
The Knowledge Engineering Review
http://journals.cambridge.org/KER

Additional services for The Knowledge Engineering Review:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A survey on metrics for the evaluation of user simulations

Olivier Pietquin and Helen Hastie

The Knowledge Engineering Review / FirstView Article / November 2012, pp 1 ­ 15
DOI: 10.1017/S0269888912000343, Published online: 

Link to this article: http://journals.cambridge.org/abstract_S0269888912000343

How to cite this article:
Olivier Pietquin and Helen Hastie A survey on metrics for the evaluation of user simulations. The Knowledge Engineering 
Review, Available on CJO doi:10.1017/S0269888912000343

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/KER, IP address: 92.19.68.83 on 29 Nov 2012



The Knowledge Engineering Review, page 1 of 15. & Cambridge University Press, 2012
doi:10.1017/S0269888912000343

A survey on metrics for the evaluation of user
simulations

OL I V I ER P I E TQU IN 1 and HELEN HASTIE 2

1SUPELEC – IMS-MaLIS Research Group, UMI 2958 (GeorgiaTech – CNRS), 2 rue Edouard Belin, 57070 Metz, France;

e-mail: olivier.pietquin@supelec.fr;
2School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;

e-mail: h.hastie@hw.ac.uk

Abstract

User simulation is an important research area in the field of spoken dialogue systems (SDSs) because

collecting and annotating real human–machine interactions is often expensive and time-consuming.

However, such data are generally required for designing, training and assessing dialogue systems.

User simulations are especially needed when using machine learning methods for optimizing dialogue

management strategies such as Reinforcement Learning, where the amount of data necessary for

training is larger than existing corpora. The quality of the user simulation is therefore of crucial

importance because it dramatically influences the results in terms of SDS performance analysis and

the learnt strategy. Assessment of the quality of simulated dialogues and user simulation methods is

an open issue and, although assessment metrics are required, there is no commonly adopted metric.

In this paper, we give a survey of User Simulations Metrics in the literature, propose some extensions

and discuss these metrics in terms of a list of desired features.

1 Introduction

From the mid 90s, user simulation has become an important area of research in the field of spoken

dialogue systems (SDSs) because collecting and annotating real human–machine interactions is often

expensive and time-consuming (Eckert et al., 1997; Zukerman & Albrecht, 2001; Cuayahuitl et al.,

2005; Georgila et al., 2005; Pietquin, 2006; Schatzmann et al., 2007b; Janarthanam & Lemon, 2009b;

Pietquin et al., 2009). Such data are generally required for designing, training and assessing dialogue

systems (Levin et al., 2000; Scheffler & Young, 2001; López-Cózar et al., 2003; Pietquin & Dutoit,

2006; Schatzmann et al., 2007a). Especially, when using machine learning methods for optimizing

dialogue management strategies such as Reinforcement Learning (RL) (Sutton & Barto, 1998;

Frampton & Lemon, 2010), the amount of data necessary for training is larger than existing corpora.

In particular, it is important for methods such as RL to be able to explore the entire possible state

space, including all the user responses that the system might have to deal with but that do not occur in

the training data. Indeed, exploring the whole dialogue state space and strategy space requires a

number of interactions that increases exponentially with the number of states. Furthermore, even

simple dialogue systems have continuous state spaces because of the inclusion of speech recognition

and understanding confidence levels into the state description. User simulation (sometimes referred to

as user modelling)1 is, therefore, necessary to expand data sets. The general goal of a user simulation

is thus to produce as many as necessary natural, varied and consistent interactions from as little

1 Notice that this naming is generally misleading since user modelling is more about inferring user’s mental

state than about producing consistent behaviours, which is the real aim of user simulation.



data as possible. The quality of the user simulation is, therefore, of crucial importance because it

dramatically influences the results in terms of SDS performance analysis and learnt strategy

(Schatzmann et al., 2005b). Assessment of the quality of simulated dialogues and user simulation

methods is an open issue and, although assessment metrics are required, there is no commonly

adopted metric (Schatzmann et al., 2005a; Georgila et al., 2006).

Previous publications include Frampton and Lemon (2010) who give a summary of RL

methodology for dialogue management and Schatzmann et al. (2006) who give an overview of

statistical user simulation techniques. This paper complements these publications by providing a

survey of user simulation metrics. In this paper, we will first define a list of desired features of

a good user simulation metric. Second, state-of-the-art metrics described in the literature are

presented in Section 3. A new metric based on Inverse RL (IRL) is discussed in Section 4 and

finally, a discussion of all metrics is provided in Section 5.

