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ABSTRACT

Dialogue act recognition and simulation are traditionally
considered separate processes. Here, we argue that both can
be fruitfully treated as interleaved processes within the same
probabilistic model, leading to a synchronous improvement of
performance in both. To demonstrate this, we train multiple
Bayes Nets that predict the timing and content of the next
user utterance. A specific focus is on providing support for
barge-ins. We describe experiments using the Let’s Go data
that show an improvement in classification accuracy (+5%) in
Bayesian dialogue act recognition involving barge-ins using
partial context compared to using full context. Our results
also indicate that simulated dialogues with user barge-in are
more realistic than simulations without barge-in events.

Index Terms— spoken dialogue systems, dialogue act
recognition, dialogue simulation, Bayesian nets, barge-in

1. INTRODUCTION AND MOTIVATION

Modelling dialogue phenomena incrementally has been high-
lighted as one of the (remaining) challenges for spoken dia-
logue systems [1, 2]. Whereas non-incremental architectures
wait until the end of an incoming user utterance before start-
ing to process it, incremental ones become active as soon as
the first input units are available. In addition, whereas non-
incremental architectures assume communication based on
complete dialogue acts, incremental ones assume communi-
cation based on partial dialogue acts. This difference is illus-
trated in the figure below and has been shown to account for
shorter processing times and higher user acceptance [3].
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In this paper, we focus on user dialogue act recognition
and user simulation for spoken dialogue systems at the se-
mantic level. The former involves mapping a set of features
of the Automatic Speech Recognition (ASR) input and di-
alogue history onto a unique user dialogue act. The latter
are typically used for training system policies which require
a large amount of dialogue data. While both problems are
well investigated for the non-incremental case, little work ex-
ists on incremental approaches; see [4, 5] for some first ad-
vances. More work in this direction is therefore needed to
enhance the efficiency and quality of spoken dialogue sys-
tems. In addition, previous work has so far neglected the
fact that user dialogue act recognition and simulation can of-
ten be treated fruitfully within the same probabilistic model.
Given a dialogue act recogniser which finds the most likely
user dialogue act based on the history of previous system and
user dialogue context, we can treat simulation as an equiv-
alent problem: given a history of system and user dialogue
context, what action is the user most likely to perform next?
This double-function model is advantageous because an im-
proved dialogue act recognition accuracy automatically leads
to improved realism of simulated dialogues1. Our solution
here consists of using multiple statistical classifiers that pre-
dict both when the user will start speaking next (which can
be at any point during a system utterance) as well as what
the user is most likely going to say. This paper describes and
analyses our proposed approach, advocating recognition and
simulation from the same set of statistical models. A partic-
ular focus will be on recognising and simulating barge-ins in
natural interaction.

2. RELATED WORK

2.1. Incremental Natural Language Understanding

Related work in incremental language understanding has fo-
cused on finding the intended semantics in a user utterance
as soon as possible while the user is still speaking. This has
been shown to lead to faster system responses and increased
human acceptability. [6] were among the first to demonstrate

1The converse may not apply, however, especially if the simulations apply
some constraints or distortions.



that incremental understanding is not only substantially faster
than its non-incremental counterpart, but is also significantly
preferred by human judges. [7] use a classifier to map ASR
input features onto (full) semantic frames from partial inputs.
They show that better results can be achieved by training the
classifier from partial dialogue acts rather than from full dia-
logue acts. [8] present an incremental parser which finds the
best semantic interpretation based on syntactic and pragmatic
constraints, especially taking into account whether a candi-
date parse has a denotation in the current context. [9] perform
incremental language understanding taking visual, discourse
and linguistic context into account. They show that while em-
ploying an incremental analysis module provides some bene-
fits, hypotheses are not always stable, especially at early pro-
cessing states. Our results extend previous work in analysing
the performance of dialogue act recognition and simulation in
dialogue turns with and without barge-in events.

2.2. User Simulation for Incremental Dialogue

Despite the growing popularity of incremental architectures,
little work exists on incremental simulation. Some authors
have used non-incremental simulations to optimize incremen-
tal dialogue or language generation systems [10, 11]. Simi-
larly, [12] discuss the option of integrating POMDP-based di-
alogue managers with incremental processing, but leave the
question of simulation unaddressed. [5] present a first model
of incremental simulation, but focus exclusively on the prob-
lem of turn taking. Given the increased interest in incremen-
tal processing, the absence of incremental phenomena in user
simulations represents an important limitation.

