{\operatorname{Pr}\left[e \in G_{v_{i}}(p)\right] \operatorname{Pr}\left[v_{i} \xrightarrow{G_{v_{i}}(p)} t \mid e \in G_{v_{i}}(p)\right]}{\operatorname{Pr}\left[e \in G_{v_{i}}(p)\right] \operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(p)\right]+\operatorname{Pr}\left[e \notin \mathrm{G}_{v_{i}}(p)\right] \operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid e \notin \mathrm{G}_{v_{i}}(p)\right]}
$$

SAMPLING TO COUNTING REDUCTION

JVV'86 self-reduction:

sample edges one-by-one, using marginal probabilities conditioned on previous outcomes

The marginal of $e=\left(v_{i}, u_{1}\right)$ is

$$
\frac{(1-p) \operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(p)\right]}{(1-p) \operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(p)\right]+\mathrm{p} \operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid \mathrm{e} \notin \mathrm{G}_{v_{i}}(p)\right]}
$$

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(p)} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

Contract v_{i} and u_{1}. Call it v_{i}^{\prime}. Note that we would have already computed $\left(R_{u_{j}}, S_{u_{j}}\right)$ for $\mathfrak{j} \geqslant 2$.

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

Contract v_{i} and u_{1}. Call it v_{i}^{\prime}. Note that we would have already computed ($\left.R_{u_{j}}, S_{u_{j}}\right)$ for $\mathfrak{j} \geqslant 2$.
That's all Karp-Luby needs to estimate $\operatorname{Pr}\left[\nu_{i}^{\prime} \xrightarrow{\mathrm{G}_{v_{i}^{\prime}}(\mathrm{p})} \mathrm{t}\right]$!

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

Contract v_{i} and u_{1}. Call it v_{i}^{\prime}. Note that we would have already computed ($\left.R_{u_{j}}, S_{u_{j}}\right)$ for $\mathfrak{j} \geqslant 2$.
That's all Karp-Luby needs to estimate $\operatorname{Pr}\left[\nu_{i}^{\prime} \xrightarrow{\mathrm{G}_{v_{i}^{\prime}}(\mathrm{p})} \mathrm{t}\right]$!
The case for $\operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \notin \mathrm{G}_{v_{i}}(\mathrm{p})\right]$ is similar. Then move on to the next edge and repeat.

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

Contract v_{i} and u_{1}. Call it v_{i}^{\prime}. Note that we would have already computed ($\left.R_{u_{j}}, S_{u_{j}}\right)$ for $\mathfrak{j} \geqslant 2$.
That's all Karp-Luby needs to estimate $\operatorname{Pr}\left[\nu_{i}^{\prime} \xrightarrow{\mathrm{G}_{v_{i}^{\prime}}(\mathrm{p})} \mathrm{t}\right]$!
The case for $\operatorname{Pr}\left[v_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \notin \mathrm{G}_{v_{i}}(\mathrm{p})\right]$ is similar. Then move on to the next edge and repeat.

Computing the marginal

How do we estimate $\operatorname{Pr}\left[\nu_{i} \xrightarrow{\mathrm{G}_{v_{i}}(\mathrm{p})} \mathrm{t} \mid \mathrm{e} \in \mathrm{G}_{v_{i}}(\mathrm{p})\right]$?

- Blue edges: those chosen using the marginal by Karp-Luby, forming a tree.
- Green edges: conditioned on the blue edges, they have no affect on reaching t, and thus have marginal $1-p$.
- Red edges: the current frontier, whose tails have been processed (namely $\left(R_{u}, S_{u}\right)$ has been computed already).

Efficiency of the algorithm

The self-reduction to generate one sample uses, say, k samples for each Karp-Luby step. If we generate fresh samples each time, in total at least k^{n} samples are required. The key to be efficient here is that samples can be reused!

