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Abstract

Recent studies have shown that incremental
systems are perceived as more reactive, nat-
ural, and easier to use than non-incremental
systems. However, previous work on incre-
mental NLG has not employed recent ad-
vances in statistical optimisation using ma-
chine learning. This paper combines the two
approaches, showing how theupdate, revoke
and purge operations typically used in in-
cremental approaches can be implemented as
state transitions in a Markov Decision Process.
We design a model of incremental NLG that
generates output based on micro-turn inter-
pretations of the user’s utterances and is able
to optimise its decisions using statistical ma-
chine learning. We present a proof-of-concept
study in the domain of Information Presen-
tation (IP), where a learning agent faces the
trade-off of whether to present information as
soon as it is available (for high reactiveness)
or else to wait until input ASR hypotheses are
more reliable. Results show that the agent
learns to avoid long waiting times, fillers and
self-corrections, by re-ordering content based
on its confidence.

1 Introduction

Traditionally, the smallest unit of speech processing
for interactive systems has been a full utterance with
strict, rigid turn-taking. Components of these inter-
active systems, including NLG systems, have so far
treated the utterance as the smallest processing unit
that triggers a module into action. More recently,
work on incremental systems has shown that pro-
cessing smaller ‘chunks’ of user input can improve

the user experience (Skantze and Schlangen, 2009;
Buss et al., 2010; Skantze and Hjalmarsson, 2010;
Baumann et al., 2011). Incrementality in NLG sys-
tems enables the system designer to model several
dialogue phenomena that play a vital role in hu-
man discourse (Levelt, 1989) but have so far been
absent from NLG systems. These include more
natural turn-taking through rapid system responses,
grounding through the generation of backchannels
and feedback, and barge-ins (from both user and sys-
tem). In addition, corrections and self-corrections
through constant monitoring of user and system ut-
terances play an important role, enabling the system
to recover smoothly from a recognition error or a
change in the user’s preferences. Some examples of
the phenomena we are targeting are given in Fig. 1.

Skantze and Hjalmarsson (2010) present a model
of incremental speech generation in which input pro-
cessing and output planning are parallel processes
and the system can self-monitor its own genera-
tion process. In an evaluation with human users
they showed that their incremental system started
to speak significantly faster than a non-incremental
system (roughly 600 ms) and was perceived as sig-
nificantly more polite and efficient. Users also in-
dicated that they knew better when to start speaking
themselves. Alternative approaches to incremental
NLG include Kilger and Finkler (1995) who present
an early approach based on Tree-Adjoining Gram-
mar, and Purver and Otsuka (2003) who define an
incremental generator based on Dynamic Syntax.
Both of these generators can monitor their own out-
put and initiate corrections if necessary.

Over recent years, adaptive and data-driven ap-



Self-correction (the system made a mistake)
USR I want Italian food in the centre of town . . .
SYS OK. I found 35 Indian restaurants . . .
USR No, I want Italian.
SYS oh sorry . . .
SYS I have 24 Italian restaurants in the city centre . . .

Correction (the user changed their mind)
USR I want Indian food in the centre of town . . .
SYS There are 35 Indian . . .
USR Oh sorry, I meant Italian.
SYS OK, Italian . . .
SYS I have 24 Italian restaurants . . .

Re-ordering (from high to low confidence)
USR I want Italian food . . .
SYS [waits]
USR in the city centre.
SYS I have 120 places in the city centre . . .
USR I love Italian . . .
SYS 24 of them Italian . . .

Holding the floor
USR I want cheap Italian food . . .
SYS ok let me see
SYS I have 3 cheap Italian places . . .

Figure 1: Example phenomena generated with the trained
policy. The agent has learnt to produce backchannels
when the user pauses, monitor and (self-)correct its out-
put, and present information according to its confidence.

proaches to NLG have also been developed and
shown to outperform the previous (handcrafted,
rule-based) methods for specific problems (Rieser et
al., 2010; Janarthanam and Lemon, 2010; Dethlefs
and Cuayáhuitl, 2011). This work has established
that NLG can fruitfully be treated as a data-driven
statistical planning process, where the objective is
to maximise expected utility of the generated utter-
ances (van Deemter, 2009), by adapting them to the
context and user. Statistical approaches to sentence
planning and surface realisation have also been ex-
plored (Stent et al., 2004; Belz, 2008; Mairesse et
al., 2010; Angeli et al., 2010). The advantages of
data-driven methods are that NLG is more robust in
the face of noise, can adapt to various contexts and,
trained on real data, can produce more natural and
desirable variation in system utterances.

