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Abstract. Recent work on incremental processing in interactive
systems has demonstrated that incremental systems can gain higher
responsiveness and naturalness than their non-incremental counter-
parts and are better perceived by human users. This paper presents a
first investigation, based on a proof-of-concept study, into how multi-
modal information presentation in incremental dialogue systems can
contribute towards more efficient and smooth interactions. In partic-
ular, we focus on how a combination of verbal and non-verbal output
generation can help to reduce the need for self-corrections in a sys-
tem that has to deal with continuous updates of input hypotheses. We
suggest to use Reinforcement Learning to optimise the multimodal
output allocation of a system, i.e. the idea that for every context,
there is a combination of modalities which adequately communicates
the communicative goal.

1 Introduction
Traditionally, the smallest unit of processing in interactive systems
that triggers a processing module into action has been a complete
user utterance. While this facilitates processing and system design, it
can lead to inflexible turn-taking and stilted interactions. In contrast,
interactive systems with incremental processing align with human-
like turn-taking behaviour by defining the micro-turn as the smallest
unit of processing, which can be seen as the smallest part of an ut-
terance that can be mapped to a dialogue act. This allows them to
process input and plan output in parallel and to explore a range of
discourse phenomena that occur naturally in human discourse, but
that have so far been absent from interactive systems. Among these
are backchannel generation, handling of user and system barge-ins,
as well as corrections of generated output based on changed user or
system knowledge. Several studies have shown that such phenomena
can improve the user experience with an interactive system; see e.g.
[22, 4] for incremental dialogue management, [18, 8] for turn-taking,
[2, 23] for incremental automatic speech recognition, [12, 17, 24, 3]
for incremental NLG, and [28] for a study on the impact of real-time
feedback on user behaviour. Very recently, incremental processing
has also been applied to the information presentation (IP) phase of
interactive systems, where it has been combined with machine learn-
ing techniques to optimise the timing and order of IP [7] and the
timing and occurrence of barge-ins and backchannels [6].
An important advantage resulting from the use of incremental pro-

cessing is the increased awareness that NLG modules gain of their
own generation process: they are able to monitor their own output
and, if necessary, e.g. due to updated information coming in from
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the dialogue manager, modify or self-correct it. Such updates may be
necessary in cases where user input hypotheses change during gen-
eration (or dialogue processing). As such, incremental NLG has to
solve a trade-off between higher system reactiveness versus poten-
tially disturbing self-corrections.
This paper argues that a possible remedy to this problem lies in

the combination of different modalities, for example, speech and vi-
sual displays on a mobile device. Such multimodality may present
a subtle way of communicating the system’s current best input hy-
pothesis to the user (and thereby give them a chance to correct it)
without mistakenly acting upon it and causing a disruption or delay
to the interaction. This hypothesis is based on previous work which
has shown that multimodal output generation can increase system
robustness to speech recognition errors [10] and decrease user cog-
nitive load [15]. Previous work by [16] has also shown that allowing
users to modify their search queries by combing speech and text in-
put can significantly facilitate mobile search in noisy environments.
In this paper, we investigate a model of automatic output gener-

ation optimisation that uses Reinforcement Learning (RL) to max-
imise the expected return for the problem of multimodal allocation
[1], i.e. how to combine output modalities so that they adequately
convey a communicative goal in a given context. We present prelim-
inary results from a proof-of-concept study in the domain of restau-
rant recommendations that compare the task ease achieved by our
system and a number of hand-crafted baselines in simulated interac-
tions. We discuss the possible advantages and disadvantages of our
proposed method with respect to incremental interactive systems in
hands-free, eyes-free mobile applications.

2 Multimodal Information Presentation

Previous work on multimodal information presentation has inves-
tigated rule-based user-tailored content selection [27] and super-
vised re-ranking techniques [11] for multimodal generation, as well
as hierarchical Reinforcement Learning techniques for multimodal
dialogue management [20, 5]. However, none of these earlier ap-
proaches has considered how multimodal information presentation
can be integrated into an incremental model of dialogue processing.
In the following, we extend an earlier model for multimodal IP