2 Desired features

Although several theoretical and experimental comparisons of user simulation metrics can

be found in the literature (Zukerman & Albrecht, 2001; Schatzmann et al., 2005a, 2006), none of

these papers provide a list of desired features for a good user simulation metric. In this section,

such a list is provided and will be used to judge the metrics described in the rest of the paper.

In order to do so, it is necessary to provide a clear idea of the purpose of a user simulation. User

simulation is required to expand data sets used for training RL-based dialogue managers (Levin

et al., 1997; Singh et al., 1999; Scheffler & Young, 2001; Pietquin, 2004; Williams et al., 2005) and

natural language generation systems (Janarthanam & Lemon, 2009a, 2009b, 2009c). This provides

at least two requirements for the user simulation evaluation metric: it should assess how well the

simulation fits the original data statistics (consistency) and it should result in efficient strategies

when used for training RL-based systems (quality of learnt strategy). An efficient user simulation

should not only reproduce the statistical distribution of dialogue acts measured in the data

but should also reproduce complete dialogue structures. The optimal metric should, therefore,

measure the ability of the user simulation to generate consistent sequences of dialogue acts.

User simulation can also be used to assess the quality of an SDS, regardless of the method used

to design its management strategy (e.g. machine learning, rule-based or hand-crafted policies;

Eckert et al., 1997; Walker et al., 1997b; Scheffler & Young, 2001; López-Cózar et al., 2003).

A good user simulation metric should, therefore, predict how well it can be used to predict

the performance of an SDS (which may be different from the one used to collect data) when

interacting with real users (performance prediction).

Another goal of user simulation is to expand existing data sets. It is, therefore, important to

measure the capability of the user simulation to generate unseen dialogues (generalization).

Ideally, the metric should allow ranking of different user simulation methods. Practically, it

should, therefore, be a scalar metric or such a scalar number should be computable from the

metric. As a side effect, a scalar metric could be used as an optimization criterion to use statistical

methods applied to parameter search for user simulation.

There are many application domains where spoken dialogue can be useful. The metric should,

therefore, be task independent and should apply to any domain (task independence). The metric

should also be independent of the dialogue management system used. Even if the task is similar,

the SDS can be different and the user simulation evaluation metric should not be affected.

Finally, the metric should of course be automatically computed from objective measures and

should not require any external human intervention.

To summarise, an evaluation metric for user simulation should be able to:

> measure statistical consistency of generated dialogue acts with data (consistency);
> measure the ability to generate consistent sequences of dialogue acts (consistent sequences);
> assess the quality of learnt strategies when the user simulation is used to train a machine-learning-

dialogue management system (quality of learnt strategy);
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> predict the performance of an SDS with real users (performance prediction);
> measure the generalization capabilities of the method (generalization);
> compute a scalar value to rank and optimize user simulation (ranking and optimization criteria);
> evaluate user simulation independently from the task and the SDS (task independence);
> automatically compute an assessment measure from objective information (automatic

computation).

Ideally, a good metric should also correlate well with human evaluation metrics but this is hard

to predict. Of course, some of these criteria are more important than others and some weighting

should be taken into account when designing a metric. Yet, these criteria will be used as a

framework for describing state-of-the-art metrics, and will help identify where these metrics are

lacking, providing new avenues of research for designing optimal metrics.

3 State-of-the-art metrics for evaluating user simulations

In this section, the state of the art in user simulation evaluation is provided, reflecting the most

frequently used evaluation methods in the literature of the last decade. There are many ways to

cluster these methods. In Zukerman and Albrecht (2001) and Schatzmann et al. (2006), the authors

distinguish two categories2: direct methods that assess the user simulation by testing the quality of its

predictions (e.g. precision and recall) and indirect methods that evaluate the performance of strategies

learned from the different models (e.g. utility). We will take a different approach, splitting methods

into local methods, which measure turn-level statistics (e.g. frequency of dialogue act types), and

global methods, which measure dialogue-level statistics (e.g. task completion, perplexity).

3.1 Turn-level metrics

A large number of early metrics are based on turn-level context and measure local consistency of

generated data and data from real users (Schatzmann et al., 2005a). Some turn-level metrics are

useful to analyze the dialogues in terms of dialogue style or user initiative and cooperativeness.

