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ABSTRACT
Humans adapt their behaviour to the perceived cognitive load of
their dialogue partner, for example, delaying non-essential informa-
tion. We propose that spoken dialogue systems should do the same,
particularly in high-stakes scenarios, such as emergency response.
In this paper, we provide a summary of the prosodic, turn-taking
and other linguistic symptoms of cognitive load analysed in the
literature. We then apply these features to a single corpus in the
restaurant-finding domain and propose new symptoms that are
evidenced through interaction with the dialogue system, including
utterance entropy, speech recognition confidence, as well as others
based on dialogue acts.
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1 INTRODUCTION
In complex time-critical situations, users of interactive systems
can experience high cognitive load, which can interfere with their
ability to perform a task and can reduce situation awareness. These
cognitive demands could be as a result of the environment, for
which they have no control (e.g. fire rescue [16]); or when other
team members are not performing in collaborative situations; or as
a result of the interface not being optimal, for example, information
overload. An understanding of the user state, specifically their
cognitive load, would enable an interactive system to adapt, giving
appropriate support as per the user’s cognitive burden, for example,
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only information that is absolutely necessary for that user at that
particular time.

This study is within the context of the EPSRC funded ORCA Hub
[11], whose vision it is to use teams of Robots and Autonomous
Intelligent Systems (RAIS) to work on offshore energy platforms
to enable cheaper, safer and more efficient working practices. The
goal is that through the use of such robotic systems offshore, the
need for personnel will decrease. This scenario results in inter-
esting challenges, in terms of i) enabling operators and managers
to have high situation awareness at all times; ii) allowing opera-
tors to work seamlessly in teams of humans-and-robots and give
RAIS directions if necessary, for example, changing the mission
goal; and iii) intervening and taking control at varying levels as
needed. Finally, autonomous systems must be accountable and a
lack of transparency of their actions, i.e. what they are doing and
why, can reduce understanding and trust [10, 20, 35]. This builds
on prior work around an interactive interface for such remote au-
tonomous called MIRIAM (Multimodal Intelligent inteRactIon for
Autonomous systeMs) [9], which provides explanations of system
behaviour to increase transparency [7] and has been shown to
increase situation awareness [28].

In this paper, we examine what speech and dialogue data has
been collected for high cognitive load scenarios and provide a sur-
vey of the symptoms of cognitive load, to which a system could
automatically detect and adapt. These symptoms can be classed in
terms of performance-basedmetrics of the user/system, behavioural
symptoms (e.g. eye movement, linguistic phenomena such as hesi-
tations) and physiological symptoms (e.g EEG). Given the intrusive
methods of physiological data, we concentrate of the first two of
these and in particular linguistic symptoms. As well as those in the
literature, we provide new and novel findings and finally provide
recommendations for future data collections, for which we have
planned.
2 BACKGROUND
As discussed in [4], symptoms of cognitive load can be physiological,
behavioural or related to the performance in a given task. Examples
of physiological symptoms of cognitive load previously reported
in the literature include heart rate [15], skin conductance [32],
pupil dilations [1, 13], eye blinks [22] and movement [24], and
EEG [34]. Work presented by Lohan et al. [23] suggests that it
might be possible to distinguish different styles of processing the
same stimuli using deep machine learning approaches (e.g. LSTMs).
Physiological symptoms, however, tend to be captured via intrusive
methods or can pose risks to the subjects. For example, using pupil
diameter as a measurement for cognitive load involves some risk
from the pupilar light reflex [18]. Consequently, there has been
research investigating alternative modalities, which we focus on
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here. Specifically, behavioural symptoms have been shown to be
observable in the audio signal [8, 14, 17, 29, 31], syntax [6], lexical
choice [16], and pragmatics including phenomena such as turn-
taking [8, 14].