presented by [19] to incremental multimodal output allocation and
show how it can help to avoid frequent self-corrections or output
modifications from the system that are the result of dynamically
changing input hypotheses. While the benefit of generating fewer
self-corrections is not specific to incremental systems, but can be
generalised to all interactive systems, we assume here that incremen-
tal systems face a particular danger of self-correcting too often due
to their increased number of hypothesis updates.
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As a domain of application, we address the information presenta-
tion phase in an interactive system for restaurant recommendations,
extending previous work by [7], who present an incremental version
of the work by [21]. While this previous work has focused on choos-
ing a suitable presentation strategy for verbal presentation, here we
focus on choosing the best modality accompanying a list of database
hits. We assume that the choice of attributes (i.e. attributes that the
user wishes the search to focus on) is determined by matching the
types specified in the user input. Attributes include the cuisine, food
quality, location, price range and service quality of a restaurant.
The system then performs a database lookup and chooses a multi-
modal presentation strategy among verbalOnly and combinedModal-
ities, i.e. visual and verbal output together. Visual output in this con-
text refers to displays, on a screen or mobile device, that inform the
user of the system’s current best input hypotheses. Figure 1 shows
examples of the main types of multimodal presentation strategies.
The system does not have the option to present only visual informa-
tion, since a Wizard-of-Oz study by [19] showed that human wizards
never chose this strategy.

3 Optimising Multimodal Output Generation in
Incremental Dialogue

3.1 Reinforcement Learning
To optimise the multimodal output generation process within an in-
cremental model of dialogue processing, we define an RL agent as a
Markov Decision Process, or MDP, which is characterised as a four-
tuple < S,A, T,R >, where S is a set of states representing the
status of the output generator and all information available to it; A
is a set of output generation actions that combine strategies for mul-
timodal IP with handling incremental updates in the system; T is a
probabilistic transition function that determines the next state s� from
the current state s and the action a according to a conditional prob-
ability distribution P (s�|s, a); and R is a reward function that spec-
ifies the reward (a numeric value) that an agent receives for taking
action a in state s.
Using such an MDP, the output generation process can

be seen as a finite sequence of states, actions and rewards
{s0, a0, r1, s1, a1, ..., rt−1, st}, where t is the time step. Every
learning episode falls naturally into a number of time steps at each
of which the agent observes the current state of the environment st,
takes an action at and makes a transition to state st+1. This mech-
anism also defines the principle for the agent’s micro-turn taking
behaviour: it checks at each time step whether the state of the en-
vironment has changed so that an output action is required, e.g. if
new input has come in or old input has been revised. If no partic-
ular action is required, e.g. because the user is still speaking, the
agent may also decide to do nothing for the moment. Once infor-
mation has been presented to the user, it is committed or realised.
Here is where the difference between modalities may become most
obvious to the user. While verbal output, once communicated to the
user, cannot be changed without an explicit self-correction that marks
the changed hypothesis, visual output can be changed more straight-
forwardly through an updated visual display, which may cause less
disruption to an interaction.
The ultimate goal of an MDP is to find an optimal policy π∗ ac-

cording to which the agent receives the maximal possible reward for
each visited state. We use the Q-Learning algorithm [29] to learn an
optimal policy according to

π
∗(s) = argmax

a∈A
Q

∗(s, a), (1)

States
dataBaseHits {0=none,1=few,2=medium,3=many}
incrementalStatus {0=none,1=holdFloor,2=correct,3=selfCorrect}
modalityStatus {0=none,1=verbalOnly,2=combined}
statusCuisine {0=unfilled,1=low,2=medium,3=high,4=realised}
statusFood {0=unfilled,1=low,2=medium,3=high,4=realised}
statusLocation {0=unfilled,1=low,2=medium,3=high,4=realised}
statusPrice {0=unfilled,1=low,2=medium,3=high,4=realised}
statusService {0=unfilled,1=low,2=medium,3=high,4=realised}
userReaction {0=none,1=select,2=askMore,3=other}
userSilence={0=false,1=true}

Actions

Slot-ordering: presentCuisine, presentFood, presentLocation, presentPrice,
presentService,

Incremental: backchannel, correct, selfCorrect, holdFloor, waitMore

Modality: verbalOnly, combinedModalities

Goal State ?, 0,≥ 1, 0 ∨ 4, 0 ∨ 4, 0 ∨ 4, 0 ∨ 4, 0 ∨ 4, 1, 0 ∨ 1

Figure 2. The state and action space of the learning agent. The goal state is
reached when all items (that the user may be interested in) have been

presented and the most suitable output modality has been chosen. The goal
state is defined with respect to the state variables above, where question
marks indicate that the variable’s value is irrelevant for reaching the goal

state.

where Q
∗ specifies the expected reward for executing action a in

state s and then following policy π∗.

