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Abstract

This paper describes a way of using intonation and dialogue
context to improve the performance of an automatic speech recog-
nition (ASR) system. Our experiments were run on the DCIEM
Maptask corpus, a corpus of spontaneous task-oriented dialogue
speech. This corpus has been tagged according to a dialogue anal-
ysis scheme that assigns each utterance to one of 12 “move types”,
such as “acknowledge”, “query-yes/no” or “instruct”. Most asr
systems use a bigram language model to constrain the possible
sequences of words that might be recognised. Here we use a sep-
arate bigram language model for each move type. We show that
when the “correct” move-specific language model is used for each
utterance in the test set, the word error rate of the recogniser drops.
Of course when the recogniser is run on previously unseen data, it
cannot know in advance what move type the speaker has just pro-
duced. To determine the move type we use an intonation model
combined with a dialogue model that puts constraints on possible
sequences of move types, as well as the speech recogniser likeli-
hoods for the different move-specific models. In the full recogni-
tion system, the combination of automatic move type recognition
with the move specific language models reduces the overall word
error rate by a small but significant amount when compared with a
baseline system that does not take intonation or dialogue acts into
account. Interestingly, the word error improvement is restricted to
“initiating” move types, where word recognition is important. In
“response” move types, where the important information is con-
veyed by the move type itself - e.g., positive vs. negative response
- there is no word error improvement, but recognition of the re-
sponse types themselves is good. The paper discusses the intona-
tion model, the language models and the dialogue model in detail
and describes the architecture in which they are combined.
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INTRODUCTION

This paper describes a strategy for using a combination of intonation and di-
alogue context to reduce word error rate in a speech recognition system for
spontaneous dialogue. Although databases of conversational speech have been
taken up as a major challenge by the speech recognition community in recent
years, the architecture of recognition systems, originally developed for read
speech and/or isolated utterances, has not been adapted to take into account the
ways in which conversational speech is different. At the same time, systems
intended for computer-human dialogue have tended to adopt existing speech
recognisers as black box front ends, rather than using dialogue information to
guide recognition. In contrast, the work we report here builds properties of
conversational speech into the architecture of the recogniser.

Central to our approach is the concept of dialogue acts, such as queries, re-
sponses and acknowledgements. Our system exploits three properties of these
kinds of acts: they have characteristic intonation patterns, they have character-
istic syntax and they tend to follow one another in characteristic ways.

For each category of act we have a separate intonation model, reflecting,
for instance, that genuine information-seeking yes/no questions tend to rise in
pitch at the end, while acknowledgments of instructions tend to have low pitch
without prominent accentuation. Applying each of these models to the ��� and
energy contours of an utterance gives us a set of intonational likelihoods for
the utterance being one or another type of dialogue act.

At the same time, we have a separate language model for each type of dia-
logue act, to take into account, for instance, the greater probability of a yes/no
query beginning with an auxiliary inversion (“is there...”, “do you...”) while an
acknowledgement is likely to contain an affirmative word like “okay”. Run-
ning the speech recogniser with each of the different language models gives us
a set of language model likelihoods for the utterance’s dialogue act type.

Finally, we have a dialogue model that assigns probabilities to sequences
of dialogue acts coming one after another. For instance, a query followed by a
response followed by an acknowledgement is more likely than three acknowl-
edgements in succession.

Our system proceeds by combining the likelihoods from all three models
to find the most likely dialogue act sequence for a series of utterances, and
then it adopts the recognition results from the language models corresponding
to that sequence of dialogue acts. For example, the high likelihood of one
utterance being a yes/no query might strengthen the case for the following one
being a reply to it, and so support the interpretation of an indistinct word at the
beginning as “yeah”.

There are a number of different dialogue act schemes currently used by
computer dialogue systems (e.g., (Lewin et al., 1993), (Reithinger et al., 1996),
(Allen et al., 1995)). There is also an initiative to develop a standard scheme
(Carletta et al., 1997a). The work we report here was done on the DCIEM
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Maptask corpus (Bard et al., 1995), a corpus of spontaneous task-oriented
dialogue speech collected from Canadian speakers of English, and our dia-
logue analysis is based on the theory of conversational games first introduced
by Power (1979) and adapted for Maptask dialogues as described in (Carletta
et al., 1997b). In this system individual dialogue acts are referred to as moves
in the conversational games.

While the existing dialogue act schemes differ at various points, they are
broadly similar, and the methods described in this paper should be straightfor-
wardly transferrable to any of the others. It is worth noting that identification
of dialogue acts, which we treat here as just a means to the end of better word
recognition, becomes an end in itself in dialogue systems such as those men-
tioned above that actually engage in dialogues with human users.