Previous work looked at identifying symptoms of cognitive load
through data collection, specifically conditions designed to induce
cognitive load. High cognitive load levels could either be induced
intrinsically by increasing the difficulty of the task or by extraneous
load, by adding a secondary task to the main task [26]. We discuss
firstly symptoms observed by a single participant in isolation, e.g.
reading. However, we are primarily interested in interaction. Fi-
nally, we discuss one study that compares both Human-Human and
Human-Computer interaction (the latter inducing higher cognitive
load). Results are summarised in Table 1.

2.1 Participant in Isolation (H)
A number of studies involve humans performing a task in isolation.
For the interest of this paper, wewill focus on studies where subjects
had to speak. In the studies described in [17, 29], cognitive load is
induced via a secondary task, while reading aloud a text extract
and answering questions about its content [16] or performing a
logical reasoning test [29]. In [17], the durations for both silent and
filled pauses were higher in the high cognitive load condition, as
well as the values for latency. In [29], speech rate was significantly
higher, F0 was marginally higher F0 and the energy decay was
significantly lower for subjects in the high load condition. In [14],
the main task was to formulate questions according to pictures
shown in a graphical interface featuring a virtual airport. Three
methods were used to induce cognitive load: a secondary task,
audio distraction and time pressure. The secondary task and the
time pressure both led to a significant reduction in the number of
syllables per utterance. Perhaps unsurprisingly, articulation rate
was higher, pauses were less frequent and latency was shorter under
time pressure. Interestingly though, frequencies of hesitations and
disfluencies were significantly higher when performing a secondary
task. The audio distraction did not affect significantly any of the
symptoms evaluated.

Following the efforts on studying symptoms while subjects had
to perform a task on their own, the ComParE paralinguistic chal-
lenge implemented a cognitive load automatic detection task in 2014
[30]. The data from this challenge includes samples from different
subtasks specifically developed to induce cognitive load: a reading
task with ungrammatical content and two variants of the Stroop
task: one with time pressure and one involving a secondary task.
Using this dataset, [31] found significantly higher values for F0 and
for intensity, and significantly lower values for silence durations in
the time pressure Stroop condition. When predicting the condition,
[31] achieved better results when the articulation rate was used
instead of prosodic features (F0, intensity and silence durations),
despite not reporting significant differences between conditions for
articulation rate.

2.2 Multi-Party Human-Human (MP H-H)
Studying cognitive load symptoms in multi-party human-human
settings has been less explored. In [16], we find a study where
language from meetings of a fire rescue teams is analysed. High
levels of cognitive load were induced through the complexity and

the level of priority of the mission that the emergency team was
trying to accomplish. Although the interactions here are between
humans, this scenario shares some similarities to what we expect to
see in ORCA. The observed symptoms include: number of words per
utterance, the number of agreement and disagreement expressions
and the use of personal pronouns. Agreement expressions were
found to be more common in low-load tasks, as well as longer
utterances. In addition, variations were observed in the way people
use personal pronouns in the different cognitive load conditions.

2.3 Human-Human vs Human-Computer (H-H
vs H-C)

Symptoms of cognitive load have also been investigated for human-
human and human-computer interactive scenarios. In [3], an in-car
setup is used where subjects talk either with the passenger or
with a dialogue system. Interactions with a dialogue system were
considered to induce a higher cognitive load. A significantly higher
value F0 was found when interacting with the dialogue system.
Values for the centre frequencies in voiced segments for formants 1
and 4 were also significantly higher in the same condition, together
with other spectral measures and the durations of voiced segments.
3 DATA
The data used in this study was introduced in [8] and aimed at
studying the effect of cogntive load in Human-Computer interac-
tion scenario. During the collection, the subject is a driver simulta-
neously interacting with a spoken dialogue system, which provides
restaurant information in Cambridge, UK. Although this scenario
might not share many similarities with our target scenarion, it is
to the best of our the knowledge the only data aimed at studying
the effect of cognitive load in H-C interaction.

