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Abstract— Humans communicate with each other using ab-
stract signs and symbols. While the cooperation between
humans and machines can be a powerful tool for solving
complex or difficult tasks, the communication must be at the
abstract enough level that is both natural to the humans and
understandable to the machines. QOur paper focuses on natural
language and in particular on sign language recognition. The
approach described here combines heuristics for segmentation
of the video stream by identifying the epenthesis with stacked
LSTMs for automatic classification of the derived segments.
This approach segments continuous stream of video data with
the accuracy of over 80% and reaches accuracies of over 95%
on segmented sign recognition. We compare results in terms
of the number of signs being recognised and the utility of
various features used for the recognition. We aim to integrate
the models into a single continuous sign language recognition
system and to learn policies for specific domains that would
map perception of a robot to its action. This will improve the
accuracy of understanding the common task within the shared
activity between a human and a machine. Such understanding,
in turn, will foster meaningful cooperation.

I. INTRODUCTION

Interacting with machines, users are required to use the
input devices, such as remote controls, keyboards, or touch
interfaces, provided with these machines. The input devices
usually eliminate the uncertainty of the user input to show
that the machine functions properly and reliably. While
the provided input devices are reasonable communication
mediums, they are neither intuitive nor natural for a human
user, which leads to either an overhead of learning how to use
the given input devices or even inability to use a machine,
perhaps due to a disability. Such limited communication
hinders opportunities for effective collaboration between
humans and machines.

To eliminate this limiting factor, the machines should
understand interaction that is natural to the user. This natural
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interaction could be achieved using natural language or
gesturing, while the natural language, in turn, could be
either spoken languages or sign languages [1]. We focus
on the recognition of sign languages from video in this
paper.  Whilst much research has been done on the par-
tially analogous problem of continuous speech recognition,
few researchers have investigated sign language recognition.
There is a general misconception that sign languages are
simply gestures with simple rules, in fact this is not the
case. A single sign, corresponding to a word or concept,
is multimodal from the perspective of the producer and can
have many variations within a single language. Compounding
the problem is the fluid nature of signing where signs
are interleaved with transitional motions called epenthesis,
which themselves are easily confusable with signs. This is
combined with synchronous facial recognition making the
feature space very large and the problem complex.

In Section [II} this paper identifies relevant research for the
segmented, continuous, and vocabulary-based sign language
recognition and divides the overall problem into three high-
level sub-problems, listing the methods that are used by other
authors to tackle these sub-problems. Section [l1I] describes
the dataset that has been used for this paper and presents
the methodology in terms of a process pipeline. Sections
and |V| present results after experimenting with every com-
ponent of the pipeline individually. Section |VI| discusses the
results and their meaning in the context of the continuous
sign language recognition. Finally, Section [VII| concludes the
paper and outlines the future development of this work that
aims to tackle the uncertainty in recognition for continuous
signing.

II. RELATED WORK

Much previous work has focused on the recognition of
signs in terms of isolated, segmented video snippets with a
clear start and end time [2], [3], [4]. Alternatively, continuous
sign language recognition focuses on the stream of signs
in a sentence with the task to process a signed sentence
and produce aligned glosses, which is the written form of
a signed sentence in words [5], [1].

The final approach is analogous to keyword spotting in au-
tomatic speech recognition, where a finite list of signs is spot-
ted in the video [1], [6]. This is the middle ground between
the isolated sign and continuous sign language recognition
and the approach that we adopt here. Our approach breaks
down into 3 sub-problems, which will be discussed here in
terms of previous work: 1) feature extraction; 2) detection of
the movement epenthesis as a means of segmentation; and
3) classification of segmented signs.



Firstly, local feature extraction methods from noisy in-

put data have recently become more precise [7], [8], [9],
although, some challenges, such as tackling occlusions, still
persist. The majority of the sign languages consist of manual
(hands, fingers, posture) and non-manual features (facial ex-
pressions), which makes them multimodal from the signer’s
perspective. The features are used in parallel and tend to
complement each other. Specific features, in some cases, may
not be required in order to interpret the sign [5]. The common
local features used for sign language recognition are body
posture (shoulders, neck, waist), hands (elbows, wrists, and
phalanges), and facial features (mouth and eyes).
Once the features are chosen, they should be tracked through-
out the frames to get all the information that forms a sign
[10]. In [11], the author questions whether all parts of
the signing features are equally important during signing
and how much movement and configuration variations are
allowed for the sign to be recognised. In fact, [12] have
shown that the index finger is the salient finger during signing
and determines the speed and amplitude of signing with other
fingers following the motion of the index finger. This theory
is supported by [13], who shows that physiologically this
should be the case that not all fingers are dominant during
signing, which makes it applicable to any sign language. In
the work described here, we will examine the utility of a
number of different feature sets.

