
“LET’S GO, DUDE!” USING THE SPOKEN DIALOGUE CHALLENGE TO TEACH SPOKEN

DIALOGUE DEVELOPMENT

Helen Hastie, Nicolas Merigaud, Xingkun Liu, Oliver Lemon

Department of Mathematical and Computer Science
Heriot-Watt University

{h.hastie, nm210, x.liu, o.lemon}@hw.ac.uk

ABSTRACT

Educational tools are essential in teaching the field of

Spoken Dialogue Systems given the complexity and

variety of disciplines involved. This paper describes

DUDE, a Dialogue and Understanding Development

Environment that enables researchers and students to

efficiently create Information State Update (ISU) Spo-

ken Dialogue Systems using large scale databases with

minimal programming and grammar development. The

experience of creating real Spoken Dialogue Systems

that they can call through a VoiceXML platform, in-

creases students’ motivation and improves learning by

grounding key concepts, including introducing students

to ISU dialogue modelling.

1. INTRODUCTION

Industrial and academic approaches to researching and

developing Spoken Dialogue Systems (SDS) have var-

ied in terms of their objectives, size of systems built and

research questions asked. Industry has typically focused

on more short-term goals such as creating scalable and

robust systems in a cost efficient manner. While, tradi-

tionally, academia has been more interested in exploring

a larger variety of research questions with longer term

scientific goals. Until recently, creating Spoken Dia-

logue Systems, particularly using large-scale industrial

databases, required resources not available to academia

and, therefore, academic Spoken Dialogue Systems

were typically limited to small “toy” systems. Platforms

such as DUDE (Dialogue and Understanding Develop-

ment Environment) [1] have enabled researchers and

students to create large-scale Spoken Dialogue Systems

allowing them to better validate research results and

increase the impact of their work.

DUDE is a development environment that automat-

ically generates dialogue systems from a dialogue flow

model and a database. These generated Spoken Dia-

logue Systems are then deployed on an industry standard

VoiceXML platform. Specifically, the deployed sys-

tem works by dynamically generating context-sensitive

VoiceXML pages. The dialogue move of each page

is determined in real time by the dialogue manager,

which is an Information State Update (ISU) engine [2].

The main advantages that DUDE has over other similar

tools and development environments is that it does not

involve any programming or grammar writing and it

compiles into an end-to-end Spoken Dialogue System

that contains a mixed initiative ISU dialogue manager

and can be called from a phoneline. DUDE has been

used for rapid prototype development using business-

user resources [1] and also as a teaching tool for the

2010 Spoken Dialogue Challenge (SDC).

Educational tools for the area of Spoken Dialogue

Systems are essential given the number of modules that

make up an SDS and their individual complexity. The

field of Spoken Dialogue Systems crosses many disci-

plines and attracts students from diverse backgrounds:

from Linguists interested in syntactic and semantic for-

malism, to Computer Scientists interested in architec-

ture design, to Electrical Engineers interested in improv-

ing ASR/TTS. In addition, students vary significantly

in programming skills, which makes teaching such a

course on Spoken Dialogue Systems very challenging.

A platform such as DUDE allows one to reach out to

such a diverse audience in an effective and time efficient

manner.

Through DUDE, the students are educated on the

process of creating an SDS using real large-scale databases

from industrial partners. The systems created can be

called from any phoneline, thus increasing the visibility

of the students’ systems and also boosting the confi-

dence of the individual student in terms of their ability

to develop a system in a short period of time that is

commercially viable. In addition, vehicles such as the

Spoken Dialogue Challenge allow systems to be rapidly

deployed and tested using real users, which can be out-

side the scope of a Master’s project.

In this paper, we look briefly at systems currently be-

ing used as teaching tools. We then describe the DUDE

platform and the resulting Spoken Dialogue Systems.

Throughout the paper, we refer to a case study system

developed by a student for the 2010 Spoken Dialogue

Challenge using the Pittsburgh Port Authority Transit

database to enquire about bus times in and around Pitts-

burgh, U.S.A..