A within-subjects set-up was used, where driving and speaking
was deemed to have higher cognitive load than speaking to the
system in isolation. The subjects had to complete 14 predefined
requests for different restaurants in Cambridge (7 in each condition).
28 subjects took part in the data collection, which resulted in 390
dialogues. The performance of the subjects on the task of finding an
appropriate restaurant was compared but no significant differences
were found between conditions.

4 LINGUISTIC SYMPTOMS
We summarise the features from the background works in Table 1,
dividing the studies with respect to the type of set-up used in the
data collection (columns of Table 1), and discuss them here below in
terms of prosodic, turn-taking and linguistic features (rows of Table
1). We then derive results for these features using the dataset from
[8] as a test case corpus, some of which have already been reported
by the authors. We then explore new symptoms, as described in
Section 4.1, using the same corpus.

Prosody. Inspired by previous work [31], we have computed pitch
(F0) and intensity (in dB) using Praat [2]. We computed the function-
als (mean, standard deviation, skewness, kurtosis, minimum and
maximum) for each utterance. In addition, in a similar way to what
was done in [31], we plotted the values over time of pitch and inten-
sity. We found the best fit line for these points and took the slope
of this line and the mean square error (MSE) between the line and
the actual values. In addition, for each turn we have also computed
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articulation rate, number of pauses, number of syllables and speech
rate duration using the method described in [5]. Higher intensity
in the high cognitive load condition was a symptom identified in
[8].

Turn-taking. The turn-taking feature group includes silence du-
rations, latency and barge-ins. To compute the silence features, we
have first performed Voice Activity Detection for every user turn
and we computed the functionals of the duration of the silence
segments in an utterance, slope and MSE in the same way we did
for F0 and intensity. The latency for each turn is the difference
between the time the system stopped speaking and the time the sys-
tem started speaking. Negative latencies mean that the user started
speaking before the system finished the answer and therefore we
consider these as barge-ins. In [8], the frequency of barge-ins was
higher in the higher load condition.

Linguistic features. Linguistic features often associated with high
cognitive load are: disfluencies [14, 21], filler words [8] and filled
pauses [14]. However, these are often subjective and difficult to au-
tomatically detect with the current state-of-the-art methods. There-
fore, the only feature that we will rely on from those previously
investigated in the literature is the utterance length in number of
words. This was found as a possible indicator for cognitive load in
[16], therefore, we extracted it both for the output of the automatic
speech recognition (ASR) and the transcription (in order to assess
the impact of speech recognition errors in the symptoms). [8] also
found differences in the number of turns which followed the task.
4.1 Novel Symptoms
In addition to the features described in Section 4, we discuss here a
number of linguistic features, which to the best of our knowledge,
have not been previously investigated as symptoms of cognitive
load. Some of these refer to the consequences of behaviour symp-
toms that may not be overtly evident in the speech signal but may
affect the spoken dialogue system.

Firstly, the ASR confidence score was extracted from the system
logs. The hypothesis is that under high cognitive load, users’ speech
is going to be harder to recognise and thus will have lower confi-
dence scores, due to the acoustic features mentioned above such as
higher articulation/speech rate, higher F0 and increased intensity.
For instance, variability of acoustic parameters in children’s speech
can negatively impact from two to five times the performance of a
normal speech recogniser [27]. To further explore this hypothesis,
we have also computed the Word Error Rate (WER), in order to
evaluate the reliability of the confidence scores.

We secondly hypothesise that higher cognitive load may affect
the quality of the interaction. To investigate this, we look at patterns
observed in the dialogue acts, shown previously to be indicative
of problematic dialogue when interactive with a Spoken Dialogue
System [12, 25]. Specifically, we computed the number of slots per
user turn and the frequency of both system and user dialogue acts
over the whole dialogue.