They can take the form of distributions or of a set of scalar measures. They all share one major

drawback of failing to measure the consistency of sequences of dialogue acts. F-measure and the

Kullback–Leibler (KL) divergence provide a single scalar measure; however, they cannot be used

to assess the generalization capabilities of a model (see Sections 3.1.3 and 3.1.2). We will discuss

each of these turn-level metrics in detail below.

3.1.1 Dialogue act statistics

As a human–machine dialogue can be considered as a sequence of dialogue acts uttered in turn by

the human user and the dialogue manager, it is natural to compare statistics related to dialogue

acts used in real and simulated dialogues. In a goal-driven dialogue, the dialogue acts can be open

questions, closed questions, implicit or explicit confirmations but also greetings and dialogue

closures. The first set of metrics that compares real and simulated dialogues is the measure of the

relative frequency of each of the dialogue acts (Pietquin, 2004; Schatzmann et al., 2005a). This

provides a histogram of dialogue act frequencies for each data set (real and simulated). It allows

for comparison of dialogue styles, for example, are there more or less confirmations or open

questions in one of the data sets.

Schatzmann et al. (2005a) propose other statistics related to dialogue acts such as:

> the ratio of user and system acts, which is a measure of the user participation;
> the ratio of goal-directed actions vs. grounding actions vs. dialogue formalities vs. misunderstandings;
> the proportion of slot values provided when requested, which is a measure of the user cooperativeness.

2 Notice that Zukerman and Albrecht (2001) is more about user modelling than user simulation but the

distinction is similar to Schatzmann et al. (2006).
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When comparing the above-mentioned metrics with respect to the desired features listed in

Section 2, one can see that these metrics allow for comparison of similarities with actual data but

have several shortcomings. They do not provide a single scalar measure for ranking models and it

is difficult to use them to predict performance of an SDS when used with real users. Finally,

generalization is also difficult to assess.

3.1.2 Precision, Recall, (Expected) Accuracy

Precision and Recall are common measures in machine learning and information retrieval and

measure how well a model predicts observed values. A user model can be considered as a predictor

of a dialogue act given some context (which can be more or less rich) (Zukerman & Albrecht,

2001). Similar metrics, adapted from user modelling literature (Schatzmann et al., 2005a), are

widely used in user simulation and even outside the realm of SDSs. Precision and Recall are here

defined as

Precision:P ¼ 100 � Correctly predicted actions

All actions in simulated response

Recall:R ¼ 100 � Correctly predicted actions

All actions in real response

These two measures are complementary and cannot be used individually to rank user simu-

lation methods. However, the classical balanced F-measure (van Rijsbergen, 1979) can be used to

combine both these measures and obtain a single scalar:

F ¼ 2PR

P þ R

Other related metrics are Accuracy and Expected Accuracy as first introduced in Zukerman

and Albrecht (2001) and adapted by Georgila et al. (2006):

> Accuracy: ‘percentage of times the event that actually occurred was predicted with the highest

probability’.
> Expected accuracy: ‘Average of the probabilities with which the event that actually occurred

was predicted’.

One of the major drawbacks of these metrics is that they do not measure the generalization

capabilities of the user simulation. In fact, these metrics actually penalize attempts to generalize

since when the model generates unseen dialogues, their scores are lower.

3.1.3 Kullback–Leibler divergence and dissimilarity

In Section 3.1.1, metrics based on frequencies of dialogue acts have been defined. Histograms of

frequencies are obtained for both the simulated data and the human–machine data. One way to obtain

a single scalar value from these histograms is to compute a statistical distance between the distributions

they represent. Several statistical distances are available but a common choice is the KL divergence

(Kullback & Leiber, 1951). The KL divergence between two distributions P and Q is defined by

DKLðPjjQÞ ¼
XM
i¼ 1

pi log
pi
qi

� �

where pi (resp. qi) is the frequency of dialogue act ai in the histogram of distribution P (resp. Q).