This paper describes an initial investigation into a
novel NLG architecture that combines incremental
processing with statistical optimisation. In order to

move away from conventional strict-turn taking, we
have to be able to model the complex interactions
observed in human-human conversation. Doing this
in a deterministic fashion through hand-written rules
would be time consuming and potentially inaccu-
rate, with no guarantee of optimality. In this paper,
we demonstrate that it is possible to learn incremen-
tal generation behaviour in a reward-driven fashion.

2 Previous Work: Incremental Processing
Architectures

The smallest unit of processing in incremental sys-
tems is calledincremental unit(IU). Its instantia-
tion depends on the particular processing module. In
speech recognition, IUs can correspond to phoneme
sequences that are mapped onto words (Baumann
and Schlangen, 2011). In dialogue management, IUs
can correspond to dialogue acts (Buss et al., 2010).
In speech synthesis, IUs can correspond to speech
unit sequences which are mapped to segments and
speech plans (Skantze and Hjalmarsson, 2010). IUs
are typically linked to other IUs by two types of rela-
tions: same-levellinks connect IUs sequentially and
express relationships at the same level;grounded-in
links express hierarchical relations between IUs.

2.1 Buffer-Based Incremental Processing

A general abstract model of incremental process-
ing based on buffers and a processor was devel-
oped by Schlangen and Skantze (2009) and is illus-
trated in Figure 2. It assumes that theleft buffer
of a module, such as the NLG module, receives
IUs from one or more other processing modules,
such as the dialogue manager. These input IUs are
then passed on to theprocessor, where they are
mapped to corresponding (higher-level) IUs. For
an NLG module, this could be a mapping from the
dialogue actpresent(cuisine=Indian)to the realisa-
tion ‘they serve Indian food’. The resulting IUs are
passed on to theright buffer which co-incides with
the left buffer of another module (for example the
speech synthesis module in our example). Same-
level links are indicated as dashed arrows in Figure
2 and grounded-in links as stacked boxes of IUs.

The figure also shows that the mapping between
IUs can be a one-to-many mapping (IU1 and IU2
are mapped to IU3) or a one-to-one mapping (IU3 is
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Figure 2: The buffer-based model showing two connected
modules (from Skantze and Hjalmarsson (2010).
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Figure 3: The ISU-model for incremental processing
(adapted from Buss and Schlangen (2011)).

mapped to IU4). The model distinguishes four op-
erations that handle information processing:update,
revise, purgeand commit. Whenever new IUs en-
ter the module’s left buffer, the module’s knowledge
base isupdatedto reflect the new information. Such
information typically corresponds to the current best
hypothesis of a preceding processing module. As
a property of incremental systems, however, such
hypotheses can berevisedby the respective preced-
ing module and, as a result, the knowledge bases of
all subsequent modules need to bepurgedandup-
dated to the newest hypothesis. Once a hypothesis
is certain to not be revised anymore, it iscommit-
ted. For concrete implementations of this model, see
Skantze and Schlangen (2009), Skantze and Hjal-
marsson (2010), Baumann and Schlangen (2011).

An implementation of an incremental dialogue
manager is based on the Information State Update
(ISU) model (Buss et al., 2010; Buss and Schlangen,
2011). The model is related in spirit to the buffer-
based architecture, but all of its input processing and
output planning is realised by ISU rules. This is true
for the incremental ‘house-keeping’ actions update,
revise, etc. and all types of dialogue acts. The in-
cremental ISU model is shown in Figure 3. Note
that this hierarchical architecture transfers well to
the “classical” division of NLG levels into utterance
(IU1), content selection (IU2 - IU5) and surface re-
alisations (IU6 - IU9, etc.).