2. PREVIOUS WORK

[3] describes the Regulus Open Source Project which

has been used in a course for students with limited com-

puter programming skills. Regulus includes a number of

resources including compilers, IDE, a Regulus resource

grammar for English, documentation and example dia-

logue systems. Where DUDE automatically compiles

the whole dialogue system (including speech recogni-

tion grammars, NLU and dialogue manager), Regulus

provides one tool that automatically compiles CFGs

by taking a unification grammar (UG) together with a

supplementary lexicon and compiles a domain-specific

UG using Explanation Based Learning. This is then

compiled into a CFG, which can be used with a speech

recogniser.

[4] describes Dialog OS, which is an educational

tool aimed at helping students grasp the main ideas

of finite-state-based dialogue modelling. The main

strength of this platform is the GUI workspace that

allows the user to add and remove nodes in the Finite

State Automata (FSA). Although this tool goes part way

to reducing development time, FSA dialogue modelling

is still a lengthy process. We believe that our process

of automatically creating an Information State Update

Dialogue Manager (DM) through DUDE does not only

reduce development time but also provides a more flex-

ible Dialogue Manager.

Voxeo’s Evolution Designer (http://www.voxeo.com)

is a web-based graphical interface that allows one to de-

sign call flow, system prompts and user responses. The

system is then linked to a phone number for testing.

Similarly to Voxeo, the CSLU toolkit [5] contains a

drag-and-drop authoring environment called Rapid Ap-

plication Developer (RAD) for rapid dialogue develop-

ment integrating facial animation, ASR, NLU and TTS

with other features such as word-spotting, barge-in, dia-

logue repair, telephone and microphone. Through RAD,

the students specify prompts, recognition vocabularies

and actions.

The advantages of DUDE over the above-mentioned

systems is that DUDE not only provides automatic

grammar compilation but also generates an end-to-end

ISU dialogue system. ISU systems are more flexible and

require less development time than FSAs (as in Dialog

OS) and hand-coded dialogue flow (as in the Voxeo and

CSLU toolkits). DUDE also provides further explo-

ration work by allowing students to look at and modify

the update rules of the ISU DM. Finally, DUDE requires

no programming experience or knowledge of grammars.

System: Welcome to the Pittsburgh bus information line.

You can say start over anytime.

Where are you going to take your bus from?

User: Hi yeah I want to go from McKeesport

System: Sure. Where do you want to go?

User: Duquesne.

System: Did you mean Duquesne?

User: Yes

System: At what time do you want to take it?

Say next bus or a time for example 8.40pm.

User: Around 4.15pm

System: I’m going to search for buses around 4.15pm.

Is that OK?

User: Yes.

System: On which day?

User: Today

System: I have found one bus. It is at 4.15pm.

There is a bus number 61C from McKeesport.

It will arrive in Duquesne at 4.21pm.

System: Is there anything else I can do for you?

User: No thanks

System: Thanks for calling. Good bye!

Table 1. Example dialogue

3. THE 2010 SPOKEN DIALOGUE CHALLENGE

As a case study of using DUDE as a teaching tool, we

look to the 2010 Spoken Dialogue Challenge where the

challenge was to create a Spoken Dialogue System that

allows the callers to enquire about bus schedules using a

real database provided by the Pittsburgh Port Authority.

Table 1 gives an example dialogue from a bus schedul-

ing system created using DUDE. The original bus in-

formation system, known as “Let’s Go”, was developed

at Carnegie Mellon University [6] and has been run-

ning ’live’ for several years with real callers seeking bus

times.

Fig. 1. Original database structure

The SDC database is an SQL database containing

6 tables as illustrated in Figure 1. The busstop table

lists the bus stops in terms of an address, e.g. “Forbes

avenue at Murray” is

busstop.stoppart1+busstop.intersectiontype

+busstop.stoppart2. Route refers to the bus

route, e.g. route.number is 61C. The times table

lists the times a bus leaves a busstop.