Reusing samples introduces subtle correlation among $R_{v_{i}}$'s and the samples. However:

- accurate marginals

accurate samples;
- accurate samples \square accurate marginals

Accurate marginals come from accurate estimation of the $R_{v_{i}}$'s. The samples are subtly correlated, but they can be coupled with independent fresh samples with small error

Efficiency of the algorithm

The self-reduction to generate one sample uses, say, k samples for each Karp-Luby step. If we generate fresh samples each time, in total at least k^{n} samples are required. The key to be efficient here is that samples can be reused!

Reusing samples introduces subtle correlation among $R_{v_{i}}$'s and the samples. However:

- accurate marginals $\xrightarrow{\text { union bound over all edges }}$ accurate samples;
- accurate samples $\xrightarrow{\text { union bound over all possibilities }}$ accurate marginals.

Accurate marginals come from accurate estimation of the $R_{v_{i}}$'s. The samples are subtly correlated, but they can be coupled with independent fresh samples with small error.

The overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the error $\delta:=n^{-1} \min \left\{\mathrm{~m}^{-1}, \varepsilon\right\}$ in Karp-Luby, and we need $\mathrm{O}\left(\mathrm{n} \delta^{-2}\right)$ samples each time. (In fact here we use the self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need $\mathrm{O}(\mathrm{m})$ time, so one Karp-Luby step takes $\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)$ time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we repeat Karp-luby $\mathrm{O}(\mathrm{m})$ times to achieve $\exp (-\mathrm{O}(\mathrm{m}))$ failure probability.

How many samples do we need for each S_{i} ?
On average, we need $0:=\frac{\mathrm{O}\left(\mathrm{mn}^{-2}\right)}{n}=\mathrm{O}\left(\mathrm{m}^{-2}\right)$ samples. This in fact suffices.
At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in turn, calls approximate counting $\mathrm{O}(\mathrm{m})$ times.

Thus, the overall running time is

The OVERALL RUNNING TIME

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the error $\delta:=n^{-1} \min \left\{m^{-1}, \varepsilon\right\}$ in Karp-Luby, and we need $O\left(n \delta^{-2}\right)$ samples each time. (In fact here we use the self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need $\mathrm{O}(\mathrm{m})$ time, so one Karp-Luby step takes $\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)$ time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we repeat Karp-luby $\mathrm{O}(\mathrm{m})$ times to achieve $\exp (-\mathrm{O}(\mathrm{m}))$ failure probability.

How many samples do we need for each S_{i} ?
On average, we need $\ell:=\frac{\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)}{n}=\mathrm{O}\left(\mathrm{m}^{-2}\right)$ samples. This in fact suffices.

At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in turn, calls approximate counting $\mathrm{O}(\mathrm{m})$ times.

The overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the error $\delta:=n^{-1} \min \left\{m^{-1}, \varepsilon\right\}$ in Karp-Luby, and we need $O\left(n \delta^{-2}\right)$ samples each time. (In fact here we use the self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need $\mathrm{O}(\mathrm{m})$ time, so one Karp-Luby step takes $\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)$ time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we repeat Karp-luby $\mathrm{O}(\mathrm{m})$ times to achieve $\exp (-\mathrm{O}(\mathrm{m}))$ failure probability.

How many samples do we need for each S_{i} ?
On average, we need $\ell:=\frac{\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)}{n}=\mathrm{O}\left(\mathrm{m} \delta^{-2}\right)$ samples. This in fact suffices.
At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in turn, calls approximate counting $\mathrm{O}(\mathrm{m})$ times.

The overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the error $\delta:=n^{-1} \min \left\{m^{-1}, \varepsilon\right\}$ in Karp-Luby, and we need $O\left(n \delta^{-2}\right)$ samples each time. (In fact here we use the self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need $\mathrm{O}(\mathrm{m})$ time, so one Karp-Luby step takes $\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)$ time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we repeat Karp-luby $\mathrm{O}(\mathrm{m})$ times to achieve $\exp (-\mathrm{O}(\mathrm{m}))$ failure probability.

How many samples do we need for each S_{i} ?
On average, we need $\ell:=\frac{\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)}{n}=\mathrm{O}\left(\mathrm{m} \delta^{-2}\right)$ samples. This in fact suffices.
At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in turn, calls approximate counting $\mathrm{O}(\mathrm{m})$ times.