3.2 The State and Action Space
The agent’s state space needs to contain all information relevant for
choosing an optimal strategy for multimodal output generation and
an optimal sequence of incremental actions. Figure 2 shows the state
and action space of our learning agent. The states contain information
on the incremental, multimodal and attribute presentation status of
the system.
The variable ‘incrementalStatus’ characterises situations in which

a particular (incremental) action is triggered. For example, a
holdFloor is generated when the user has finished speaking, but
the system has not yet finished its database lookup. A correction
is needed when the system has to modify already presented in-
formation (because the user changed their preferences) and a
selfCorrection is needed when previously presented informa-
tion is modified because the system made a mistake (in recognition
or interpretation).
The variables representing the status of the cuisine, food, location,

price and service indicate whether the slot is of interest to the user
(0 means that the user does not care about it), and what input con-
fidence score is currently associated with its value. Once slots have
been presented, they are realised and can only be changed through a
correction or self-correction.
The variable ‘userReaction’ shows the user’s reaction to an IP

episode. The user can select a restaurant, provide more information to
further constrain the search or do something else. The ‘userSilence’
variable indicates whether the user is speaking or not. This can be
relevant for holding the floor or generating backchannels.
The focus of this paper lies in the optimisation of multimodal

output generation for incremental IP settings and is represented by
the ‘modalityStatus’ variable and its accompanying action set of ver-
balOnly and combinedModalities (shown in bold-face fonts in Figure
2). The agent will learn to choose the best multimodal output genera-
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
















Figure 1. Examples of the different modalities we are considering for information presentation. The system can choose an exclusively verbal presentation,
and verbalise all restaurant options it retrieved (left-hand side). Alternatively, the system can choose to combine verbal and visual output and present a map of

the area along with a list of possible options and a verbalisation of those options that best match the user’s query (right-hand side).

tion strategy based on the other available variables, in particular with
respect to the (discretised) number of retrieved database hits and the
agent’s user input confidence scores. We do not consider a visualOnly
presentation strategy in this paper, since this action was never chosen
by human users in the Wizard-of-Oz data that underlies our training
environment [20]. In future work, we aim to include such a presenta-
tion strategy and investigate its impact within our framework.
The complete state-action space size of this agent is roughly 10

million. The agent reaches its goal state (defined w.r.t. the state vari-
ables in Figure 2) when a multimodal output IP strategy has been
chosen and all relevant attributes have been presented.

3.3 The Simulated Environment

We train our learning agent in a simulated environment with two
components, one for estimating user reactions to multimodal IP
strategies and one for simulating dynamically updated input hypothe-
ses within the incremental dialogue setting.
The first component deals with estimating user reactions to a mul-

timodal information presentation strategy which contains the op-
tions verbalOnly and combinedModalities. This simulation compo-
nent was trained from data (using the simulation described in [20] )
and represents user reactions as bi-grams of the form P (au,t|IPs,t),
where au,t is the predicted user reaction at time t to the system’s IP
strategy IPs,t in state s at time t. We distinguish the user reactions
of select a restaurant, addMoreInfo to the current query to constrain
the search and other.
While the multimodal IP strategies can be used for incremental

and non-incremental output generation, the second part of the simu-
lation deals explicitly with the dynamic environment updates during
an interaction. We assume that for each restaurant recommendation,
the user has the option of filling any or all of the attributes cuisine,
food quality, location, price range and service quality. The possible
values of each attribute and possible confidence scores are shown in
Table 1 and denote the same as described in Section 3.2.