2.3. Statistical Dialogue Act Recognition and Simulation

Approaches to (non-incremental) dialogue act recognition
from spoken input have explored a wide range of different
methods and feature sets. [13] use Hidden Markov Models
(HMMs) in a joint segmentation and classification model.
[14] also use HMMs but explore decision trees and neu-
ral networks in addition. Several authors have explored
Bayesian methods, such as Naive Bayes classification [15]
and Bayesian Networks [16]. [17] use Bayesian networks to
re-rank dialogue acts from n-best lists. Other authors have
used Support Vector Machines (SVMs), such as [18] (who
use a combination of SVMs and HMMs) or [19] who show
that an active learning framework for dialogue act classi-
fication can outperfom passive learning. [20] use max-ent
classification. A wide range of feature sets have also been
explored, including discourse and sentence features [14, 21],
multi-level information features [22], affective facial expres-
sion features [23], or speaker-specific features [24].

In terms of dialogue act simulation, a similarly wide
range of methods has been investigated. Several authors have
explored Bayesian methods, such as [25] who use Bayesian
Networks (BNs) to estimate user actions independently from

natural language understanding. Similarly, [26] use Bayesian
Networks that can deal with missing data in simulation and
[27] use a dynamic BN in an unsupervised learning setting.
Other graphical models for simulation have been used by
[28], who compare different types of HMMs and [29] who
use conditional random fields. [30] use an agenda-based
model for user simulation, in which the agenda is represented
by a stack of user goals which needs to be satisfied before
successfully achieving the next dialogue goal. The agenda
can be treated as hidden from the dialogue manager to repre-
sent the uncertainty that also exists with respect to real users.
This model has been extended to be trainable directly from
real users rather than corpora [31]. Other methods have been
based on “advanced” n-grams [32], clustering [33], or ran-
dom selection of user utterances from a corpus [34]. Finally,
some authors model the user as an agent similar to the dia-
logue manager [35] or use inverse reinforcement learning to
simulate user actions [36]. For a detailed overview of the dif-
ferent user simulations see [37, 38] and [39] for an overview
of possible evaluation metrics.

3. A BARGE-IN BASED APPROACH FOR
DIALOGUE ACT RECOGNITION AND SIMULATION

The sort of dialogue act recognition (also referred to as
shallow semantic parsing in the literature) that we aim for
takes into account dialogue act types, attributes and val-
ues. An example dialogue act is confirm(to=Pittsburgh
Downtown). While dialogue act recognition and user sim-
ulation are typically treated as separate components, our
approach is based on the premise that user simulation can
make use of a statistical dialogue act recogniser to gener-
ate user responses. This is possible by sampling from the
estimated probability distributions induced by the dialogue
act recogniser. The user simulations in this case, would be
mimicking the user responses from some training data, but
with more variation for wider coverage in terms of con-
versational behaviours. To make simulations account for
unseen situations, the statistical models would have to in-
clude all possible combinations of dialogue act types and slot
value pairs with non-zero probabilities. Algorithm 1 shows
a fairly generic dialogue act recogniser assuming multiple
statistical classifiers λ = {λdat, λatt, λval(i)} with features
X = {x1, ..., xn}, labels Y = {y1, ..., yn}, and the evi-
dence e = {x1=val(x1), ..., xn=val(xn)} collected during
the system-user interaction. While model λdat is used to
predict system dialogue act types, model λatt is used to pre-
dict attributes, and the remaining models (λval(i)) are used to
predict slot value pairs. In our case we use Bayes Nets (BNs)
to obtain the most likely label y (i.e. a dialogue act type,
attribute, or value) from domain values D(Y ) expressed as

y∗ = arg max
y∈D(Y )

P (y|e).