THE DCIEM DIALOGUES

The experiments here use a subset of the DCIEM Maptask corpus (Bard et al.,
1995)1 . The two participants in a dialogue have different roles referred to as
(instruction) giver and (instruction) follower. It is the giver’s task to guide the
follower along a route on the map. Because of their different roles, the giver
and follower have different distributions of moves.

The data files were transcribed at the word level and divided into utter-
ances, each corresponding to a single move. The speech files were also hand
labelled with the intonation scheme described in the Intonational Events sec-
tion below. Forty five dialogues (9272 utterances) were used for training the
recognition system, and five dialogues (1061 utterances) were used for testing
it. None of the test set speakers were in the training set, so the results we report
are speaker independent. The language models and the HMM phone models
were all trained on the full set of forty five dialogues. The intonation model
was trained on a hand labelled subset of twenty dialogues.

Conversational Game Analysis

The conversational game analysis described in (Carletta et al., 1997b) uses
six games: Instructing, Checking, Query-YN, Query-W, Explaining and Align-
ing. The initiating moves of these games are described in Table 1, and other
possible moves in Table 2. We find that our use of intonation and dialogue
context improves word recognition accuracy for the initiating moves, but not
for the rest. On the other hand, the initiating moves contain a relatively higher

1The DCIEM corpus of Canadian speech was chosen in preference to the original Glasgow
Maptask corpus (Anderson et al., 1991) because it allowed us to exploit the large body of
previous work on North American speech to build a better baseline speech recogniser than we
could achieve by starting from scratch with Glasgow speech. The DCIEM corpus contains a
number of dialogues recorded in sleep deprived and other non-standard conditions, but none of
these were included in our subset.
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proportion of content words, which need to be recognised correctly, while the
important information in non-initiating moves is often conveyed by the move
type itself; mistaking “yep” for “yeah” in a Reply-y is not likely to derail a
dialogue.

Instruct direct, or indirect request or instruction.
E.g. “Go round, ehm horizontally underneath diamond
mind...”

Explain provides information, believed to be unknown by the game
initiator.
E.g. “I don’t have a ravine.”

Align checks that the listener’s understanding aligns with that of
the speaker.
E.g. “Okay?”

Check asks a question to which the speaker believes s/he already
knows the answer, but isn’t absolutely certain.
E.g. “So going down to Indian Country?”

Query-yn a yes-no question.
E.g. ”Have you got the graveyard written down?”

Query-w asks a question containing a wh-word.
E.g. “In where?”

Table 1: Initiating moves

SYSTEM ARCHITECTURE

Our technique is based on the idea that by giving a speech recogniser different
language models2 for recognising different move types, we can achieve better
recognition results. Such an approach is not likely to be successful unless:

1. Most of the individual language models describe their own move types
more accurately than a general language model does

2. We have a way of invoking the right model at the right time, to take
advantage of 1.

2We adopt standard speech recognition terminology and use the term language model for a
device that assigns probabilities of occurrence to strings of words. This contrasts with dialogue
models that assign probabilities to sequences of dialogue moves, without regard to the specific
words that constitute them.
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Acknowledge indicates acknowledgement of hearing or understanding.
E.g.“Okay.”

Clarify clarifies or rephrases old information.
E.g.

�
so you want to go ... actually diagonally so you’re

underneath the great rock. � “diagonally down to uh hori-
zontally underneath the great rock.”

Reply-y elicited response to query-yn, check or align, usually indi-
cating agreement.
E.g. “Okay.”, “I do.”.

Reply-n elicited response to query-yn, check or align, usually indi-
cating disagreement.
E.g. “No, I don’t.”.

Reply-w elicited response that is not to clarify, reply-y or reply-n. It
can provide new information and is not easily categorize-
able as positive or negative.
E.g.

�
And across to? � “The pyramid.”.

Ready indicates that the previous game has just been completed
and a new game is about to begin.
E.g. “Okay.”, “Right,”

�
so we’re down past the diamond

mine? �
Table 2: Other moves

The first of these two items is dealt with in the section on language mod-
elling below. Other systems such as (Eckert et al., 1996; Baggia et al., 1997)
have made similar use of dialogue state dependent language models to improve
recognition. It is in addressing the second item that our approach differs, in that
our choice of which language model to use is integrated into the recognition
process, rather than being based simply on the system’s record of the state of
the dialogue. Our choice of language model is arrived at by combining the
move type likelihoods provided by our dialogue model, our intonation models,
and, in effect, several copies of the speech recogniser, each of which uses a
different language model.