Routesequence links buses and busstops on

the same route. To access a schedule for a specific bus,

assuming that both the departure location and arrival lo-

cation are busstop addresses, the SQL query would

involve all of the above-mentioned tables. In addition,

there are two other tables: the stopneighborhoods

table represents the different neighbourhoods in Pitts-

burgh, e.g. “Shadyside”; finally wordstops are sim-

ple keywords associated with certain busstops, for

INSERT INTO ‘buses‘ VALUES (0,’MCKEESPORT’,

’TRANSPORTATION MCKEESPORT CENTER BAY 2

MCKEESPORT TAGN’,’4 15 A M’,’four twenty A M’,

’DUQUESNE’,’GRANT SECOND DUQUESNE TAGN’,

’4 21 A M’,’four twenty A M’,’61 C’,’McKeesport

Homestead’,’I’,’SATURDAY’);

INSERT INTO ‘buses‘ VALUES (1,’MCKEESPORT’,

’TRANSPORTATION MCKEESPORT CENTER BAY 2

MCKEESPORT TAGN’,’4 15 A M’,’four twenty A M’

,’SECOND STREET AT GRANT’,

’GRANT SECOND DUQUESNE TAGN’,

’4 21 A M’,’four twenty A M’,’61 C’,’McKeesport

Homestead’,’I’,’SATURDAY’);

INSERT INTO ‘buses‘ VALUES (2,’MCKEESPORT

TRANSPORTATION CENTER AT BAY 2’,

’TRANSPORTATION MCKEESPORT CENTER

BAY 2 MCKEESPORT TAGN’,

’4 15 A M’,’four twenty A M’,

’SECOND STREET AT GRANT’,

’GRANT SECOND DUQUESNE TAGN’,’4 21 A M’,

’four twenty A M’,’61 C’,’McKeesport

Homestead’,’I’,SATURDAY’);

INSERT INTO ‘buses‘ VALUES (3,’MCKEESPORT

TRANSPORTATION CENTER AT BAY 2’,

’TRANSPORTATION MCKEESPORT CENTER

BAY 2 MCKEESPORT TAGN’,

’4 15A M’,’four twenty A M’,

’DUQUESNE’,’GRANT SECOND DUQUESNE TAGN’,

’4 21 A M’,’four twenty A M’,’61 C’,’McKeesport

Homestead’,’I’,’SATURDAY’);

Table 2. Four example insert statements from the

database

example,

“Carnegie Mellon University” or CMU would be asso-

ciated with the busstop address “Forbes Avenue at

Morewood Carnegie Mellon”.

As the current version of DUDE does not handle

multi-table databases, some pre-processing was needed.

The 6 table database was transformed into a single large

table where each line would represent a single bus trip at

a specific time. Table 2 gives four example insert state-

ments out of the 282,305 insert statements in the modi-

fied database.

A single line in the database says: “There is a

[routenumber] from [departure location] at [departure

time] on [daytype]. It will arrive in [arrival place] at

[arrival time]”. In our case, the first example insert

statement translates to “There is a 61C from MCK-

EESPORT at 4:15 AM on SATURDAY. It will arrive

in DUQUESNE at 4:21 AM”. The four example state-

ments describe the same 61C bus leaving McKeesport at

4.15pm. This is to enable the user to say a mix of neigh-

bourhood locations and bus stop locations. Concretely,

for one specific bus there are the following statements:

• From stopneighborhood to stopneighborhood

• From stopneighborhood to busstop

• From busstop to busstop

• From busstop to stopneighborhood

4. THE DUDE PLATFORM

4.1. The Development Environment

The DUDE environment consists of a GUI that allows

the student to design a task flow by creating, dragging

and dropping nodes. There are two levels of nodes:tasks

and slots. Figure 2 illustrates one such dialogue flow

created using DUDE. For illustrative purposes this fig-

ure contains both the flow for the tasks (above) and for

the slots (below). In this case the top level task node is

just buses, however, DUDE does support multiple tasks

such as buses and trains.

Fig. 2. Task and slot level dialogue flow

Drilling down on the buses task node allows one to

create a flow for the slots, see the lower half of Figure

2. In this case the slots are: origin (the “from” node),

destination (the “to” node), time (the “at” node) and day

of the week (the “on” node). The arrows provide the

default call flow, for example the system will prompt the

user for the destination after it knows where the user is

taking the bus from. However, as the system is mixed

initiative, the user can provide information in any order

and with multiple slots, for example “I want to go to the

airport from Downtown”. Conditions can be placed on

the transition arrows, for example in Figure 2 if the caller

says “next bus” then the dialogue information gathering

part of the dialogue ends, otherwise it prompts the user

for the day of the week.