Secondly, regarding segmentation by means of motion
epenthesis modelling, this is directed towards explicit detec-
tion of the motion between the intended signs during signing.
The detection of the motion epenthesis can be achieved
with dynamic programming [6], which is advantageous,
because it does not require training as with machine learning
approaches [1].

Thirdly, isolated signs have been previously modelled
to incorporate both spatial and temporal information, such
as sequential pattern mining that fuses multimodal signals
[14]. The same paper uses regression, SVM and LSTM for
comparisons and concludes that the models that incorporate
spatial and temporal features are superior. More recent work
on networks allow the network to be trained on videos of
different lengths [15], which is useful because the same
signs may be of different lengths due to signing speed. Most
promising results are achieved with deep learning techniques,
such as CNN with temporal convolution and pooling for
spatio-temporal representations or RNN with long short-term
memory (LSTM) to learn the mapping of feature sequences
to sequences of glosses [16].

Our approach requires a large amount of quality data. In
recent years, the situation regarding sign language data has
improved with more readily available larger datasets that are
realistic rather than simulated, and involve more complex
interactions for specific tasks, such as explaining directions
or story retelling [17], [18], [19].

III. METHODOLOGY

Figure |1| shows the processing pipeline for the continuous
sign language recognition with the raw video data input
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Fig. 1: Data processing pipeline for the continuous sign

language recognition

and the recognised individual signs as output. Further, the
dataset used for the training and testing of the system will be
introduced. Finally, the parts of the pipeline will be discussed
in detail.

A. Dataset

Due to the annotation quality, a portion of the NGT[]
corpus has been used for this project. The corpus contains
approximately 100 participants telling stories, or having
discussions with other Dutch sign language users.

We have chosen a part of the corpus where participants
retell the Canary Row cartoon of Tweety & Sylvester by the
Warner Brothers Pictures. Details about the recording setup
for the corpus can be found in [17].

TABLE I: Chosen classes for training (glosses translated
from Dutch with Google Translate)

Classes Glosses Maleum
signers/class
ape, building, electricity, handwriting,
0-10 . 7
look, poet, rain, run, shake, tram
ball, binoculars, bird, birdcage,
10-20 - 4
inside, not, ready, rope, same, search
20-30 and, apartment, cllmb, o 6
corner, how, hurry, line, old, pipe, thinking
30-40 window, clothes, box, suitcase, 4
contact, aunt, draw, music, funny, tighten

Table [l lists the glosses that the models were trained on.
The choice of the glosses was guided by the amount of the
available instances of that particular class. The more example
videos of the sign there were present in the dataset, the more
likely the sign had been chosen for the training.

The mean length of a sign is 6.75 frames where one frame
length is approximately 40 milliseconds. The average amount
of examples per sign is approximately 11 videos and was
unfortunately not enough to train our models. Therefore,
for every selected class, additional data was generated using
extracted features from the original data. For every video
example of the real data, 200 more examples were synthe-
sised by adding perturbation along both x and y axes to the
extracted features from the original examples. For the first
100 synthesised examples, the same perturbation has been
added to every extracted feature, while for the second 100
synthesised examples, different perturbations were added to
every extracted features along the x and y axes. This was
done to synthesise examples of a sign, where, for example,
the hand is moved further from the body or the face of the
signer than in the original example.

I'Sign Language of the Netherlands - NGT (Nederlandse Gebarentaal), is
the language of the deaf community in the Netherlands



B. Feature Extraction

Used features resemble the features provided by the
commercial sensors, such as Microsoft Kinect. Instead of
using an additional high-cost sensor such as Kinect, a
standard camera is used and features are extracted with
the help of the deep learning techniques, provided by the
openpose libraryﬂ [7], (8], [9].

Fig. 2: NGT dataset feature extraction example with open-
pose. The lines are drawn between identified body features,
such as shoulder, neck, phalanges, etc.