Figure 1 illustrates the process of determining the optimal sequence of
move types. For each possible sequence of move types, we combine their in-
tonational and speech recognition likelihoods, as well as the dialogue model
likelihood for the sequence itself. Although conceptually one can imagine this
being done by exhaustive enumeration of the possible move sequences, we
adopt the computationally efficient alternative of Viterbi search. The mathe-
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matical formulation is presented in the appendix at the end of the paper. The
relative contributions of the intonational and speech recognition likelihoods
are weighted using factors that are optimised on the training data.

in log domain
scale and add

move type
likelihoods

move type
likelihoods

Viterbi

model
Dialogue

move type
sequencesearch

from speech rec

from intonation

Figure 1: Finding the best move sequence

The bottom level speech recogniser that provides the word hypotheses that
the language models constrain is an HMM based system built using the HTK
toolkit (Young et al., 1996) in a standard configuration3 . Approximately three
hours and twenty minutes of speech was used to train the models. Using a sin-
gle language model derived from the entire training set, the recogniser achieves
a word error rate of 24.8%. This is the baseline result that we are trying to im-
prove on by introducing separate move-specific language models in the way
just described.

DIALOGUE MODELLING

For purposes of predicting the identity of the next move from dialogue context,
we use a very simple sort of dialogue model which gives probabilities based
on

1. current speaker role (giver or follower)

2. move type of other speaker’s most recent move

3. role of speaker of immediately preceding move

where 2 and 3 may refer to the same move (when the speakers take alternating
moves).

We arrived at this model by examining various N-gram (Jelinek & Mercer,
1980) types using different sets of predictors and choosing the one that gave the

312 cepstral co-efficients plus energy, plus their first and second derivatives, giving 39 com-
ponent observation vectors, and 8-component Gaussian mixture tied-state cross-word triphone
models. See, e.g., (Young et al., 1996; Rabiner & Juang, 1994)
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best predictive power (i.e., lowest perplexity, see below) on a held out portion
of the training set. Our chosen model, which uses three items to predict a
fourth, is classified as a 4-gram model.

The dialogue model was trained on the same data set as the language mod-
els for speech recognition. At run time, we assume speaker roles – items 1 and
3 above – are known, but item 2 is the automatically recognised move type.

Table 3 compares the perplexity of our 4-gram dialogue model with simple
unigram and bigram models. The unigram model simply reflects the relative
frequency of the various move types, regardless of context, and the bigram
model uses the preceding move type, regardless of speaker, to predict the cur-
rent move type. The models were trained on the entire training set, but tested
on the test set. These figures are therefore for illustration only and were not
used in the choice of dialogue model.

Model Test set perplexity
unigram 9.1
bigram 6.3
4-gram 5.2

Table 3: Dialogue model perplexities (12 move types)

Intuitively, perplexity can be thought of as a measure of how much more
information is needed to correctly classify some item as belonging to one of a
number of classes. As an information theoretic measure, it has nothing to say
about the content of the information needed, just the quantity. If there are N
classes that the item might be assigned to, all equally likely, then the perplex-
ity is N. If some of the classes are more likely than others, then the perplexity
works out to less than N, which means that the amount of information required
is the same as for some smaller number of equiprobable classes. (The limit-
ing case where one class is certain and all others impossible corresponds to a
perplexity of 1 - there is just one possibility.)

What Table 3 then tells us is that taking into account the unequal frequen-
cies of the twelve different move types makes predicting the next move about
as hard as with nine equiprobable types, but taking the contextual probabili-
ties given by the bigram or 4-gram models into account reduces the difficulty
to slightly more than predicting with six or five equiprobable classes, respec-
tively.

IDENTIFYING MOVES BY INTONATION

In order to integrate intonational analysis into the probabalistic framework re-
quired for speech recognition, we have adopted a novel approach to intona-
tional phonology and its relationship to conversational structure. Accounts of
intonational meaning normally attribute a discourse function either to whole
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tunes like O’Connor and Arnold’s (1973) high drop or Sag and Liberman’s
(1975) surprise/redundancy tune, or to particular types of accent, possibly with
rules for composing meanings when accents appear in combination, as in (Pier-
rehumbert & Hirschberg, 1990). Such accounts are often insightful, but, being
pitched at the phonological level, they are concerned with idealised cases of
pitch contours. A recognition system has to cope with contours that are not
clearly classifiable as one tune type or another, and with the possibility that an
apparently clear case of a tune or accent type is associated with the “wrong”
meaning. In the phonetic domain, Markov models have been successfully em-
ployed to represent the range of variation among spectra associated with a
given phoneme. Here we use Markov models in a similar way to represent the
range of contours associated with a given dialogue act.