2.2 Beat-Driven Incremental Processing

In contrast to the buffer-based architectures, alterna-
tive incremental systems do not reuse previous par-
tial hypotheses of the user’s input (or the system’s
best output) but recompute them at each process-
ing step. We follow Baumann et al. (2011) in call-
ing them‘beat-driven’systems. Raux and Eskenazi
(2009) use a cost matrix and decision theoretic prin-
ciples to optimise turn-taking in a dialogue system
under the constraint that users prefer no gaps and no
overlap at turn boundaries. DeVault et al. (2009) use
maximum entropy classification to support respon-
sive overlap in an incremental system by predicting
the completions of user utterances.

2.3 Decision-making in Incremental Systems

Some of the main advantages of the buffer- and ISU-
based approaches include their inherently incremen-
tal mechanisms for updating and revising system hy-
potheses. They are able to process input of varying
size and type and, at the same time, produce arbi-
trarily complex output which is monitored and can
be modified at any time. On the other hand, current
models are based on deterministic decision making
and thus share some of the same drawbacks that non-
incremental systems have faced: (1) they rely on
hand-written rules which are time-consuming and
expensive to produce, (2) they do not provide a
mechanism to deal with uncertainty introduced by
varying user behaviour, and (3) they are unable to
generalise and adapt flexibly to unseen situations.

For NLG in particular, we have seen that incre-
mentality can enhance the responsiveness of sys-
tems and facilitate turn-taking. However, this ad-
vantage was mainly gained by the system produc-
ing semantically empty fillers such asum, let me
see, well, etc. (Skantze and Hjalmarsson, 2010). It
is an open research question whether such markers
of planning or turn-holding can help NLG systems,
but for now it seems that they could be reduced to
a minimum by optimising thetiming and order of
Information Presentation. In the following, we de-
velop a model for incremental NLG that is based on
reinforcement learning (RL). It learns the best mo-
ment to present information to the user, when faced
with the options of presenting information as soon
as it becomes available or else waiting until the in-



Type Example

Comparison The restaurantRomais in the medium price range, but does not have great food. TheFirenze
andVeronaboth have great food but are more expensive. TheVeronahas good service, too.

Recommendation RestaurantVeronahas the best overall match with your query. It is a bit more expensive,
but has great food and service.

Summary I have 43 Italian restaurants in the city centre that match your query. 10 of them are in the
medium price range, 5 are cheap and 8 are expensive.

Table 1: Examples of IP as acomparison, recommendationandsummaryfor a user looking for Italian restaurants in
the city centre that have a good price for value.

put hypotheses of the system are more stable. This
also addresses the general trade-off that exists in in-
cremental systems between the processing speed of
a system and the output quality.

3 Information Presentation Strategies

Our domain of application will be the Informa-
tion Presentation phase in an interactive system
for restaurant recommendations, extending previous
work by Rieser et al. (2010), (see also Walker et
al. (2004) for an alternative approach). Rieser et
al. incrementally construct IP strategies according
to the predicted user reaction, whereas our approach
focuses on timing and re-ordering of information
according to dynamically changing input hypothe-
ses. We therefore implement a simplified version
of Rieser et al.’s model. Their system distinguished
two steps: the selection of an IP strategy and the
selection of attributes to present to the user. We as-
sume here that the choice of attributes is determined
by matching the types specified in the user input,
so that our system only needs to choose a strategy
for presenting its results (in the future, though, we
will include attribute selection into the decision pro-
cess). Attributes includecuisine, food quality, lo-
cation, price rangeandservice qualityof a restau-
rant. The system then performs a database lookup
and chooses among three main IP strategiessum-
mary, comparison, recommendationand several or-
dered combinations of these. Please see Rieser et al.
(2010) for details. Table 1 shows examples of the
main types of presentation strategies we address.