At the beginning of a learning episode, we assign each attribute a
possible value and confidence score with equal probability. For food
and service quality, we assume that the user is never interested in
bad food or service. Subsequently, confidence scores can change at
each time step. (In future work these transition probabilities will be
estimated from a data collection, though the following assumptions
are realistic, based on our experience.) We assume that a confidence
score of 0 changes to any other value with a likelihood of 0.05. A
confidence score of 1 changes with a probability of 0.3, a confidence
score of 2 with a probability of 0.1 and a confidence score of 3 with
a probability of 0.03. The new states that the agent makes a tran-
sition into are uniformly distributed. Once slots have been realised,
their value is set to 4. Verbally presented slots cannot be changed
then without an explicitly verbalised self-correction. We assume that
realised slots change with a probability of 0.1. If they change, we
assume that half of the time, the user is the origin of the change (be-
cause they changed their mind) and half of the time the system is
the origin of the change (because of an ASR or interpretation error).
Each time a confidence score is changed, it has a probability of 0.5 to
also change its value. The resulting input to the NLG component are
data structures of the form present(cuisine=Indian), confidence=low.

Attribute Values Confidence
Cuisine Chinese, French, German, In-, 0, 1, 2, 3, 4

dian, Italian, Japanese, Mexi-
can, Scottish, Spanish, Thai

Food bad, adequate, good, very good 0, 1, 2, 3, 4
Location 7 distinct areas of the city 0, 1, 2, 3, 4
Price cheap, expensive, good-price-

for-value, very expensive 0, 1, 2, 3, 4
Service bad, adequate, good, very good 0, 1, 2, 3, 4

Table 1. User goal slots for restaurant queries with possible values and
confidence scores.
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3.4 The Reward Function
The main trade-off that the learning agent needs to optimise is to find
the best multimodal information presentation strategy given the num-
ber of database hits for the user’s query and the confidence scores
held for attributes that represent the user’s preferences. To learn an
action policy for this problem, we use the reward function suggested
by [20], which was induced from human data using a multiple linear
regression analysis. It aims to optimise task ease, which is a com-
bined value of the metrics The task was easy to solve and I had no
problems finding the information I wanted. Human users had origi-
nally assigned scores to these metrics in a Wizard-of-Oz study. 2 The
reward function is defined as follows.

R =






−20.2 × dialogueLength +
11.8 × taskCompletion +
8.7 × multimodalScore .

(2)

The value for dialogueLength here corresponds to the number of
dialogue turns until the user has selected a restaurant. The value for
taskCompletion is a discretised score indicating whether the system
has been able to successfully make a restaurant recommendation. It
is +10 if the user selects a restaurant and −10 otherwise. The value
multimodalScore, finally, indicates the appropriateness of the chosen
presentation strategy estimated from human behaviour in a Wizard-
of-Oz study, please see [20] for details. The score is related to the
number of database hits presented using each modality through curve
fitting. This technique selects the most likely model for the data based
on function interpolation. In terms of rewards for a multimodal (or
combined) output, it yields a quadratic function that assigns a max-
imal score to a strategy displaying 14.8 items. This number corre-
sponds to the curve inflection point. For an exclusively verbal pre-
sentation, the reward is computed based on a linear function which
assigns negative scores to all presented items ≥ 4.
Rewards according to Equation 2 are assigned at the end of an

episode, which stretches from the moment that a user specified their
initial restaurant preferences to the moment in which they choose a
restaurant (or reject all presented choices). In addition, we assign a
number of rewards during the course of an episode that are directed
at the incremental dialogue setting. The agent receives a reward of
0 whenever the user adds more information to the query, a reward
of −10 for generating a (verbal or partially verbal) self-correction,
−0.5 for holding the floor and an increasing negative reward for wait-
ing waiting time

2 (to the power of two), in terms of the number of
time steps passed since the last item was presented. This reward is
theoretically −∞ so that the agent is penalised stronger the longer it
delays to begin the information presentation phase. Using this reward
function, the agent was trained for 10 thousand learning episodes.

4 Experimental Results
After training, the agent has learnt the following strategy for multi-
modal output generation in an incremental dialogue setting. It will
choose an exclusively verbal presentation strategy whenever the
search has returned few items (up to four) and the confidence in their
values is relatively high (or at least medium). For a medium number
of items to present (i.e. more than four but less than 30), the agent

2 Note that even though our setting is not identical to the one used by [20],
we assume that the reward function is to an extent transferable to our do-
main, which is also a slot-filling application with relatively short episodes.
In the future, we aim to learn a separate reward function that is specifically
tailored towards our incremental setting.