Actually, the KL divergence is not a distance since it is not symmetric ðDKLðPjjQÞ 6¼ DKLðQjjPÞÞ. To
remedy this defect, the dissimilarity metric DSðPjjQÞ is introduced:

DSðPjjQÞ ¼ DKLðPjjQÞ þ DKLðQjjPÞ
2

The KL divergence does have some drawbacks. It is an unbounded metric, which is difficult to

use for ranking. In addition, there is an unbalanced penalty between the estimation of the mean
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and the variance of the distributions. To be specific, it gives more importance to the similarity of

the means of these two distributions than to the variances. Therefore, two distributions having

the same means but very different variances will appear to be closer to each other than two

distributions having slightly different means but similar variances. This is particularly prevalent

for spoken dialogue applications. KL divergence also requires a correct estimation of densities

P and Q while traditionally only counts are available from data. It is also difficult to assess the

generalization capabilities of a user model with this metric since it penalizes dialogue strategies,

which are different from the real data. In Section 3.3, we discuss new applications of the KL

divergence that seek to resolve these last two issues.

3.2 Dialogue-level metrics

In this section, metrics are presented that use higher-level information. They are based on com-

plete dialogue properties instead of local turn information. Most of the metrics discussed in this

section have been developed more recently than the turn-level metrics and attempt to achieve the

goals listed in Section 2.

3.2.1 Task completion

A task-driven dialogue system assists a user in achieving a goal that is usually not known by the

system before the interaction starts. The degree of achievement of this goal is referred to as task

completion. Commonly used to measure inter-annotation agreement, the k coefficient can also be

used to measure task completion. The k coefficient (Carletta, 1996) is obtained from a confusion

matrix M summarizing how well the transfer of information performed between the user and the

system. M is a square matrix of dimension n (number of pieces of information that have to be

transmitted from the user to the system) where each element mij is the number of dialogues in

which the value i was interpreted while value j was meant. The k coefficient is then defined as

k ¼ PðAÞ�PðEÞ
1�PðEÞ

where P(A) is the proportion of correct interpretations (sum of the diagonal elements ofM (mii) on

the total number of dialogues) and P(E) is the proportion of correct interpretations occurring by

chance. One can see that k 5 1 when the system performs perfect interpretation (P(A)5 1) and

k 5 0 when the only correct interpretations were obtained by chance (P(A)5P(E)). Other task

completion measures can be defined such as in Pietquin (2004).

To assess the similarity between artificially generated dialogues and human–machine dialogues,

it is legitimate to measure the similarity in terms of task completion. In Scheffler and Young

(2001), Schatzmann et al. (2005a) and Pietquin (2004), the task completion or the task completion

rate (ratio of successful dialogues) is used to compare dialogues. In Schatzmann et al. (2005a), the

authors also propose to use the completion time, that is the number of turns (or the actual

dialogue duration) required to achieve a satisfying task completion.

Once again, capturing task completion involves several different metrics (task completion, rate,

duration) and each of them provides different information. It is difficult to chose one of them for

ranking user models. They cannot be used independently since two corpora sharing a same task

completion rate may not contain similar dialogues. In addition, the completion time does not

guarantee dialogue similarity.

3.2.2 Perplexity and log-likelihood

Perplexity is a measure that comes from information theory and was first proposed as a user

simulation metric in (Georgila et al., 2006). It is generally used to compare probabilistic predictive

models. In natural language processing, it is widely used to compare language models. Perplexity

of a model is defined as follows:

PP ¼ 2

PN
i¼ 0

1
Nlog2 pmðxiÞ
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where pm(xi) is the probability of xi given the model, and xi is a sample from a test data set

containing N samples. If the model is good, it will tend to give high probabilities to the test

samples since it is supposed to predict them and, therefore, have a low perplexity. In the case

of a user model, the data to be predicted are sequences of dialogue acts {a0, a1,y, an} so

pm(x)5 pm(a0, a1,y, an) is the probability of a sequence of dialogue acts given the user model.

A similar metric is the log-likelihood LðxÞ of a data set x ¼ fxigi¼ 1; ...;N given a model m is

defined by LðxÞ ¼ log pðxjmÞ ¼ log pmðxÞ. If the data samples xi are assumed to be independent

(a common assumption), LðxÞ can be written as

LðxÞ ¼ log
YN
i¼ 1

pmðxiÞ ¼
XN
i¼ 1

log pmðxiÞ

The higher the log-likelihood is, the higher the consistency between the data and the model.

Perplexity and log-likelihood measure how well a model is able to predict data in a held-out test

set and therefore can be used to measure generalization. Perplexity and log-likelihood are scalar

numbers that can be used to rank user simulations, however, the perplexity figure can be difficult

to interpret as it ranges from 1 to infinity. These metrics can be viewed as global or dialogue-level

metrics as they are based on the probability of sequences of dialogue acts. However, it is somewhat

difficult to assign relative importance of dialogue-level features such as dialogue length and task

completion.