4 Optimising Incremental NLG

To optimise the NLG process within an incremen-
tal model of dialogue processing, we define an RL

agent with incremental states and actions for the IP
task. An RL agent is formalised as a Markov De-
cision Process, or MDP, which is characterised as a
four-tuple< S,A, T,R >, whereS is a set of states
representing the status of the NLG system and all in-
formation available to it,A is a set of NLG actions
that combine strategies for IP with handling incre-
mental updates in the system,T is a probabilistic
transition function that determines the next states′

from the current states and the actiona according
to a conditional probability distributionP (s′|s, a),
andR is a reward function that specifies the reward
(a numeric value) that an agent receives for taking
actiona in states. Using such an MDP, the NLG
process can be seen as a finite sequence of states,
actions and rewards{s0, a0, r1, s1, a1, ..., rt−1, st},
wheret is the time step. Note that a learning episode
falls naturally into a number of time steps at each of
which the agent observes the current state of the en-
vironmentst, takes an actionat and makes a tran-
sition to statest+1. This organisation into discrete
time steps, and the notion of a state space that is ac-
cessible to the learning agent at any time allows us to
implement the stateupdate, revokeandpurgeopera-
tions typically assumed by incremental approaches
as state updates and transitions in an MDP. Any
change in the environment, such as a new best hy-
pothesis of the recogniser, can thus be represented
as a transition from one state to another. At each
time step, the agent then takes the currently best ac-
tion according to the new state. The best action in
an incremental framework can includecorrectinga
previous output,holding the flooras a marker of
planning, or towait until presenting information.1

1We treat these actions as part of NLG content selection
here, but are aware that in alternative approaches, they could



States
incrementalStatus{0=none,1=holdFloor,2=correct,3=selfCorrect}
presStrategy{0=unfilled,1=filled}
statusCuisine{0=unfilled,1=low,2=medium,3=high,4=realised}
statusFood{0=unfilled,1=low,2=medium,3=high,4=realised}
statusLocation{0=unfilled,1=low,2=medium,3=high,4=realised}
statusPrice{0=unfilled,1=low,2=medium,3=high,4=realised}
statusService{0=unfilled,1=low,2=medium,3=high,4=realised}
userReaction{0=none,1=select,2=askMore,3=other}
userSilence={0=false,1=true}
Actions
IP: compare, recommend, summarise, summariseCompare,
summariseRecommend, summariseCompareRecommend,
Slot-ordering:presentCuisine, presentFood, presentLocation,
presentPrice, presentService,
Incremental: backchannel, correct, selfCorrect, holdFloor,
waitMore
Goal State 0, 1, 0∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, 0∨ 4, 1, 0∨ 1

Figure 4: The state and action space of the learning agent.
The goal state is reached when all items (that the user may
be interested in) have been presented.

Once information has been presented to the user,
it is committedor realised. We again represent re-
alised IUs in the agent’s state representation, so that
it can monitor its own output. The goal of an MDP
is to find an optimal policyπ∗ according to which
the agent receives the maximal possible reward for
each visited state. We use the Q-Learning algorithm
(Watkins, 1989) to learn an optimal policy according
to π∗(s) = argmaxa∈A Q∗(s, a), whereQ∗ speci-
fies the expected reward for executing actiona in
states and then following policyπ∗.

5 Experimental Setting

5.1 The State and Action Space

The agent’s state space needs to contain all infor-
mation relevant for choosing an optimal IP strat-
egy and an optimal sequence of incremental ac-
tions. Figure 4 shows the state and action space
of our learning agent. The states contain infor-
mation on the incremental and presentation sta-
tus of the system. The variable ‘incrementalSta-
tus’ characterises situations in which a particular
(incremental) action is triggered. For example, a
holdFloor is generated when the user has finished
speaking, but the system has not yet finished its
database lookup. Acorrection is needed when

also be the responsibility of a dialogue manager.

the system has to modify already presented infor-
mation (because the user changed their preferences)
and aselfCorrection is needed when previously
presented information is modified because the sys-
tem made a mistake (in recognition or interpreta-
tion). The variable ‘presStrategy’ indicates whether
a strategy for IP has been chosen. It is ‘filled’ when
this is the case, and ‘unfilled’ otherwise. The vari-
ables representing the status of the cuisine, food, lo-
cation, price and service indicate whether the slot
is of interest to the user (0 means that the user does
not care about it), and what input confidence score is
currently associated with its value. Once slots have
been presented, they arerealised and can only be
changed through a correction or self-correction.

The variable ‘userReaction’ shows the user’s re-
action to an IP episode. The user can select a restau-
rant, provide more information to further constrain
the search or do something else. The ‘userSilence’
variable indicates whether the user is speaking or
not. This can be relevant for holding the floor or
generating backchannels. The action set comprises
IP actions, actions which enable us to learn the or-
dering of slots, and actions which allow us to cap-
ture incremental phenomena. The complete state-
action space size of this agent is roughly3.2 mil-
lion. The agent reaches its goal state (defined w.r.t.
the state variables in Figure 4) when an IP strategy
has been chosen and all relevant attributes have been
presented.