will choose a combined strategy of verbal and visual output if its con-
fidence in the requested attributes is relatively high. If its confidence
is low, it will first only display visual information and delay the ver-
bal presentation as long as possible, waiting for confidence scores to
stabilise. The same is true for a large number of items to present. In
other words, the agent learns to prefer to include visual information
whenever it is not confident (enough) of its current user input hy-
potheses. In this way, it is able to increase its dialogue efficiency be-
cause users are given a chance to restate their preferences when they
realise (through a visual display of the system’s input hypotheses)
that the system is currently working with a wrong input hypothesis.
The agent is also able to reduce the number of its own verbal self-
corrections (because visual displays can be updated without the need
for an explicit correction). Note that due to our incremental setting,
the multimodal presentation will typically precede the verbal presen-
tation in order not to interrupt the user while they are still speaking.
The system will thus present visual displays representing its current
best hypothesis of the user’s input and then, once the user has fin-
ished speaking, present the retrieved restaurant items verbally.
We designed three baselines to compare our approach with. The

first baseline chooses among output modalities randomly, we call this
baseline RandomBase. This baseline was designed to test whether
modality allocation has an impact on task ease, at all. The second
baseline was designed to compare our multimodal approach with
a system that presents information only verbally. This baseline was
used to test whether the visual information that is displayed during
processing to inform the user about the system’s current hypothe-
ses was indeed helpful to increase task ease and reduce the num-
ber of dialogue turns and system self-corrections. We call this base-
line VerbalBase. Finally, we designed a third baseline which always
presents information combing verbal and visual information. We call
this baseline combinedBase. This baseline tests the added value of
incremental modality allocation. Note that all systems, including the
baselines, learn to optimise the order of information presentation (as
described in [7]) and therefore have a learning curve.
Figure 3 shows the learning curves for the learnt policy and the

baselines and compares them according to their average reward (av-
eraged over ten sample runs). The average reward attained by each
policy defines their degree of task ease as specified in the reward
function. As expected, RandomBase performs worst and is outper-
formed by the learnt policy by 44.8% (p < 0.0001, according to
a t-test). The low performance of this baseline is likely due to its
multimodal allocation actions not being sensitive to the number of
retrieved database hits nor to the agent’s current confidence scores of
incoming user input. While the other two baselines also show non-
optimal behaviour, their action policies are at least consistent, which
in the long run gives them a higher chance of choosing an appropriate
modality ‘by chance’.
VerbalBase, which presents all information verbally, performs

15.2% worse than the learnt policy (p < 0.0001). Again, this base-
line fails to take the number of retrieved database hits into account.
What is worse, though, is that the policy at times starts presenting
results when it is still not confident enough in the user’s preferred
values. It may thus start to present wrong information to the user
and eventually be forced to self-correct, which incurs a high nega-
tive reward. While the system has the option to delay the information
presentation phase as much as possible by choosing to waitMore, the
waiting action also incurs an increasing negative reward which even-
tually forces the agent to start its verbal presentation.
CombinedBase, which always combines multimodal and verbal

output, finally performs only 9.9% worse than the learnt policy
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(p < 0.0001) and is therefore the best performing baseline. The rea-
son is that this baseline is only affected by a non-optimal multimodal
allocation, but significantly less by the problem of low confidence in
user input hypotheses. The combined modality policy has the option
of holding back the verbal presentation until it is confident in its in-
put hypotheses, and is free to modify its visual presentation as much
as possible, since a visual display does not need to be self-corrected
verbally (and thus does not incur the negative reward associated with
a verbal self-correction). 3 The primary source of negative rewards
in this setting is therefore the suboptimal multimodal strategy cho-
sen when compared to the human strategies preferred in the Wizard-
of-Oz study, based on which we trained our simulation and reward
function.
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Figure 3. Learning curves indicating the average rewards, i.e. the average
degree of task ease, attained by each policy.