3.2.3 Hidden Markov Model similarity

One particular statistical model that can be used to predict sequences of dialogue acts (or dialogue

states) is the Hidden Markov Model (HMM). In Cuayahuitl et al. (2005), the authors propose to

train a HMM on a corpus of real human–machine dialogues (the hidden state is the dialogue state,

whereas the observations are dialogue acts) and to use the HMM as a generative model to produce

artificially generated data. To assess the quality of the model, the authors propose to generate a

corpus of artificial data using the trained HMM and then to train a new HMM on these generated

data. The metric proposed to assess the model is the distance between the HMM trained on real data

and the one trained on artificially generated data. Computing a distance between HMMs is not an

easy problem. In Cuayahuitl et al. (2005), the authors choose to use the dissimilarity introduced in

Section 3.1.3 based on the KL divergence of distributions encoded by the two HMMs.

This evaluation method does not directly measure the dissimilarity between corpora but instead

it measures the dissimilarity of the models by computing a distance between distributions encoded

by the models. One can, therefore, assume that the measure captures more than what is in the data

and that unseen situations can be taken into account (though this has not been experimentally

demonstrated by Cuayahuitl et al., (2005)). This metric could be used regardless of the user model,

as the artificially generated data can be produced by any model and not only by HMM-based

models. It provides a single scalar, however, it does not directly provide any information about the

quality of the interaction between real users and a new dialogue system.

3.2.4 Cramér-von Mises divergence

In many applications, a user model for simulation can be used as a predictor of the performance of

an SDS. In Williams (2008), the author describes a metric based on this point of view and built

upon the following statements:

1. ‘For a given dialogue system D and a given user population U0, the goal of a user simulation

U1 is to accurately predict the performance of D when it is used by U0’.

2. ‘The performance of a dialogue system D in a particular dialogue d(i) can be expressed as a

single real-valued score x(i), computed by a scoring function QðdðiÞÞ ¼ xðiÞ’.

3. ‘A given user population U0 will yield a set of scores S0 ¼ x0ð1Þ; x
0
ð2Þ; . . . ; x

0
ðN0Þ. Similarly, a user

simulation U1 will yield a set of scores S1 ¼ x1ð1Þ;x
1
ð2Þ; . . . ; x

1
ðN1Þ’.

4. ‘A user simulation U1 may be evaluated by computing a real-valued divergence DðS0jjS1Þ’.
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The proposed metric is thus a divergence measure that expresses how well the distribution of

scores obtained by the real users S0 is reproduced by the user simulation S1. This divergence could

have been the KL divergence described in Section 3.1.3 but the author argues that this metric is

accurate only if actual distributions are known or well approximated. This is rarely the case, he

argues, in the field of dialogue systems where data are tricky to obtain and usually low amounts of

data are available. The normalized Cramér-von Mises divergence (Cramer, 1928; Anderson, 1962)

is less demanding in this respect because it is based on the empirical distribution function (EDF)

that does not make any assumptions about the distribution of data. It provides a real number

ranging from 0 to 1 and is computed as follows:

DCvMðF0jjF1Þ ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN0

i¼ 1

ðF0ðx0ðiÞÞ�F1ðx0ðiÞÞÞ
2

vuut

where Fj is the EDF of the data Sj ¼ ðxjð1Þ;x
j
ðNjÞÞ and a is a normalizing constant given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
12N0

4N2
0
�1

q
. By definition, the EDF is

FjðxÞ ¼
1

Nj

XNj

i¼ 1

1 if xjðiÞox

1
2

if xjðiÞ ¼ x

0 if xjðiÞ4 x

8>><
>>:

This metric addresses many of the desired features listed in Section 2, as it provides a bounded

scalar value usable for ranking; it is a global feature that also predicts the performance of a

dialogue system. Since it is based on scores, it is not sensitive to unseen situations given that they

result in similar scores. This does not mean that the generalization capabilities of the model are

assessed but that they do not result in a reduction of the metric value. One drawback of this metric

is that it does not measure the degree of similarity of sequences of dialogue acts and, therefore,

dialogues may not be realistic even for high values of the metric.