5.2 The Simulated Environment

Since a learning agent typically needs several thou-
sand interactions to learn a reasonable policy, we
train it in a simulated environment with two compo-
nents. The first one deals with different IP strategies
generally (not just for the incremental case), and the
second one focuses on incrementally updated user
input hypothesis during the interaction.

To learn a good IP strategy, we use a user simula-
tion by Rieser et al. (2010),2 which was estimated
from human data and uses bi-grams of the form
P (au,t|IPs,t), whereau,t is the predicted user re-
action at timet to the system’s IP strategyIPs,t in
states at timet. We distinguish the user reactions of

2The simulation data are available fromhttp://www.
classic-project.org/.



selecta restaurant,addMoreInfoto the current query
to constrain the search, andother. The last category
is considered an undesired user reaction that the sys-
tem should learn to avoid. The simulation uses lin-
ear smoothing to account for unseen situations. In
this way, we can then predict the most likely user
reaction to each system action.

While the IP strategies can be used for incremen-
tal and non-incremental NLG, the second part of the
simulation deals explicitly with the dynamic envi-
ronment updates during an interaction. We assume
that for each restaurant recommendation, the user
has the option of filling any or all of the attributes
cuisine, food quality, location, price rangeandser-
vice quality. The possible values of each attribute
and possible confidence scores are shown in Table 2
and denote the same as described in Section 5.1.

At the beginning of a learning episode, we as-
sign each attribute a possible value and confidence
score with equal probability. For food and service
quality, we assume that the user is never interested
in bad food or service. Subsequently, confidence
scores can change at each time step. (In future work
these transition probabilities will be estimated from
a data collection, though the following assumptions
are realistic, based on our experience.) We assume
that a confidence score of0 changes to any other
value with a likelihood of0.05. A confidence score
of 1 changes with a probability of0.3, a confidence
score of2 with a probability of0.1 and a confidence
score of3 with a probability of0.03. Once slots
have been realised, their value is set to4. They
cannot be changed then without an explicit correc-
tion. We also assume that realised slots change with
a probability of 0.1. If they change, we assume
that half of the time, the user is the origin of the
change (because they changed their mind) and half
of the time the system is the origin of the change
(because of an ASR or interpretation error). Each
time a confidence score is changed, it has a proba-
bility of 0.5 to also change its value. The resulting
input to the NLG system are data structures of the
form present(cuisine=Indian), confidence=low.

5.3 The Reward Function

The main trade-off to optimise for IP in an incre-
mental setting is thetiming and order of presenta-
tion. The agent has to decide whether to present

Attribute Values Confidence

Cuisine Chinese, French, German, In-, 0, 1, 2, 3, 4
dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Food bad, adequate, good, very good 0, 1, 2, 3, 4
Location 7 distinct areas of the city 0, 1, 2, 3, 4
Price cheap, expensive, good-price-

for-value, very expensive 0, 1, 2, 3, 4
Service bad, adequate, good, very good 0, 1, 2, 3, 4

Table 2: User goal slots for restaurant queries with possi-
ble values and confidence scores.

information as soon as it becomes available or else
wait until confidence for input hypotheses is more
stable. Alternatively, it can reorder information to
account for different confidence scores. We assign
the following rewards3: +100 if the user selects
an item,0 if the user adds more search constraints,
−100 if the user does something else or the sys-
tem needs to self-correct,−0.5 for holding the floor,
and−1 otherwise. In addition, the agent receives
an increasing negative reward for the waiting time,
waiting time2 (to the power of two), in terms of the
number of time steps passed since the last item was
presented. This reward is theoretically−∞. The
agent is thus penalised stronger the longer it delays
IP. The rewards for user reactions are assigned at the
end of each episode, all other rewards are assigned
after each time step. One episode stretches from the
moment that a user specifies their initial preferences
to the moment in which they choose a restaurant.
The agent was trained for10 thousand episodes.