Fig. 3. The DUDE Development Environment to enter

task level information

Once the task flow is complete, it is loaded into the

main GUI where the student can define system prompts

and add task spotter phrases and synonyms to the gram-

mars. Figure 3 shows the GUI with the task flow on

the left hand side and the properties pane for the buses

task on the right hand side. In this pane the student can

define the system prompt, the information to be pre-

sented to the user and the spotter phrases. Here the

student is associating the phrases “I need a bus, I want

to go to.” with the buses task. This means that if the

user says, for example, “I want to go downtown”, the

buses part of the task flow will be triggered. This would

be particularly important if there were more than one

task level node, e.g. buses and trains. Note that multi-

word phrases may also be defined. The defined spotters

are automatically compiled into the grammar for pars-

ing and speech recognition. By default, all the lexical

entries for answer-types for the slots are also included as

spotter phrases. DUDE checks for possible ambiguities,

for example if the user simply said “downtown” with-

out being prompted, the system would be unsure if this

was a destination or origin and would, therefore, trigger

a clarification subdialogue to resolve the ambiguity at

runtime.

Figure 4 shows the student specifying the required

linguistic information to automate the “to” slot of the

buses task. Here the student specifies the system prompt

“Where do you want to go to?” and a phrase for im-

plicit confirmation of provided values, e.g. “going to

$X ”, where $X is a variable that will be replaced with

the semantics of the speech recognition hypothesis for

the user input. The student also specifies here the an-

swer type that will resolve the system prompt. There

are predefined answer-types extracted from the SQL

database, and the student can select and/or edit these,

adding phrases and synonyms. In addition, they have

the ability to define their own answer-types.

Fig. 4. The DUDE Development Environment to enter

information for the destination slot

4.2. Dialogue Manager Generation

Once the necessary fields have been completed by the

student, all that is left is to compile the dialogue system.

The resulting dialogue system contains an Information

State Update dialogue manager [2]. The DUDE en-

vironment is used to specify domain-specific dialogue

strategies, which are combined with domain-general

strategies. Specifically, the DM consults the task flow

to determine what task-based steps to take next, such

as asking for destination after establishing origin. XML

format is used for the task flow, and is compiled into

finite state machines consulted by the Spoken Dia-

logue System. Values for constraints on transitions and

branching in the task flow, for example “ask for week

day if user does not say next bus”, are compiled into

domain-specific parts of the Information State. General

aspects of dialogue, such as confirmation and clarifica-

tion strategies, are handled by the domain-general part

of the DM. The domain-general dialogue manager was

mostly abstracted from the TALK system [7].

4.3. Grammar Generation

Writing grammars for a domain can be very time con-

suming and due to the constraints of a student’s course,

often only small domains can be built. Using DUDE,

however, students do not have to write a single line of

grammar code. Within DUDE there are three types of

grammars: (1) a core grammar, (2) a grammar generated

from the database and task flow, and (3) dynamically

generated grammars at run-time. The core grammar

(1) was developed to cover basic information-seeking

interactions. To create grammar (2), the system com-

piles relevant database entries and their properties into

the appropriate “slot-filling” parts of a SRGS GRXML

(Speech Recognition Grammar Specification) grammar

for each specific task and slot node. Task level gram-

mars are used to allow a level of mixed initiative, for

example, if the system asks “Where do you want to

go?” the user can reply with a destination slot filler

and also any other slot type, such as “I want to go from

the airport to downtown”. The dynamically generated

grammars (3), such as for bus times and route num-

bers currently in discussion, minimizes grammar size

and makes the system more efficient. In addition to

the above-mentioned grammars, using the development

environment students are able to provide task spotter

phrases and synonyms reflecting how users might re-

spond. If these are not already covered by the existing

grammar, DUDE automatically generates rules to cover

them.