Finally, we computed the entropy of user/system utterances. En-
tropy is associated with the amount of information in an utterance.
The hypothesis is that if users have higher cognitive load they
may choose utterances that have lower information content. The
converse could also be true, in that with higher cognitive load the
users drop the effort to simplify their utterances with the system (a

common phenomena when talking to Spoken Dialogue Systems)
in an attempt just to get the information across. We also investi-
gate the system utterances and the difference between adjacent
pairs of utterances to see if there is a relation between complexity
of system and user utterances. In order to compute the entropy
of an utterance, we have used a different dataset but in the same
domain [33] to train two different trigram language models, one
with user utterances and a second one with the system prompts.
With these language models, we compute the likelihood of each
utterance given and then the entropy values.

5 RESULTS
In order to provide a meaningful comparison between the feature
values in the two conditions, all features were computed at the level
indicated in Table 1 and normalised per speaker. To verify if there
was a significant difference between conditions (high/low load),
we have tested for significance using a t-test when feature values
were continuous, Chi-Square test for the frequency features and
binomial test for binary features (e.g. barge-in or not in a turn).

Features used in [8]. We found a significantly higher value for
intensity in the high cognitive load condition (M = −0.05, SD =
0.30) than in the low cognitive load condition (M = −0.08, SD =
0.29), t(2740) = 2.74,p < 0.001. The number of barge-ins was also
significantly higher in the high cognitive load condition .57 than .5
(barge-ins would occur equally in both conditions), p ≈ 0 (2-sided).

Features previously investigated in the literature. We found signif-
icantly higher F0 mean value for turns in the high cognitive load
condition (M ≈ 0, SD = 0.47) when compared with the low cogni-
tive load condition (M = −0.05, SD = 0.48), t(2740) = 2.64,p < 0.01
and a significantly higher F0 maximum value also in the high load
condition (M = 1.89, SD = 0.34), when compared with the low cog-
nitive load condition (M = 1.83, SD = 0.33), t(2740) = 5.2,p ≈ 0.
For the remaining prosodic features, the tests performed have not
revealed any significant differences, however, the trends were that
utterances produced in the high cognitive load condition were
longer (in number of syllables) and slower (lower rates). With re-
gards the turn taking features, we found silence duration skew-
ness to be significantly higher in the low cognitive load condition
(M = 1.65, SD = 0.54) when compared with the high cognitive load
condition (M = 1.53, SD = 0.70), t(2688) = 2.3,p < 0.05.

Novel features. We found that the entropy of system prompts in
the high load condition was significantly higher (M = −0.10, SD =
0.13) when compared the low cognitive load condition (M = −0.12,
SD = 0.14), t(3168) = 2.5,p < 0.05. Additionally, we also found
that the frequency of the dialogue act request in user turns in the
low cognitive load condition was significantly higher than in the
high cognitive load condition χ2(8,N = 389) = 19.25,p < 0.05.
This means that there were more user utterances where the users
were asking for items such as phone number, postcode, address or
area after finding a relevant restaurant.

In the first exchange, the system asks the user “How can I help
you?". The formulation of the user response may require a higher
cognitive effort from the user as it is an open question requir-
ing planning on the user’s part. Thus, we analysed the turn level
features for this initial user turn in isolation. We found signifi-
cantly higher skewness for intensity in the low cognitive load
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Category Symptom Computation Level H H-H vs H-C MP H-H H-C

Prosodic

Increased intensity Turn (functionals, slope and MSE) [29, 31] [8], TS
Increased F0 (*) Turn (functionals, slope and MSE) [29, 31] [3] TS

Decreased Articulation Rate (*) Turn (mean) [14, 31]
Increased frequency of Pauses (*) Turn [14] [16]
Decreased Number of Syllables (*) Turn [14]

Decreased Speech Rate (*) Turn (mean) [29]

Turn Taking
Increased Silence Duration (*) Turn (functionals, slope and MSE) [17, 31] TS

Decreased Latency (*) Turn [14, 17]
More Frequent Barge-ins Turn [8], TS

Linguistic

Utterance Length (*) Turn (ASR and transcription) [16] TS1
Decreased ASR Confidence Turn