It is already common practice in intonational phonology to present possi-
ble sequences of basic intonational elements, such as pitch accents or boundary
tones, by way of a finite state network. Figure 2a shows the familiar form of
Pierrehumbert’s intonational grammar giving her account of the legal tone se-
quences of English (Pierrehumbert, 1980). For present purposes, it is useful to
rewrite this grammar in a form where symbols are emitted from states rather
than from arcs. Figure 2b shows the Pierrehumbert grammar in this alternative
form in which the pitch accent state emits all the pitch accent types, and the
self-transition arc shows that this state can be visited multiple times. Figure 2c
shows Ladd’s (1996) amended version where nuclear accents are treated dif-
ferently from pre-nuclear accents. Figure 2d shows the British School system
of pre-head, head, nucleus and tail.

Such networks can be turned into Markov models by adding two types of
probabilities. Transition probabilities are associated with arcs between states
which give, for example, the likelihood of a contour having or not having a pre-
head. Observation probabilities are associated with states and give the relative
frequencies of the types that the state can emit. For example, the pitch accent
state in figure 2b might have a high chance of emitting a common accent such
as H* and a much lower chance of emitting a rarer accent such as H+L*.

In our training data, each move type has a distribution of intonational event
(observation) sequences associated with it, and we model each of these distri-
butions with a separate Markov model. We use a model with three states, and
include self-transition arcs to all states, making it possible for them to repeat.
Given the type of intonational observations we use (described below), any ob-
servation can potentially be generated by any state, even though some obser-
vations are more probable from some states than from others. It is therefore
not possible to say with complete certainty which state a given observation is
associated with. A Markov model with this property is commonly referred to
as a hidden Markov model (HMM) because the state sequence is not determin-
istically recoverable from the observation sequence.

Hidden Markov models can be trained using the Baum-Welch algorithm
(Baum, 1972) to provide optimal transition and observation probabilities for
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H*

L*

L*+H
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Figure 2: Intonational structure represented by finite state networks

modelling their particular training data. As long as each move type has a
different distribution of observations in the training data, its hidden Markov
model will have different transition and observations probabilities from those
of the other moves.

When confronted with the sequence of intonational events from a previ-
ously unseen utterance, we can calculate the probability that each of our mod-
els might have produced it. These probabilities are taken as the intonational
contribution to the identification of the utterance’s move type.

Intonational Events

The Markov model framework just described puts no constraints on the form
that intonational events can take. The schemes depicted in figure 2 each have
a finite repertoire of discrete categories of events. For instance, in the ToBI
system (Silverman et al., 1992), derived from Pierrehumbert’s work, there are
five pitch accents, two phrase accents and two boundary tones. We have chosen
instead to use just a single category of event, but our events are characterised
by real number parameters, rather than being a discrete set.

We have avoided discrete intonational categories for several reasons. First,
even on clear read speech human labellers find it notoriously difficult to label
the categories reliably, and the reliability drops further for spontaneous speech.
In a study on ToBI labelling (Pitrelli et al., 1994), labellers agreed on pitch ac-
cent presence or absence 80% of the time, while agreement on the category of
the accent was just 64% and this figure was only achieved by first collapsing
some of the main categories (e.g. H* with L+H*). Second, the distribution of
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pitch accent types is often extremely uneven. In a portion of the Boston Radio
news corpus which has been labelled with ToBI, 79% of the accents are of
type H*, 15% are L*+H and other classes are spread over the remaining 6%.
From an information theoretic point of view, such a classification isn’t very
useful because virtually everything belongs to one class, and therefore very
little information is given by accent identity. Furthermore, not all H* accents
have the same linguistic function, and so there are intonational distinctions that
are missed by only using a single broad category. Finally, recognition systems
which have attempted to automatically label intonation usually do much bet-
ter at the accent detection task than at classifying the accents (e.g. (Ross &
Ostendorf, 1995)).

In brief then, we choose a single category of accent, because both human
and automatic labellers find it difficult to distinguish more, and because even if
it were possible to distinguish them the payoff in information would be small.
To put it another way, in practical situations the ToBI system more or less
equates to a single pitch accent type anyway - all we have done is to make this
explicit.