3.2.5 Bilingual Evaluation Understudy and Discourse-Bilingual Evaluation Understudy

The BLEU (Bilingual Evaluation Understudy) score (Papineni et al., 2002) is widely used in machine

translation. It is a metric that compares two semantically equivalent sentences. Generally, it is used to

compare an automatically translated sentence to several reference sentences generated in the target

language by human experts. Papineni et al. (2002) argue that ‘the closer a machine translation is to a

professional human translation, the better it is’. The BLEU score is the geometric mean of the N-gram

precisions with a brevity penalty (BP). It is computed as follows: let C be a corpus of human-authored

utterances and S be a translation candidate. First, a precision score is computed for each N-gram:

pn ¼

P
S2C

P
ngram2S

countmatchedðngramsÞ
P
S2C

P
ngram2S

countðngramsÞ

where countmatched (ngrams) is the number of ngrams in S that match the N-grams in the corpus. The

BP is defined as

BP ¼
1 if g4 r

eð1�r=gÞ if gp r

�

where g is the length of the generated utterance while r is the length of the reference. Finally, the BLEU

score is computed as

bleu ¼ BP

PN
n¼ 1

1
N log pn

� �

Using the BP, BLEU penalizes abnormally short utterances because short-generated utterances

have higher N-gram precision.
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Jung et al. (2009) propose to use the same metric to compare a sentence automatically generated

by a user simulation and sentences produced by human experts or available in the training data.

It is indeed the same task since in both cases the problem is to compare surface realizations of a

semantic target. The BLEU measure can, therefore, be used to measure the naturalness of a

given utterance.

As described above, the BLEU metric can be used to measure the naturalness of a simulated

utterance but what we are interested in is a measure of naturalness of dialogues (that is a

sequence of utterances). To achieve this goal, Jung et al. (2009) propose another metric they call

Discourse-BLEU (D-BLEU). It is designed to measure the similarity of simulated dialogue and

human–machine dialogues. D-BLEU is also the geometric mean of the N-gram precisions with a BP

but the N-grams considered here are not sequences of words but sequences of intentions (both user

and system intentions). D-BLEU is, therefore, computed in the same way as BLEU by replacing words

by intentions. D-BLEU score ranges from 0 to 1 and gives higher scores to similar dialogues

(especially if they have the same length).

The BLEU score is known to be highly correlated with human judgement Papineni et al. (2002),

Doddington (2002) and Jung et al. (2009) argue that D-BLEU also follows the same tendencies as

human judgement. In some cases, BLEU has been reported to fail to predict translation improvements

and naturalness. Too few studies are reported about the D-BLEU score for dialogue to allow one to

draw the same conclusions, however, the BLEU and D-BLEU are quite similar in their definitions. Once

again, this metric also fails to measure the generalization capabilities of the user simulation.

3.2.6 Simulated User Pragmatic Error Rate

SUPER (Simulated User Pragmatic Error Rate; Rieser & Lemon, 2006a; Rieser, 2008) is an attempt

to combine different metrics so as to take advantage of their respective features. The aim of SUPER

is to measure the naturalness and variety of artificially generated dialogues. Naturalness is actually

measured as a mix of completeness and consistency (defined below). It is based on the three

following statements:

> The simulated user should not produce intentions that real users would not produce in the same

context. It should not create insertions (I) of intentions. This relates to consistency.
> The intentions generated by the simulated user should cover the whole range of intentions

generated by real users. It should not create deletions (D) of intentions. This relates to

completeness.
> The user should generalize and produce a sufficient variety (V) of behaviours and not reproduce

exactly the real users’ behaviour. A lower bound E is defined to reflect the desired variation and

an upper bound d is defined to reflect undesired variation.

The variables I, D and V are computed as follows:

Consistency:

if (P0(action)5 0 and P1(action). 0): I5 (21)

Completeness:

if (P0(action). 0 and P1(action)5 0): D5 (21)

Desired variation:

if (|P0(action)2P1(action)|, E): V5 (11)

Tolerated variation:

if (E, |P0(action)2P1(action)|, d): V5 (0)

Penalized variation:

if (d < |P0(action)2P1(action)|): V5 (2|P0(action)2P1(action)|)

where P0 is the unigram probability of observing an action in the real data and P1 is the

probability of a user simulation predicting a action.
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The SUPER score is then given by

super ¼ 1

m

Xm
k¼ 1

V þ I þ D

n

where n is the number of possible user acts and m the number of contexts. Notice that the SUPER

score is similar to the Word Error Rate measurement used to assess speech recognition systems.

The SUPER score addresses many of the desired features described in Section 2, however, it is not

a direct measure of the ability of the user model to predict the performances of an SDS when used

with real users.