The generated SRGS GRXML grammars are used

to populate the VoiceXML pages that are dynamically

generated during the conversation. These VoiceXML

pages are interpreted by a VoiceXML Platform Speech

recogniser. In this case, we deploy our system to the

Voxeo Platform (http://www.voxeo.com). The Auto-

matic Speech Recogniser (ASR) and Text To Speech

Synthesizer run on this platform with the ASR load-

ing up the specific grammar defined by that VoiceXML

page. As well as the W3C standard SRGS GRXML,

DUDE is able to generate alternative grammar specifi-

cations such as SRGS ABNF (Augmented Backus-Naur

Form), JSGF ABNF (Java Speech Grammar Format)

and Nuance’s GSL (Grammar Specification Language).

5. EVALUATION

The DUDE system was one of four systems partici-

pating in the initial testing phase of the 2010 Spoken

Dialogue Challenge. Each caller interacted with each

system twice using different scenarios picked from a

pool of sixteen. The scenarios consisted of a destination

and an origin represented in terms of a map or location

name and a time represented as an exact time, a time

period or “now”. In some scenarios the bus name was

also given (e.g. 61C). For the DUDE system described

above, 62% of calls reached the stage of presenting

results to the user. Further analysis will be required

to discover how many of the failed calls were due to

telephony or platform errors (unfortunately we experi-

enced such dropped calls quite often). Of these calls,

61% gave fully correct information to the users, and

74% were correct with respect to the route information

(though the presented times were not always correct).

These results are promising for a system which was de-

veloped so rapidly, using general tools. The resulting

system could then be further improved in student project

work.

6. SUMMARY AND FUTURE WORK

This paper describes a teaching platform for rapidly

creating ISU Spoken Dialogue Systems using large

databases. Its successful application was illustrated

with the bus scheduling system for the 2010 Spoken

Dialogue Challenge that was created and deployed to

a VoiceXML platform and called successfully by many

users. This system was created in less than 3 weeks us-

ing DUDE, which is certainly an appropriate timeframe

for project work in class, or MSc projects or for initial

stages of Ph.D. work. Future work includes enabling

DUDE to handle multi-table databases, which would

allow more efficient use of large databases.

7. ACKNOWLEDGEMENT

The research leading to these results has received fund-

ing from the European Community’s Seventh Frame-

work Programme (FP7/2007-2013) under grant agree-

ment number 216594 (CLASSiC project project: www.classic-

project.org) and by a Scottish Enterprise Proof of Con-

cept Grant (project number 8-ELM-004). DUDE tech-

nology is the property of the University of Edinburgh

and was used under licence from Edinburgh.

8. REFERENCES

[1] H. Hastie, X. Liu, and O. Lemon, “Automatic

Generation of Information State Update Dialogue

Systems that Dynamically Create VoiceXML, as

Demonstrated on the iPhone,” in Proceedings of

SIGDIAL (demonstrations), 2009.

[2] O. Lemon, “Context-sensitive speech recognition

in Information-State Update dialogue systems: re-

sults for the grammar switching approach,” in Pro-

ceedings of the 8th Workshop on the Semantics and

Pragmatics of Dialogue, CATALOG’04, 2004.

[3] B.A. Hockey and G. Christian, “Zero to spoken

dialogue system in one quarter: teaching compu-

tational linguistics to linguists using Regulus,” in

TeachCL ’08: Proceedings of the Third Workshop

on Issues in Teaching Computational Linguistics,

Morristown, NJ, USA, 2008, pp. 80–86, Associa-

tion for Computational Linguistics.

[4] D. Bobbert and M. Wolska, “Dialogue OS: an ex-

tensible platform for teaching spoken dialogue sys-

tems,” in Proceedings of the 11th Workshop on the

Semantics and Pragmatics of Dialogue, 2007.

[5] R. Cole, “Tools for research and education in speech

science,” in Proceedings of the International Con-

ference of Phonetic Sciences, 1999.

[6] A. Raux, B. Langner, A. Black, and M. Eskenazi,

“Let’s go public! taking a spoken dialog system

to the real world,” in Proceedings of Eurospeech,

2005.

[7] O. Lemon, K. Georgila, J. Henderson, and M. Stut-

tle, “An ISU dialogue system exhibiting reinforce-

ment learning of dialogue policies: generic slot-

filling in the TALK in-car system,” in Proceedings

of EACL, 2006, pp. 119–122.