However, this is not to say that we believe that all pitch accents are iden-
tical, just that current categorical classification systems aren’t suited for our
purposes. To classify pitch accents, we use four continuous parameters collec-
tively known as tilt parameters.
The tilt parameters are:

� � � at the start of the event

� The amplitude of the event

� The duration of the event

� Tilt, a measure of the shape of the event

The tilt parameters are derived from automatic analysis of the shape of
the F0 contour of the event. The first stage in this process is known as RFC
(rise/fall/connection) analysis (Taylor, 1995). In the RFC model, each event
can consist of a rise, a fall, or a rise followed by a fall. RFC analysis begins
by locating rises and/or falls in a smoothed version of the event’s F0 contour.
Piecewise quadratic curves are fitted to each rise or fall, and the start and end
points of these curves are marked, from which the rise amplitude, the fall am-
plitude, the rise duration and the fall duration can be calculated, as illustrated
in figure 3. When the event consists of only a rise or only a fall, the amplitude
and duration for the missing part are set to 0. The RFC parameters are then
converted to tilt parameters which are more amenable to linguistic interpreta-
tion.

Tilt is meant to capture the relative amounts of rise and fall in an event. It
can be measured from the rise and fall amplitudes:
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or the rise and fall durations:

��������839 � !;:<&)(=*�+�.>: 0�13242:<&)(=*�+�6?: 0�13242 (2)

Experimental studies (Taylor, 1998) have shown that these two quantities are
highly correlated, and hence with little loss of information they can be com-
bined into a single quantity, taken as the average of the two:

������� ! %>&�(�*,+�.@% 0�13242A-B %'&)(�*,+36C%C0�13242ED7F :<&)(�*,+�.>: 0�13242A-B :<&)(�*,+36?: 0�13242GD (3)

Figure 4 shows the tilt values for several different contour shapes.
The amplitude and duration are calculated from the combined amplitudes and
durations of the rise and fall components.

� ��H���IKJ<!ML � ���N���KL F L ���
����� L
(4)

�O��H���IPJ !QL �
������� L F L ��������� L
(5)

Event Detection Event detection is also performed by HMMs, using as
observations � � and rms energy at 10ms intervals, together with standard rate
of change and acceleration measures (“deltas”). The means and variances for
each speaker’s � � and energy are calculated and used to normalise the data for
that speaker.
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Figure 4: Variation of contour shape as a function of the tilt parameter.

A continuous density HMM with 8 Gaussian components is trained for
each of 5 labels: a is used for pitch accents, b for boundary tones and a com-
pound label ab is used for the case when an accent and boundary are so close
that they overlap and form a single intonational event. sil is used for silence
and c is used for the parts of the contour which are not an event or silence.
The HMMs are trained on 20 dialogues from the training set which have been
hand labelled with these labels. The standard Baum-Welch algorithm is used
for training.

Once trained, the system is run by using the HMMs for each label in com-
bination with a bigram model representing the prior probabilities of pairs of
labels occurring in sequence. The Viterbi decoding algorithm is used to de-
termine the most likely sequence of labels from the acoustics of the utterance
being recognised.

The distinction among a, b and ab is dropped when tilt parameters are
calculated. The use of three separate event labels is to some extent historical,
since they were present in our hand labelled database, but we also found that
that the system performs better at distinguishing events from non-events using
the three categories, even though it is not particularly accurate in distinguishing
among them.

Event Detection and Move Identification Results

We report here performance results for intonational event detection and the
conversational move identification, in isolation from the rest of the system.
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Test % Correct
Unigram on all moves 42
Unigram on initiating moves 36
Unigram on other moves 48
4-gram on all moves 47
4-gram on initiating moves 41
4-gram on other moves 52

Table 4: Results for move identification

Intonation Event Detector Event detection performance can be measured
by comparing the output of the recogniser with the hand labelled test set. We
are only concerned with placement of event labels (a, b and ab), since it is just
the sequence of events that acts as input to the move recogniser. An automat-
ically labelled event is counted as correct if it overlaps a hand labelled event
by at least 50%. Using this metric 74.3% of hand labelled events are correctly
identified. However, the other standard measure of recogniser performance,
namely accuracy, calculated as

���
���3�

�
J �
�
�3�
�����
IK����� 8 ��H���IPJ � . �GI ��� ���3� � J ��H���IPJ �C�GI ������J�� 8��

�
J
	��?�3�

�����
IK�N�����J

�
J ��� I 9 � � ���

�
� 	 � I 8 . �=� � � ��� � 8 ��H���IKJ �

is 47.7%
These results are not as bad as they might at first appear. First of all, when

the speech was labelled, the labellers were allowed to use a diacritic “minor” to
mark accents. This was used either when accents were very small, or when the
labellers were unsure of the presence of the accent at all. If accents with this
diacritic are ignored, 86.5% of the remaining accents are correctly identified,
so nearly half the missed accents are of this marginal sort.