Figure 2] shows an arbitrary frame from the NGT corpus
after the openpose feature extraction algorithm is applied.
The algorithm provides information about the body pose,
hands, and facial features. The limitation of the openpose
algorithm is that it does not recover the features when
occlusions are present, which is very common during
signing as the hands occlude each other and the face.

C. Segmentation

Fig. 3: Example of hand trajectory during signing that is
used to decide whether the motion is epenthesis or a part
of a sign. T1-T5 correspond to centroids of hand contour,
acquired during feature extraction; H1 and H2 are height
and width of the minimum bounding box for the T1-T5

The main assumption for the segmentation is that the
hands move slower during the signing than during the motion
epenthesis. Motion epentheses are identified by looking at the
distance travelled by each hand an interval. In this particular
experiment, 5 frames are chosen for this interval for detection
of the motion epenthesis as was reported in [20]. Using
the extracted features from the hands, as can be seen in

Zhttps://github.com/CMU-Perceptual-Computing-Lab/openpose/

Figure 2] the centroids of all the hand points are calculated
and accumulated for the period of 5 frames (T1-TS5 on
Figure [3). Later, the minimum bounding box is calculated
for the hand trajectory over 5 frames (black rectangle on
the figure). At the end, the longest side of the minimum
bounding box (either H1 or H2 from the figure) is taken to
decide whether the segment is motion epenthesis or a part of
the sign. Both H1 and H2 are considered, because the hand
may travel in any direction during signing. Using similar
techniques as in [20], the segment is labelled as epenthesis
if the longest side of the minimum bounding box is between
18 and 60 pixels.

D. Classification

input: number_of features, max_length |
output: sequence of vectors of dimension 32

| LSTM I

input: sequence of vectors of dimension 32 |
output: sequence of vectors of dimension 32 |

| LSTM I

| input: sequence of vecotrs of dimension 32 |

| LSTM I

output: vecior of dimension 32 |
| input: vector of dimension 32 |

Dense -
| output: number_of_signs |

Fig. 4: Model architecture for the TensorFlow library, con-
sisting of stacked LSTM layers and one Dense layer that
outputs the sign class. Inputs and outputs specify the type of
inputs and outputs for a particular layer of the network.

With the video segmented, isolated sign language recog-
nition is done by training deep learning models using Ten-
sorFlowE| and openpose libraries. The architecture, shown in
Figure [} is composed of three stacked LSTM layers with
the first two layers producing a sequence of vectors with
32 dimensions and the last LSTM layer producing a single
vector, composed of 32 dimensions. At the output of the
network, the dense layer outputs the likelihood of every sign.
The first layer accepts a sequence of inputs (chunks) of length
equals to the number of extracted features per one frame. The
maximum number of chunks is set to be the longest sequence
of frames for a sign and all other sequences are padded at
the end with zeros. The network is trained offline with the
objective function set to categorical cross entropy and the
optimizer set to resilient backpropagation with the adaptive
learning rate, which is a good choice for the recurrent neural
networks.

Extracted features, such as posture, finger, and facial in-
formation are combined together by stacking feature vectors
together for the isolated video of a single sign.

The dataset is split into training, validation, and testing
sets. The training data consists of 80% of the overall dataset,
validation and testing sets consists of 10% of the overall
dataset each. All the dataset is shuffled before performing
the split into training, validation, and testing sets. This means

3https://www.tensorflow.org/
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that the method is not signer independent as the testing set
is likely to contain some variation of the same signer from
the training set. The future experiments will test the signer
independent condition for a more robust solution.

IV. RESULTS: SEGMENTATION ACCURACY

One continuous single-signer video has been used for
testing the accuracy of the segmentation. The ground truth
was annotated by considering the time between every gloss
in the annotation file to be the epenthesis motion, with 206
motion epenthesis occurrences annotated.

The epenthesis detection returns start and end times of
the epenthesis interval. To calculate the accuracy in terms of
F-measure, the returned epenthesis interval is compared to
the ground truth, extracted from the annotated video. As a
result, the algorithm identified 201 True Positives 7'P that
lied within the ground truth (Predicted € GT). Some of
the identified intervals are repeated, due to the fact that both
hands are tracked and analysed for the epenthesis identifica-
tion. The algorithm identified 39 False Positives F'P that did
not match epintheses in the ground truth (Predicted & GT).
All the intervals that were not included in the predicted T'P
are assumed to be True Negatives TN (Predicted € ~GT).
The algorithm identified 210 T'N intervals. The intervals
that were considered and were not in the ground truth were
assumed to be False Negatives F'N (Predicted & —GT).
The algorithm identified 46 F'N intervals.