For incremental simulators, it is important to model when



Algorithm 1 Statistical recogniser of user dialogue acts
1: function DIALOGACTRECOGNITION(StatisticalModels λ, Evidence

e)
2: λdat ← statistical model for predicting dialogue act types (DAT)
3: λatt ← statistical model for predicting attributes (ATT)
4: λval(i) ← statistical models for predicting attribute values (VAL)
5: y ← output (class label) of the statistical classifier in turn

6: dat = argmaxy∈D(DAT ) P (y|e;λdat)
7: att = argmaxy∈D(ATT ) P (y|e;λatt)
8: pairs← []
9: for each attribute i in att do

10: val = argmaxy∈D(V AL(i)) P (y|e;λval(i))
11: pairs← APPEND(attribute i=val)
12: end for
13: return dat(pairs)
14: end function

the user speaks assuming that system dialogue acts are re-
ceived incrementally. For example, should the user speak af-
ter the first, second, ..., or last system dialogue act? This event
can be modelled probabilistically as

ut∗ = arg max
ut∈{0,1}

P (ut|e;λut),

where ut is a binary value and λut in our case is an addi-
tional statistical model (Bayes net) in our set of classifiers λ.
If the result ut∗ is true then the main body of Algorithm 2
is invoked, otherwise a null event is returned. Our approach
queries (with observed features) the set of Bayes nets incre-
mentally after each partial system dialogue act.

In the rest of the paper, we analyse a corpus of dialogues
using Algorithms 1 and 2 for dialogue act recognition and
simulation. The simulations below focus on when the user
speaks and what they say. For goal-directed user dialogue
acts, the slot values can be derived from user goal g with prob-
ability ε and from models λval(i) with probability 1-ε.

4. EXPERIMENTS AND RESULTS

4.1. Data

Our experiments are based on the Let’s Go corpus [40]. Let’s
Go contains recorded interactions between a spoken dialogue
system and human users who make enquiries about the bus
schedule in Pittsburgh. Dialogues are system-initiative and
query the user sequentially for five slots: an optional bus
route, a departure place, a destination, a desired travel date,
and a desired travel time. Each slot needs to be explicitly (or
implicitly) confirmed by the user. Our analyses are based on
a subset of this data set containing 779 dialogues with 7275
turns, collected in Summer of 2010. From these dialogues, we
used 70% for training our classifiers and the rest for testing
(with 50 random splits). Brief statistics of this data set are as
follows. Table 1 shows all dialogue act types that occur in the
data together with their frequency of occurrence. System dia-
logue acts are shown on top and user dialogue acts in the bot-

Algorithm 2 Statistical simulator of user dialogue acts
1: function DIALOGACTSIMULATION(StatisticalModels λ, Evidence e)
2: λut ← statistical model to predict when the user takes the turn (UT)
3: λdat ← statistical model for predicting dialogue act types (DAT)
4: λatt ← statistical model for predicting attributes (ATT)
5: λval(i) ← statistical models for predicting attribute values (VAL)
6: y ← output (class label) of the statistical classifier in turn

7: ut = argmaxy∈D(UT ) P (y|e;λut)
8: if ut is true then
9: dat← sample from P (Y |e;λdat)

10: att← sample from P (Y |e;λatt)
11: pairs← []
12: for each attribute i in att do

val =

{
with probability ε, get value from user goal g(i)
with probability 1− ε, sample from P (Y |e;λval(i) )

13: pairs← APPEND(attribute i=val)
14: end for
15: return dat(pairs)
16: end if
17: return null
18: end function

tom. Table 2 shows the main attribute types for the dialogue
acts again paired with their frequency of use by system and
user. Notice that the combination of all possible dialogue acts,
attributes and values leads to a large number of triplets. While
a whole dialogue act is represented as a sequence of tuples
<dialogue act(attribute=value pairs)>, a partial dialogue act
is represented as <dialogue act(attribute=value pair)>.

4.2. Statistical Classifiers

We trained our statistical classifiers in a supervised learning
manner, and used 43 discrete features plus a class label (also
discrete), see Table 3. The feature set is described by three
main subsets: 24 system-utterance-level binary features de-
rived from the system dialogue act(s) in the last turn; 16 user-
utterance-level binary features derived from (a) what the user
heard prior to the current turn, or (b) what keywords the sys-
tem recognised in its list of speech recognition hypotheses;
and 4 non-binary features corresponding to the last system
dialogue act type, duration in seconds, previous and current
label. Predicted labels are restricted to those that occur in the
N-best parsing hypotheses from the Let’s Go data and an ad-
ditional dialogue act “silence”. See [17] for details.