6 Experimental Results

After training, the RL agent has learnt the following
incremental IP strategy. It will present information
slots as soon as they become available if they have
a medium or high confidence score. The agent will
then order attributes so that those slots with the high-
est confidence scores are presented first and slots
with lower confidence are presented later (by which
time they may have achieved higher confidence). If
no information is known with medium or high con-

3Handcrafted rewards are sufficient for this proof-of-
concept study, and can be learned from data for future models
(Rieser and Lemon, 2011).



10
1

10
2

10
3

10
4

−100

−80

−60

−40

−20

0

20

40

60

80

100

A
ve

ra
ge

 R
ew

ar
d

Episodes

 

 

RL
Base1
Base2
Base3

Figure 5: Performance in terms of rewards (averaged over
10 runs) for the RL agent and its baselines.

fidence, the agent will hold the floor or wait. In this
way, it can prevent self-corrections and minimise
waiting time—both of which yield negative rewards.
It can thus start speaking very early (avoiding long
pauses or semantically empty utterances) and still
has a low likelihood of having to self-correct.

For a comparison of the learnt policy with possi-
ble hand-crafted policies (because current incremen-
tal NLG systems are rule-based), we designed three
baselines.Baseline 1always presents information
as soon as it is available, i.e. never waits.Base-
line 2 always waits until all information is known
with high confidence (i.e. until all confidence scores
are 3). Baseline 3was chosen to be more ambi-
tious. It always presents information as soon as
possible, using a decreasing order of confidence to
minimise self-corrections (i.e. very similar to the
learnt policy). It chooses randomly among slots with
equal confidence. All baseline policies have an op-
timised IP strategy (recommend/summary etc.) and
differ only in their incremental processing strategies.
Baseline 1 is most similar to the current approach
used in spoken dialogue systems, where the Dia-
logue Manager triggers an NLG component as soon
as a task-relevant user utterance is processed.

Here we do not compare the different strategies
for IP generally because this has been done by
Rieser et al. (2010), even if not for incremental
NLG. Figure 5 shows the performance of all be-
haviours in terms of average rewards. Baseline 1
obtains on average roughly 100 reward points less
than the RL agent. This corresponds to the (neg-
ative) reward of one self-correction (−100). Since
information is always presented as soon as it is avail-
able, this baseline needs to produce on average one

Baseline 1 (present information as soon as
it becomes available)
USR Please show me Italian places
(cuisine = Indian;conf score = 0.2)
SYS I have found 35 Indian . . .
USR No, ITALIAN
(cuisine = Italian; conf score = 0.8)
SYS Oh, you meant Italian. I have 104 Italian places in Edin-
burgh. 24 in the city centre, 21 in the New Town, 14 in . . .
USR Show me some in the city centre
(location = centre; conf score = 0.6)
SYS OK. I found 24 Italian restaurants in the city centre . . .

Baseline 2 (always wait until confidence is high)
USR Do you have Italian restaurants in the centre of town?
cuisine = Italian; conf score = 0.4

location = centre; conf score = 0.2

SYS waits
USR Italian in the centre.
cuisine = Italian, conf score = 0.7

location = centre, conf score = 0.5

SYS I have 104 Italian restaurants.
USR waits
SYS waits
USR city centre please
location = centre, conf score = 0.7

SYS I have 24 Italian restaurants in the city centre . . .

Baseline 3 (present information in decreasing
order of confidence)
USR I want Italian food . . .
cuisine = Indian, conf score = 0.2

location = centre, conf score = 0.3

SYS hmm (holding turn) . . .
USR in the centre of town
location = centre, conf score = 0.9

SYS In the centre, let me see, Indian . . .
USR Italian, please.
cuisine = Italian, conf score = 0.7

SYS Oh I see. I have 24 Italian places in the centre . . .