5 Discussion
This paper has presented a preliminary investigation into how multi-
modal output generation can be integrated into incremental dialogue
systems that process user input and plan system output in a parallel
fashion. Our considerations here have been guided by how the task
ease of a possible restaurant recommendation application for mo-
bile devices can be optimised, in particular by increasing dialogue
efficiency by multimodal display and reducing the number of verbal
self-corrections that are caused by dynamically changing user input
hypotheses. As is the nature of a proof-of-concept study, results are
preliminary and so far based on simulation only. A variety of exten-
sions of this work are possible. Importantly, we have not considered
the restrictions that properties of the physical situation, the user or
the particular application may pose on the choice of output modality,
In in-car applications, for example, if we have indication of a high
cognitive load or stress level (e.g. the eyes are fixed on the street)
as in [9], the system could delay the presentation until a more suit-
able situation arrives and, simultaneously, mark the delay by a hesita-
tion signal such as a turn holder. Similarly, we have left the question
of user input modalities unaddressed and assumed that users always
provide speech input.
The physical location of the user can have an impact on the pre-

ferred output modality in several ways. In crowded places, for in-
stance, the system (and the user) may prefer a multimodal display
due to the noise conditions that are likely to affect ASR results. Sim-
ilarly, the system may take the user’s current GPS position into ac-
3 While we did not restrict the number of visual updates in this setting, in
practice, such a restriction may be necessary in order not to confuse users.

count for its database lookup and prefer restaurants that are located
close to the user’s current location.
In terms of restrictions posed by the user, it is well known that

individual users differ with respect to their specific preferences with
regard to semantic [25] and lexical-syntactic [26] choices in language
production. There is thus reason to expect that individual users will
also have preferences for certain output modalities, some preferring
verbal presentations, some visual output and combinations of differ-
ent sorts. As a system ‘gets to know’ its user better, it may there-
fore want to increasingly take its particular user’s preferences into
account when choosing an output modality.
In addition, certain applications may themselves restrict the pos-

sible input and output modalities that a system can rely on. Many
hands-free and eyes-free scenarios, such as an in-car mobile device,
require the user to use speech only, or buttons that are manufactured
into the steering wheel, to specify their search queries, and at the
same time, should not be followed by multimodal output of the sys-
tem that may require the driver to take their eyes off the traffic. On
the other hand, previous work has shown that noisy ASR can distract
drivers just as much [14], so that finding an appropriate multimodal
output combination could amount to a challenging task.
There is also no obvious reason to restrict the user’s input modal-

ities to speech only. Instead, previous work has shown that a com-
bination of speech and text input can lead to more efficient interac-
tions when users are allowed to (incrementally) modify their search
queries and retrieved results [13]. This can lead to decreased mental
demand, perceived effort and level of frustration.
Finally, we have not paid explicit attention to the synchronisation

between the different modalities, but have rather assumed that since
output modalities are decided at the micro-turn level, they will au-
tomatically synchronise at the level of the utterance. While for the
present (simulation-based) study, this has not presented a problem, it
needs to be determined whether in practice a more principled mech-
anism for synchronisation is needed. An interesting direction, for ex-
ample, could be to insert location points of restaurants on a map grad-
ually, as they are presented as speech output in parallel.

6 Conclusion and Future Directions
This paper has presented a proof-of-concept study for optimising
multimodal output generation for information presentation for incre-
mental dialogue systems, i.e. systems that perform processing of user
input and planning of system output in a parallel fashion. In partic-
ular, we have used Reinforcement Learning to optimise the multi-
modal allocation of our system, that is, to find an optimal combina-
tion of modalities for every given context. Preliminary results based
on a partially data-driven user simulation are promising. They in-
dicate that the agent is able to optimise its modality allocation by
choosing an exclusively verbal presentation strategy for few search
results and relatively high confidence scores in user input hypothe-
ses. Alternatively, the agent can choose a strategy that combines vi-
sual and verbal output for a higher number of search results or sit-
uations involving low confidence scores in user input hypotheses.
In this way, the resulting dialogues have gained in task ease, which
was suggested by significantly higher rewards, shorter dialogues and
fewer self-corrections which our system produced in comparison to
a number of hand-crafted baselines.
In future work, we would like to extend our suggested model and

re-train it using a fully data-driven simulated environment and re-
ward function based on a data collection that explicitly addresses
incremental discourse phenomena. This would allow us to explicitly
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take the real-time nature of our model into account and not only es-
timate how input confidence scores change over time, but also how
user behaviour changes through the incremental nature of our dia-
logue framework.
Further possible directions include the use of multiple user input

modalities, adaptation to individual users during an interaction us-
ing online learning and a comprehensive evaluation of our suggested
method using human users in a real-world setting. A further possibil-
ity is a data collection in an incremental multimodal setting to learn
more about the effects of combining incremental processing and mul-
timodal output generation on human-computer interaction.
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