Figure 1 shows the Bayesian network corresponding to
the classifier that predicts when the user speaks, queried in-
crementally after each partial system dialogue act. The struc-
tures of our Bayesian classifiers were derived from the K2 al-
gorithm2, their parameters were derived from maximum like-
lihood estimation, and probabilistic inference using the Junc-
tion tree algorithm3. We trained a set of 14 Bayesian classi-
fiers to predict (1) when the user speaks, (2) the dialogue act

2http://www.cs.waikato.ac.nz/ml/weka/
3http://www.cs.cmu.edu/˜javabayes/Home/

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.cmu.edu/~javabayes/Home/


Agent Dialogue Act Type Frequency (%)
Sys ack 0.52
Sys canthelp 1.45
Sys example 59.04
Sys expl-conf 5.23
Sys goback 0.37
Sys hello 1.90
Sys impl-conf 8.71
Sys morebuses 0.46
Sys request 11.37
Sys restart 0.25
Sys schedule 3.44
Sys sorry 7.24
Usr affirm 14.10
Usr bye 1.35
Usr goback 2.36
Usr inform 41.68
Usr negate 5.02
Usr nextbus 11.00
Usr prevbus 1.63
Usr repeat 3.83
Usr restart 1.44
Usr silence 17.36
Usr tellchoices 0.22

Table 1. Frequencies of dialogue act types in our data set.

Attribute (slot) System Freq. (%) User Freq. (%)
date.absday 0.50 0.38
date.absmonth 0.50 0.38
date.day 1.62 4.71
date.relweek 0.41 0.0
from 26.26 24.44
route 36.70 33.36
time.ampm 1.73 2.45
time.arriveleave 1.67 2.91
time.hour 2.19 3.60
time.minute 2.19 3.60
time.rel 2.80 0.31
to 23.41 23.86

Table 2. Frequencies of system and user slots in our data set.

type, (3) the attributes (also called ‘slots’), and (4) the slot
values. The advantage of using multiple Bayes Nets over just
one is that a multiple classifier system is a powerful solution
to complex classification problems involving a large set of in-
puts and outputs. This approach not only decreases training
time but has also been shown to increase the performance of
classification [41].

4.3. Evaluation Metrics

The accuracy of dialogue act recognition is computed as the
proportion of correct classifications among the all classifica-
tions. The comparison is made against labelled gold standard
data from human annotations.

We compute the quality of simulations with the Kullback-
Leibler (KL) divergence [42], which measures the similarity
between a gold standard data set and a target data set.

Type Features (b=binary, nb=non-binary)

System heardAckb, heardCantHelpb, heardExampleb, heardExplConfb,
heardGoBackDATb, heardHellob, heardImplConfb,
heardMoreBusesb, heardRequestb, heardRestartDATb,
heardScheduleb, heardSorryb, heardDateb, heardFromb,
heardRouteb, heardTimeb, heardTob, heardNextb,
heardPreviousb, heardGoBackb, heardChoicesb,
heardRestartb, heardRepeatb, heardDontKnowb,
lastSystemDialActTypenb, durationnb (in seconds: 0,1,2,3,4,>5),
currentLabel (e.g. userSpeaksb, dialActTypenb, slotnb

i ), prevLabel
User hasRouteb, hasFromb, hasTob, hasDateb, hasTimeb, hasYesb,

hasNob, hasNextb, hasPreviousb, hasGoBackb, hasChoicesb,
hasRestartb, hasRepeatb, hasDontKnowb, hasByeb, hasNothingb.

Table 3. Features for dialogue act recognition & simulation.

Fig. 1. Bayesian network for predicting when the user speaks.

4.4. Experimental Results in Dialogue Act Recognition

Our dialogue act recognition results compared 4 different
recognisers with and without barge-in events: (a) Semi-
Random: a recogniser choosing a random dialogue act from
the Let’s Go N-best parsing hypotheses; (b) LetsGo: a recog-
niser choosing the most likely dialogue act from the Let’s
Go N-best parsing hypotheses; (c) Bayes Nets: a Bayesian
recogniser using Algorithm 1; and (d) Ceiling: a recogniser
choosing the correct dialogue act from the Let’s Go N-best
parsing hypotheses. The latter was used as a gold standard
from manual annotations, which reflects the proportion of
correct labels in the N-best parsing hypotheses. Figure 2
shows the dialogue act recognition results in this order, which
can be described as follows. First, we can observe that recog-
nition accuracy in dialogue turns without user barge-in events
consistently performs better than its counterpart with barge-
ins (significant at p<0.003)4. Second, it can be noted that
the Let’s Go baseline is substantially outperformed by the
Bayesian recogniser (also significant at p<0.004). This is