The difference between percent correct and accuracy means that the recog-
niser inserts a lot of spurious events. These spurious events are in general of
low amplitude. The move recogniser is trained on the output of the event
recogniser and so as long as the event recogniser produces the same pattern of
small amplitude spurious events on test sentences as it does on training sen-
tences, they are at worst just a source of noise. If the spurious events are in fact
more likely to occur in one type of move than another, then the move recog-
niser will learn to exploit them. If the spurious events are not correlated with
move type, which we believe to be the case, then a move recogniser trained
on events produced by the event recogniser will assign a higher probability
to small amplitude events in all move types than a move recogniser trained
on hand labelled data. However, it will not depend on these minor events to
distinguish one move type from another.

Move Identification Table 4 gives a summary of results for identification
of the 12 move types, using the output of the intonational move recogniser
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in conjunction with two different sorts of dialogue model. A unigram is the
simplest type of dialogue model and just gives the prior probability of each
move occurring. The overall performance of the move recogniser with this type
of dialogue model is 42%. This result improves when the 4-gram described
earlier is used. Furthermore, we can see that non-initiating moves are better
identified than initiating moves in both cases.

We actually tried two variants of the 4-gram language model: the over-
hearer and the participant scenarios. For the latter, the computer is imagined
as participating in the task and is assumed to know the identity of its own most
recent move4. This makes the task a bit easier, but in general we have found
that results from participant mode and overhearer mode are surprisingly sim-
ilar, so we report only the results for the slightly harder overhearer version of
the recognition task.

LANGUAGE MODELLING

As explained in the System Architecture section above, a necessary, though not
sufficient, condition for our approach to succeed is that move specific language
models (LMs) should assign higher probability than a general LM to utterances
of “their” move type, in order to encourage better recogniser performance on
utterances of that type. High average probability on a move set equates to low
perplexity. In this section we give relative perplexity results for a general LM
and several variants of move specific LMs.

Training set

The training set was divided into move specific sections. The total number
of training tokens (words) per move type is given in table 5. If we compare
the two rightmost columns, we can see that the average sentence length varies
widely across move types, so although some types are relatively infrequent
(fewer than 3% of moves are clarify, for example), there are still sufficient
training tokens for these types. The exceptions to this pattern, such as reply-
n, tend to have simple grammars anyway, so training data is not as sparse
as suggested by the number of tokens in the training set. Given the amount
of training data available, bigrams were the only practical choice for N-gram
language models.

4A reviewer correctly points out that the partner’s next move will be based on the partner’s
interpretation of what the speaker has just said, which does not necessarily coincide with the
move that the speaker intended to make. However, the assignment of move types to utterances
in our data is based on the transcriber’s interpretation of the speaker’s intention. The fact that
the response is not always appropriate to that intention is reflected in the dialogue model, where
non-zero probabilities are sometimes assigned to “impossible” utterance sequences.
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Move type Utterances Words
acknowledge 2607 6363
align 319 1753
check 598 4359
clarify 246 2149
explain 733 6521
instruct 1407 17991
query-w 262 1863
query-yn 703 5748
ready 784 1574
reply-n 262 770
reply-w 331 2937
reply-y 1020 2824
total 9272 54852

Table 5: Move type specific LM training set sizes

Language model smoothing

To compensate for sparcity of training data, two techniques were used: backing-
off and smoothing. Both the “general purpose” and move specific bigram LMs
were backed off language models (Church & Gale, 1991). Smoothing of the
grammars was achieved by taking weighted averages of the move specific bi-
gram probabilities and the corresponding bigram probability from the general
purpose LM. The weights were chosen by a maximum likelihood method, us-
ing a held-out scheme (that is, by dividing the training set itself into training
and testing portions) with the CMU Language Modelling toolkit (Rosenfeld
& Clarkson, 1997). As expected, the weights for different move types varied
widely. We would expect the smoothed versions of move specific LMs which
are well-estimated, and which are markedly different from the general purpose
LM, to consist mainly of the move specific LM, and be less dependent on the
general purpose LM. This proves to be the case; for example, the smoothed
LM for acknowledge consists of 0.8 acknowledge LM and 0.2 general purpose
LM, while for clarify these weights are 0.3 and 0.7 respectively.

Perplexity results

The choice of language model was based on perplexity on a held-out portion of
the training set. Here we give perplexity results for the test set for consistency
with other results.