3.2.7 Human evaluation

Ai and Litman (2008) propose to use human judges to evaluate automatically generated corpora.

In this approach, human judges serve as a gold standard for user simulation assessment.

This choice is based on several arguments. First, it provides a method to evaluate how hard it is to

distinguish between simulated and real dialogues. If a human judge performs a bad classification,

the machine is likely not to perform better. Second, a new metric could be developed by using

human judgement as a gold standard. This new metric should predict this judgement using

objective measures. Finally, comparing human judgement with automatically computed scores can

help in validating the quality of the metric.

The study reported in Ai and Litman (2008) is based on subjective questions asked to the

human judges observing dialogues between a student and a tutor. It subsequently uses the scores

provided by human judges to train different metrics with supervized learning methods (stepwise

multiple linear regression and ranking models). The study concludes that the latter method is

able to mimic correctly human judgements and could be used to evaluate new simulated dialogues.

This method is very close to PARADISE (Walker et al., 1997b), which evaluates SDS strategies by

predicting user satisfaction from real interactions.

The major drawback of the human evaluation method is that it requires human judges to score

the dialogues. It is very time-consuming and it is always difficult to know how many human judges

should be involved (e.g. what is the protocol for reaching a meaningful inter-annotator agree-

ment?). The metrics are also trained for a specific application and it is very difficult to tell how

such a metric could generalize to other domains.

3.2.8 Absolute performance of learnt strategy

User simulations are frequently used for training optimization algorithms for SDS management

strategies, such as RL (Sutton & Barto, 1998). Ai and Litman (2009) propose to measure the

performance of the SDS when trained against different user models. The performance is measured

as an expected cumulative reward (Williams & Young, 2007) when applying a learnt strategy.

The performance of the SDS with real users is used as an assessment measure for the user

simulation. Also, the transition probabilities Pðsiþ 1jsi; aiÞ (where si is the dialogue state and ai the

system’s dialogue act at time step i) are measured in both the real data and the simulated data and

compared state by state.

This method suffers from a bootstrapping problem. It requires testing the dialogue system on

real users after training to obtain the quality measurement while it is precisely the goal of the user

model to predict the performance of the trained system when used with real users. Concerning the

comparison of the transition probabilities, it is very similar to the methods discussed in Section

3.1.1 and raises the same issues.

3.2.9 Strategy evaluation on real dialogue data

Schatzmann et al. (2005b) discuss the influence of the user model on the system dialogue

strategy learnt by means of RL (Sutton & Barto, 1998). Although most of the assessment methods

are based on user simulation, the paper proposes one method based on direct comparison with

real data. The principle of the method is rather simple. Let us suppose that a database of real
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dialogues {di} is available, a user model is trained on this data set. This user model is then used to

train an RL algorithm that searches for the optimal dialogue strategy p* to interact with this

model. After learning, the computed strategy p* is compared with the strategy pdi
followed in each

of the dialogues di in the database. To do so, for each dialogue di a similarity measure Simfpl;pdi
g

is computed. A quality measure Ri is also computed for each dialogue di. This quality measure can

be the same as the reward function used for training the reinforcement algorithm for instance.

The basic idea is thus that if the user model represents the real user population well, then there

should be a positive correlation between Simfpl;pdi
g and Ri. Indeed, if the strategy followed by

the system during dialogue di is close to p* then Ri should be high. If not, it means that the learnt

strategy is not optimal for real users and so that the user model that served for learning the

strategy p* did not behave similarly to the actual users. The actual metric that can be extracted is

thus the correlation coefficient between Simfpl;pdig and Ri.

This metric is very interesting since it directly uses existing data rather than needing new data

collection or human evaluation. Besides the need of training an RL algorithm for each user model,

the main drawback of this method is the need of a similarity measure between strategies. Indeed,

defining such a measure could probably be a topic of research by itself. Depending on the

definition of the Sim measures, the proposed metrics may exhibit interesting features such as the

consistency of sequences of dialogue acts for instance.

3.3 N-gram Kullback–Leibler divergence

As discussed in Section 3.1.3, KL divergence is a direct measure and captures the similarity

between two distributions. However, it does not capture similarities between sequences of dialogue

acts but only between frequency distributions of dialogue acts. It is, therefore, hard to tell whether

dialogues are similar as they could simply use the same dialogue acts but not in the same order.