[^0]
The overall running time

We need union bounds over all edges at various points. Also they accumulate during the DP. Thus set the error $\delta:=n^{-1} \min \left\{m^{-1}, \varepsilon\right\}$ in Karp-Luby, and we need $O\left(n \delta^{-2}\right)$ samples each time. (In fact here we use the self-adjusting algorithm of Karp, Luby, and Madras, 1989.) To compute the estimator, we need $\mathrm{O}(\mathrm{m})$ time, so one Karp-Luby step takes $\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)$ time.

One run of Karp-Luby succeeds with constant probability. To show that reusing samples is fine, we need a union bound over all possible scenarios in the sampling algorithm, which are exponentially many. Thus, we repeat Karp-luby $\mathrm{O}(\mathrm{m})$ times to achieve $\exp (-\mathrm{O}(\mathrm{m}))$ failure probability.

How many samples do we need for each S_{i} ?
On average, we need $\ell:=\frac{\mathrm{O}\left(\mathrm{mn} \delta^{-2}\right)}{n}=\mathrm{O}\left(\mathrm{m} \delta^{-2}\right)$ samples. This in fact suffices.
At each step of the DP, we do approximate counting once and sampling ℓ times, and each sampling step, in turn, calls approximate counting $\mathrm{O}(\mathrm{m})$ times.

Thus, the overall running time is

$$
n \times m \ell \times m \times O\left(m n \delta^{-2}\right)=O\left(m^{4} n^{2} \delta^{-4}\right)=O\left(m^{4} n^{6} \max \left\{m^{4}, \varepsilon^{-4}\right\}\right)
$$

Hardness results

\#BIS-HARDNESS FOR TWO-TERMINAL VERTEX UNRELIABILITY IN DAGS

\#BIS
\leqslant

\#BIS-HARDNESS FOR TWO-TERMINAL VERTEX UNRELIABILITY IN DAGS

\#BIS
\leqslant

\#BIS-HARDNESS FOR TWO-TERMINAL VERTEX UNRELIABILITY IN DAGS

\#BIS
\leqslant
Two-terminal vertex unreliability

\#BIS-HARDNESS FOR TWO-TERMINAL VERTEX UNRELIABILITY IN DAGS

\#BIS
\leqslant
Two-terminal vertex unreliability

\#BIS-HARDNESS FOR Two-terminal vertex unreliability in DAGs

\#BIS
\leqslant
Two-terminal vertex unreliability

\#BIS
\leqslant
Two-terminal vertex unreliability

\#BIS
\leqslant
Two-terminal vertex unreliability

Vertex unreliability

From vertex to edge unreliability in DAGs

Vertex unreliability

Edge unreliability

From vertex to edge unreliability in DAGs

Vertex unreliability

Edge unreliability

From vertex to edge unreliability in DAGs

Vertex unreliability

Edge unreliability

Vertex unreliability

Edge unreliability

Black edges have failure probability 0 . Colored edges have failure probability $1 / 2$.

We reduce from Minimum directed Steiner tree in DAGs with unit weights, which is NP-hard by reducing from Set Covers.

Note that minimum Steiner trees are the extremal configurations for $S-t$ reliability. Thus, if the failure probability of edges is $1-\exp (-\mathrm{O}(\mathrm{n}))$, then, drawing from the corresponding distribution, we would only see the minimizers.

Exponentially small success probability can be simulated by gadgets, such as replacing a normal edge by a path (sometimes called a stretching).

Concluding remarks

Open problems

- Faster than $\mathrm{O}\left(m^{4} n^{6} \max \left\{m^{4}, \varepsilon^{-4}\right\}\right)$?
- Deterministic algorithms? This would require derandomise the Karp-Luby algorithm, which has been open for decades.
- Approximation complexity for Two-terminal reliability in directed and undirected graphs?
- Improve the quasi-polynomial time algorithm for \#CFG by Gore, Jerrum, Kannan, Sweedyk, and Mahaney (1997).

Thank you!

arXiv:2310.00938

[^0]: Thus, the overall running time is