In table 6, we see that the perplexities vary widely between move types
and that sometimes the move-specific language model perplexities are much
higher (worse) than those for the general model. This is the case for align,
clarify and reply-w in particular. We presume this is because of insufficient
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Move Perplexity
type Language model used

general move specific smoothed
acknowledge

����� ����� �����
align 	
	 ��� �
�
��� 	
	 ���
check

� 	 ��� �
�
��� � 	 ���
clarify

���
��� ������� ���
���
explain

������� � 	 ��� ���
���
instruct

���
��� ����� 	 �������
query-w

�
�
��� ������� � 	 ���
query-yn 	 ����� ���
��� �������
ready

����� 	 ��� �����
reply-n

����� ����� �����
reply-w 	 ����� � 	 ��� 	 �
���
reply-y

����� ����� �����

Table 6: Perplexity of general and move-specific models, by move type

training data for these types.

Furthermore, the smoothed move specific models do not always have a
lower perplexity than the unsmoothed ones because the smoothing weights
are not estimated on the test set. By computing the perplexity of all models
on held out training data (not the same data used to compute the smoothing
weights in the first place), we can estimate whether the smoothed, unsmoothed
or general purpose model will be best (on test data) for each move type. We
then choose the model with the lowest estimated perplexity for each move type
– we call this the best choice model. Table 7 compares the overall perplexities
of the unsmoothed, smoothed and best choice models. In this case, the general
purpose model was taken as best choice for move types clarify, explain and
reply-w. The figures in Table 6 show that this is a good decision based on the
test set.

Model test set perplexity
general (baseline) 23.6
original move type specific 22.1
smoothed move type specific 21.5
best choice move type specific 21.0

Table 7: Language model perplexities
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SYSTEM PERFORMANCE RESULTS

As explained earlier, the speech recogniser is run with each language model
over each utterance. The language model likelihoods produced are combined
with the intonation likelihoods and the dialogue model to provide a single best
sequence of moves for the whole conversation. The final recognition output for
a given utterance is then the word string that was recognised using the language
model of the move type chosen for that utterance.

Tables 8 gives results for word error rate (calculated as
� �
� ���������
	��
�����

)
in several recognition experiments. The baseline figures are obtained by run-
ning the speech recogniser using a single general purpose language model,
with no reference to move types, dialogue or intonation. The “cheating” fig-
ures give the performance of our system using the correct move-specific lan-
guage model every time, corresponding to 100% accuracy of the move clas-
sifier. They represent the best result we could possibly have achieved with
our techniques on this set of test data, using our current move classification
scheme and its associated bigram language models. These figures are better
(lower error rate) than the corresponding baseline ones, showing that the per-
plexity figures of tables 6 and 7 translate to an improvement in recognition
performance. The reductions in error rate for all utterances and for initiating
moves taken separately are significant by a paired t-test (��� �����
�
���

).
The scores for automatic move recognition fall between those for the base-

line and for perfect recognition, though they are closer to the latter. Going
through the motions of a paired t-test to compare the overall recognition score
with the baseline would appear to produce a significant result, but the test is
not strictly applicable in this case, because use of the 4-gram dialogue model
means that recognition is not independent for successive utterances, violating
the assumptions of the test. However, given the nature of the 4-gram, it is
probably safe to treat initiating moves as independent each from the next, and
similarly for non-initiating moves. On this basis, the 1.3% difference (5% re-
duction) in error rate between the baseline and the full system on initiating
moves is significant (��� �����
���

). The slight deterioration for non-initiating
moves is not significant.

Given that the role of intonation and dialogue context in our system is to
help find the right language model for recognising each utterance, it is worth
considering whether the more straightforward strategy of simply choosing the
language model giving the best recognition score would work as well. The
bottom section of the table shows the performance of this alternative strat-
egy. For this case, we just chose the result from the move specific language
model that “was the most confident”, i.e., assigned the highest likelihood to
its output, ignoring intonation and context. Here the improvement for initiat-
ing moves is significant (��� �����
���

), as is the deterioration for non-initiating
moves (��� �������

), but not the overall improvement. (Since the dialogue model
is not involved in this case, the independence assumption of the paired t-test is
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satisfied.)

Experiment Word error rate %
Baseline - General language model
Overall 24.8
Initiating moves 26.0
Other moves 19.2
Cheating (100% move classification)
Overall 23.5
Initiating moves 24.6
Other moves 19.0
Move specific language models
with automatic move classification
Overall 23.7
Initiating moves 24.7
Other moves 19.3
Move specific language models
without dialogue model or intonation
Overall 24.1
Initiating moves 24.9
Other moves 20.9

Table 8: System performance compared with baseline

We have also examined percentage agreement on move type between the
system as a whole and various components taken on their own. Intonation and
dialogue model alone agree with the whole system 78% of the time, while the
language model likelihoods alone agree only 47% of the time. Intonation and
dialogue alone correctly identify the move type 47% of the time, as shown in
table 4. The system as a whole is correct 64% of the time, which subdivides
into 54% for initiating moves and 80% for non-initiating. In particular, there is
only one confusion in the entire test set between Reply-y and Reply-n and that
is for a case where the transcribers labelled a “no” answer to a “you don’t ...,
do you?” question as a Reply-y, but the system called it a Reply-n. Language
model likelihoods alone correctly identify only 40% of moves.