Figure 6: Example dialogues generated with the baseline
policies for a user who wants Italian food in the city cen-
tre. Confidence scores for cuisine and location variables
for the restaurants are shown as updated.

self-correction per episode. Baseline 2 needs to wait
until all information is known with high confidence
and obtains on average125 to 130 rewards less than
the RL agent. This corresponds to approximately
11 time steps of waiting (for input to reach higher
confidence) before presentation since11 is (approxi-
mately) the square root of130. Baseline 3 is roughly
a reward of−10 worse than the RL agent’s be-



haviour, which is due to a combination of more self-
corrections, even if they just occur occasionally, and
a higher number of turn holding markers. The latter
is due to the baseline starting to present as soon as
possible, so that whenever all confidence scores are
too low to start presenting, a turn holding marker
is generated. The learning agent learns to outper-
form all baselines significantly, by presenting infor-
mation slots in decreasing order of confidence, com-
bined with waiting and holding the floor at appro-
priate moments. Anticipating the rewards for wait-
ing vs. holding the floor at particular moments is the
main reason that the learnt policy outperforms Base-
line 3. Subtle moments of timing as in this case are
difficult to hand-craft and more appropriately bal-
anced using optimisation. An absolute comparison
of the last1000 episodes of each behaviour shows
that the improvement of the RL agent corresponds
to 126.8% over Baseline 1, to137.7% over Baseline
2 and to16.76% over Baseline 3. All differences are
significant atp < 0.001 according to a paired t-test
and have a high effect sizer > 0.9. The high per-
centage improvement of the learnt policy over Base-
lines 1 and 2 is mainly due to the high numeric val-
ues chosen for the rewards as can be observed from
their qualitative behaviour. Thus, if the negative nu-
meric values of, e.g., a self-correction were reduced,
the percentage reward would reduce, but the pol-
icy would not change qualitatively. Figure 1 shows
some examples of the learnt policy including several
incremental phenomena. In contrast, Figure 6 shows
examples generated with the baselines.

7 Conclusion and Future Directions

We have presented a novel framework combining in-
cremental and statistical approaches to NLG for in-
teractive systems. In a proof-of-concept study in the
domain of Information Presentation, we optimised
the timing and orderof IP. The learning agent op-
timises the trade-off of whether to present informa-
tion as soon as it becomes available (for high respon-
siveness) or else to wait until input hypotheses were
more stable (to avoid self-corrections). Results in a
simulated environment showed that the agent learns
to avoid self-corrections and long waiting times, of-
ten by presenting information in order of decreas-
ing confidence. It outperforms three hand-crafted

baselines due to its enhanced adaptivity. In pre-
vious work, incremental responsiveness has mainly
been implemented by producing semantically empty
fillers such asum, let me see, well, etc. (Skantze and
Hjalmarsson, 2010). Our work avoids the need for
these fillers by content reordering.

Since this paper has focused on a proof-of-
concept study, our goal has not been to demonstrate
the superiority of automatic optimisation over hand-
crafted behaviour. Previous studies have shown
the advantages of optimisation (Janarthanam and
Lemon, 2010; Rieser et al., 2010; Dethlefs et al.,
2011). Rather, our main goal has been to demon-
strate that incremental NLG can be phrased as an op-
timisation problem and that reasonable action poli-
cies can be learnt so that an application within an
incremental framework is feasible. This observation
allows us to take incremental systems, which so far
have been restricted to deterministic decision mak-
ing, one step further in terms of their adaptability
and flexibility. To demonstrate the effectiveness of
a synergy between RL and incremental NLG on a
large scale, we would like to train a fully incremental
NLG system from human data using a data-driven
reward function. Further, an evaluation with human
users will be required to verify the advantages of dif-
ferent policies for Information Presentation.

Regarding the scalability of our optimisation
framework, RL systems are known to suffer from the
curse of dimensionality, the problem that their state
space grows exponentially according to the number
of variables taken into account. While the appli-
cation of flat RL is therefore limited to small-scale
problems, we can use RL with a divide-and-conquer
approach,hierarchical RL, which has been shown to
scale to large-scale NLG applications (Dethlefs and
Cuayáhuitl, 2011), to address complex NLG tasks.

Future work can take several directions. Cur-
rently, we learn the agent’s behaviour offline, be-
fore the interaction, and then execute it statistically.
More adaptivity towards individual users and situ-
ations could be achieved if the agent was able to
learn from ongoing interactions usingonline learn-
ing. In addition, current NLG systems tend to as-
sume that the user’s goals and situational circum-
stances are known with certainty. This is often an
unrealistic assumption that future work could ad-
dress using POMDPs (Williams and Young, 2007).
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