4Based on a 2-tailed Wilcoxon signed rank test.
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Fig. 2. Dialogue act recognition results with(out) barge-in.

partially due to the fact that the Let’s Go system always tries
to recognise a dialogue act even when there was only noise
in the environment, which causes the ASR to produce incor-
rect recognition hypotheses. Our Bayesian classifiers model
probability distributions over dialogue acts that are closer to a
human gold standard than several baselines. Third, we com-
pared the performance of Bayesian dialogue act recognition
of turns with barge-in based on partial and full context (see
Figure 3). Whilst partial context considers evidence until the
barge-in point, full context considers evidence based on all
system dialogue acts within a turn. This comparison revealed
that recognition using partial context improves its counterpart
with full context by 4.6% (significant at p<0.0024). This
suggests that the degradation in recognition of turns with
barge-in can be mitigated with incremental processing, i.e.
context from partial dialogue acts. These results are relevant
for spoken dialogue systems because they suggest how to
achieve more efficient interactions: in our data set the av-
erage duration of system turns with barge-in events is 8.6
seconds, and the average duration of system turns without
barge-in events is 10 seconds5, in favour of incremental pro-
cessing. This could potentially improve the user experience
by making spoken dialogue systems more accurate in the face
of user barge-ins, leading to more timely relevant responses.

4.5. Experimental Results in Dialogue Act Simulation

Our simulation results compared Let’s Go system-user dia-
logue act tuples (from correct labels) against simulated dia-
logues with and without barge-in events. The latter, a typical
type of simulations in the literature, represents our baseline.
We consider tuples of dialogue act type and attribute names
(but without attribute values to avoid the data sparsity prob-
lem). While tuples without barge-in considered evidence until

5Since our data only had durations per system turn rather than per partial
dialogue act, we estimated such durations using a linear regressor based on
TTS durations. Predictor variables for the linear regressor: numerical ID of
dialogue act type, number of slots, number of words, number of characters.
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Fig. 3. Bayesian dialogue act recognition with partial and
full context, based on turns with only barge-in. The bar with
partial context is the 7th bar in Figure 2 from left to right.

the very last system dialogue act in the turn, tuples with barge-
in considered evidence until a barge-in. The exact point of a
barge-in over a system dialogue act is not logged in the data.
Barge-ins (11.5% in our data) were extracted from the data
based on the overlap time between system and user turns. The
partial system dialogue act with the overlap is marked as the
point of barge-in. These results are shown in Table 4. It can be
noted that the simulated dialogues with barge-in events (com-
pared with real Let’s Go dialogues) obtain lower divergences
than its counterpart without barge-in events. This result sug-
gests that dialogue simulators should incorporate user barge-
ins based on partial system dialogue acts rather than complete
ones to achieve more realistic simulated interactions.

Classifier (simulator) Turns Divergence p-value

Bayesian Networks with barge-in 5.1731
<0.0074without barge-in 5.4123

Table 4. KL divergences (the smaller the better) between
dialogue turns with and without barge-in events.

5. CONCLUSION AND FUTURE WORK

We have presented an approach to incremental user dialogue
act recognition and simulation which treats both problems
as interleaved processes within the same probabilistic model.
Multiple classifiers are used to (a) predict dialogue acts from
dialogue history features, and (b) predict when the user should
speak after each partial system dialogue act. Applying our
approach to the Let’s Go data we found the following. First,
we found an improvement in classification accuracy (+5%) in
Bayesian dialogue act recognition involving barge-ins using
partial context compared to using full context. Second, dia-
logue simulation taking into account user barge-in events rep-
resent more realistic interactions than their counterpart with-
out barge-in events. This should be a feature of dialogue sim-
ulators used for training future dialogue systems.

Future work includes a comparison of our Bayesian clas-
sifiers with other statistical models and forms of training (for
example by using semi-supervised learning) [43], and investi-
gating the effects of barge-in on dialogue act recognisers and
simulators in different (multi-modal) domains [44, 45].
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[44] Heriberto Cuayáhuitl and Nina Dethlefs, “Optimizing situated dialogue manage-
ment in unknown environments,” in INTERSPEECH, 2011, pp. 1009–1012.
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