DISCUSSION

The reduction in error rate that we achieve is roughly comparable to that re-
ported by others (Eckert et al., 1996; Baggia et al., 1997) who have employed
dialogue context dependent language models. Detailed comparisons are not
possible because of domain and task differences. The main limitation on
our results is the relatively small gap between baseline performance and the
best performance achievable with perfect move recognition. Possible ways
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of widening the gap include an improved dialogue act set, more sophisticated
kinds of language models and, of course, as always in speech recognition,
more training data. Once the gap has been widened, there is scope for im-
proved intonation recognition, possibly using the CART classification tech-
niques discussed in (Shriberg et al., 1998), and for investigating interactions
between intonation and dialogue context with, for instance, context specific in-
tonation models. For example, one can make different intonational predictions
for a “no” answer to an unbiased information seeking query y/n and a “no”
answer to a check question that expects a “yes”. Kowtko(1996) finds different
distributions for intonation patterns of acknowledgements in different sorts of
games.

In considering what would constitute an improved dialogue act set, there
are at least two directions one might take. One would be based on the func-
tional role of dialogue acts in human conversation and computer dialogue
systems. Act classifications would be judged on their psychological validity
and/or explanatory power in dialogue analysis. The task would be to discover
what formal properties of the acts, such as intonation or word order, could be
exploited in the manner we have used here. Identification of the acts would
also be an end in itself for dialogue systems, which might indeed be able to
tolerate speech recognition errors to a certain extent as long as they under-
stood what acts were being performed. The distinction between “yes”, “yeah”
and “yep” is not crucial to a system that has just asked a yes/no question.

Another direction would be to simply look for ways of classifying utter-
ances that were useful for improving speech recognition results. For instance,
one might iterate automatic training and recognition, perhaps in combination
with an automatic clustering technique, to find a set of acts that gave optimal
recognition results. There would be no guarantee that the resulting set would
then be meaningful in dialogue terms, but if the goal is just improved speech
recognition, that would not necessarily be a drawback.
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Appendix - Computing the most likely move sequence

We show here the assumptions and approximations made in computing the
most likely move sequence on the basis of the intonation model, the dialogue
model and the speech recogniser. As mentioned in the body of the text, the
computation is actually performed by Viterbi search. For the sake of simplicity,
the role of the empirically determined weights is ignored here.

Notation

�
the dialogue���
the number of utterances in

�
�

cepstral observations for
�
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the sequence of move types for
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Move Indentification

We want to find the most likely move type sequence
���

, given speaker iden-
tities, cepstral vectors and intonation by solving:
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��� � � is a constant for any given

�
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dialogue
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intonation

model

(6)

We assume that speaker identity has no effect on cepstral or intonational
observations. This is clearly false, but we already make this assumption in
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using the same speech recogniser and intonation recogniser for both giver and
follower. It should be clear from the discussions of the dialogue and intonation
models that they compute the first and third terms of (6) respectively. We now
show that the middle term of equation 6,

��� � L � � , is in fact the contribution
of the speech recogniser.

Letting W range over all possible word sequences,

��� � L � � ! ��� ��� � L�� � ��� � L � �
� 
����� ��� � L�� � ��� � L � � (7)

where the replacement of summation by maximisation is a change from total
likelihood to maximum likelihood. The value of W that maximises (7) is of
course the sequence of words that will be the result of speech recognition.

Let

� � !
cepstral observations for the

�
th utterance� � � ��� 	 � A 	 � � � �
	�� �� � !

the word sequence for the
�
th utterance
 ! � � � 	 � A 	 � � � � 	 � �� � !

move type of the
�
th utterance� � � � � 	 � A 	 � � � � 	 � �

Now the two terms in equation 7 are

��� � L 
 � !
	���
��� � ��� � ��L�� � �

which is given by the HMMs in the speech recogniser, and

����
 L � � !
	���
��� � ��� � ��L � � �

which is given by the move type specific language models.

Andreas Stolke (personal communication) suggests replacing the approxi-
mation in (7) by a sum over an N-best sentence list from the speech recogniser.
This is obviously a closer approximation than made here but does require the
recogniser to produce N-best lists, which can be time-consuming.