F — measure =
(2 * Preciston * Recall)/(Precision + Recall) = 0.825, where
Precision =TP/(TP + FP) = 0.837

Recall = TP/(TP + FN) = 0.813

and

V. RESULTS:CLASSIFICATION

Figure [6] shows the training progress of the model, trained
for classifying 10-40 classes of individual signs from the
NGT corpus. The figures suggest that the training can
produce effective model for the recognition of the signs.
However, the training is not stable, the accuracy fluctuates
between the epochs and occasionally drops down to the
random choice accuracy level. When the model is trained
with facial features, the performance degrades, because the
input feature vector is increased in size, which makes it
more difficult for the model to generalise. When the number
of features is reduced from full facial to reduced facial
information, the accuracy increases, but does not surpass the
accuracy of the model without the facial features. Generally,
the more classes the model is trained to distinguish, the more
challenging the recognition task.

Table [lI| shows the accuracies, achieved on the testing data
for models, trained for 100 epochs on different amount of
classes. It is worth noting that not the best, but the last trained
model has been used on the training data.

The table shows that the best accuracy is achieved with the
lowest number of classes and that the accuracy degrades with
addition of more extracted features. This result could arise
due to the amount of features used for the recognition, some

of which could be perceived only as noise during the training
and the recognition, as they do not convey any meaning for
the chosen signs.
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Fig. 6: Individual sign language classification model training
for 10, 20, 30, and 40 classes. The graphs in the right column
correspond to the training accuracy and the graphs in the
left column correspond to the validation accuracy. X-axes
correspond to the number of epochs the model was trained
on, while the Y-axes correspond to the accuracy of the model
on the validation set.

VI. DISCUSSION
Segmentation accuracy indicates that the approach that

uses heuristics to detect epenthesis can achieve sufficient
results. Varying parameters of the segmentation may yield



TABLE II: Testing accuracies

Without face With face With face
information reduced features | full features
10 classes 0.999 0.992 0.955
20 classes 0.972 0.951 0.344
30 classes 0.983 0.207 0.625
40 classes 0.807 0.572 0.378

different results by manipulating the threshold of the HI1
and/or H2 and simultaneously changing the number of
frames for which H1 and H2 are computed. By allowing
more frames, it would be more likely for the H1 or H2 to
increase, because the epenthesis will become a part of the
segment. Therefore, it is important to use the information
about the average sign length and choose the number of
frames to be fewer than the average number of frames per
sign.

The classification results suggest that for the selected
signs, listed in Section the inclusion of the facial
features degrades the classification accuracy, whether all the
features are chosen or the reduced amount. More experi-
ments will be required to identify whether these results are
consistent for the different signs, even those that are heavily
dependent on the facial features. Additional consultation
with a linguist will be needed to identify which signs are
heavily dependent on the facial features and which are not
in the NGT dataset. Obtained results support the claim that
not all extracted features are necessary for the successful
classification of signs.

VII. CONCLUSION AND FUTURE WORK

The paper presented the continuous sign language recog-
nition pipeline that uses heuristic approach for epenthesis
detection and deep learning for isolated signs recognition in a
continuous stream of video data. The methods show adequate
results when tested individually, while more resources need
to be invested for an integrated continuous sign language
recognition system. The paper investigated the utility of the
extracted features for the sign language recognition model.
The results suggest that, for the selected signs from the NGT
dataset and the chosen stacked LSTM model, not all the
features are necessary to perform relatively accurate sign
language recognition. Our primary goal is to support contin-
uous natural interaction between the user and the machine
as we focus on sign languages as means for communication.
Sole segmentation and recognition of the perceived signs is
not enough to achieve the understanding of sign language
between the human and the machine in terms of dialogue.
To cope with the occasional misclassifications, we propose
to learn policies for the specific domains (i.e. navigation
domain) that map perception to action and reduce the classi-
fication confusion, as the choices of actions available to the
machine will be restricted by the current state.
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