Decreased WER Turn
Number of Slots Turn (System and User)
Dialogue Acts Dialogue (frequency) TS2

Decreased Entropy Turn (system, user and difference) TS3
Fillers(+) Average per Speaker [8]

Following the Task(+) Turn-by-turn [8]
Table 1: List of features organised by category with the level which they were extracted and studies they have been found as
symptoms for high cognitive load. (*) indicates features from the literature applied to dataset in [8]. (+) indicates features used
in [8] but not in this study. Boldface indicates novel features. TS = This study.

condition (M ≈ 0, SD = 0.36), when compared with the high cogni-
tive load condition (M = 0.08, SD = 0.39), t(391) = 2.24,p < 0.05
and a significantly higher number of words per utterance in the
high cognitive load condition (M = 1.43, SD = 1.02) when com-
pared with the low cognitive load condition (M = 1.21, SD = 1),
t(391) = 2.14,p < 0.05, both using the most likely ASR result and
transcription. In the following section, we will discuss the implica-
tions of these results.

6 DISCUSSION AND FUTUREWORK
In this paper, we have investigated symptoms that could potentially
help track the user cognitive load on-the-fly. We have used the
corpus described in [8] and extended this work in terms of features
discussed in the literature and new features. We have confirmed
previous findings reported in [8] for significant different values
in intensity and barge-ins. We have found further significantly
differences with respect to features in previous studies including
F0, utterance length and silence duration, as well as, new features
of entropy of system utterances and number of user requests.

The differences in system utterance entropy and number of user
requests could be explained by the fact that there is a higher per-
centage of utterances in line with the task for subject in the low
cognitive load condition as found in [8]. Users behaved as expected,
being more predictable and fulfilling the task requirements.

Interesting results were found for the more open “How may I
help you?" prompt in terms of utterance length. This leads us to
believe that more mixed-initiative dialogues, rather than system-
initiative, may result in the user having to plan more and thus
induce a higher cognitive load, which in turn might affect symp-
toms that are observable. If these open questions occur early on
in the dialogue, as with the Cambridge dataset, this opens up the
possibility for the system to adapt early on in the conversation
1After the “How may I help you?” prompt.
2For user request dialogue act.
3For system prompts.

to the user’s cognitive state. Interestingly, this finding contradicts
what was previously found in [16], where utterances in the higher
cognitive load scenarios were shorter. A possible explanation might
be connected with the scenario (fire rescue), which that case, is
deemed to be very stressful and therefore people quickly adapt in
order to make communication more efficient by making their utter-
ances shorter. In [14], authors have also found different tendencies
depending on the way they induced cognitive load. This seems
to indicate that the symptoms are highly dependent both on the
nature of the main task and the way the cognitive load is induced.

Designing a task that is engaging and varied enough not to
entrain the user (and thus naturally reduce the load) will be a chal-
lenge that we will have to address in our future data collections.
Performance metrics were not discussed in detail here and previous
literature does not report significant results in this regard. However,
performance of the user and the system is key for the scenario for
the ORCA project and therefore will be re-examined in future work.
In addition, the effect of cognitive load during task-oriented vs
open domain (chitchat dialogue) would be an interesting research
question to explore in future work but would be outside the ORCA
project domain, which is very much task-orientated (e.g. perform-
ing inspections, following procedures, situation awareness). As the
scenarios that will be implemented will potentially involve emer-
gencies, we expect that differences in prosodic features to be more
visible when the situation becomes critical, than the differences
observed in the data analysed in this study. Regarding linguistic
features we also expect results in line with [16] for scenarios that
induce high cognitive load rather than those observed in this study.

In the future, we want to continue exploring features that were
found in other studies such as spectral features [19], disfluencies
and filled pauses [14, 21]. Given that the multi-modal nature of the
interactions in the scope of the ORCA project, we could aim to ex-
plore other features reported in the literature such as pupil dilation
[13] as we believe that this would provide further information with
regards the user state to which the system could adapt.
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