As discussed in Section 3.2.3, the KL divergence has been computed by comparing the

distribution captured by two HMMs, one being trained on the original data (containing real

human–machine interactions) and the other being trained on the artificially generated data

(Cuayahuitl et al., 2005; Cuayahuitl, 2009).

In a similar way to the HMM approach discussed in Section 3.2.3, the N-gram KL divergence

(Janarthanam & Lemon, 2009b) is computed between the distributions captured by advanced

N-grams trained on a human–machine interaction corpus. Notice that Georgila et al. (2006)

already introduced the combination of N-grams with other metrics such as prediction and recall.

These combined metrics have properties similar to the SUPER one. The advanced N-gram model

is a realistic model of each corpus since it takes into account context variables and is deemed

sufficiently smoothed by the author to support variability in the generated sentences. This way,

unseen dialogues are not penalized if they are ‘too far’ from the distribution captured by the

advanced N-gram thus solving the generalization problem. It could be argued that this application

of the KL divergence takes it from a turn-level metric to a dialogue-level one.

4 Future directions

In this section, we propose a new metric for ranking and optimization of user simulations

using IRL. RL (Sutton & Barto, 1998) is now a state-of-the-art method for optimizing dialogue

management systems (Levin et al., 1997; Singh et al., 1999; Scheffler and Young, 2001; Pietquin,

2004; Williams et al., 2005; Frampton and Lemon, 2010). It is based on the Markov Decision

Processes paradigm where a system is described in terms of states and actions. The goal of RL is to

learn the best action to perform in each state according to a criterion called a reward function.

In the context of dialogue management, states are given by the dialogue context and actions are

the different dialogue acts the dialogue manager can perform. The reward function is often defined

as the expected user satisfaction, which has to be maximized (Singh et al., 1999). RL is, therefore,

used to learn which dialogue act should be transmitted to the user given the dialogue context so as

to maximize their satisfaction.
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The RL problem has a dichotomy: the IRL problem (Russell, 1998). By observing an expert

agent (mentor) performing optimally, IRL aims at discovering the reward function serving as the

optimization criterion to the expert. Once this reward function is learnt, an artificial agent can be

trained upon this function so as to mimic the expert’s behaviour. The main problem of IRL is that

there exists an infinite number of reward functions explaining the expert’s behaviour including

trivial solutions and constraints have to be added to obtain a solution usable for optimizing an

artificial agent (Ng & Russell, 2000).

The idea of using IRL for dialogue management optimization has been proposed in Paek and

Pieraccini (2008). In their paper, the authors propose to use IRL on data collected from

human–human interactions to learn the policy followed by the human operator. Similarly, Rieser

and Lemon (2008) and Janarthanam and Lemon (2009d) use Wizard-of-Oz techniques to gather

data and train a policy that mimics the human wizard. The assumption here is that the human

operator or wizard’s behaviour is optimal; however, several criticisms can be made about this

approach. First, in most of the real-world applications, human operators are instructed to follow

decision tree-based scenarios. Imitation of the human operator would result in learning this

decision tree and nothing can ensure that this is optimal. Second, even if the human operator can

freely interact with the users, optimality from the user satisfaction point of view is not guaranteed.

Third, when interacting with a human, users adopt different behaviours than when interacting

with machines (Walker et al., 1997a).

In this paper, we propose to use IRL in a different manner. We argue that if the human operator

may not be optimally acting to maximize the users’ satisfaction, the users are unconsciously trying to

optimize their satisfaction when interacting with a machine. IRL could, therefore, be used to learn

the internal (non-observable) reward function that users naturally try to maximize (Chandramohan

et al., 2011).

There are several advantages to this approach. First, IRL algorithms can be trained on

human–machine interaction data, which are easier to automatically annotate than human–human

interaction data. Second, the learnt reward function can serve as a metric for user simulations

since a user simulation that performs badly according to this function is probably not reproducing

real users’ behaviour. Finally, this reward function can serve as an optimization criterion to train a

user simulation that is independent from the dialogue management system. Indeed, the reward

function optimized by the user is related to their satisfaction and not to the actual performance of

the system. Therefore, if the SDS policy is modified, the user simulation should change its

behaviour so as to continue maximizing the reward function as a real user would change their

behaviour so as to continue maximizing their satisfaction.

This last feature is important for training RL-based dialogue management systems since

RL involves a trial-and-error process aiming at incrementally improving the interaction policy.

The policy thus changes frequently and current user models that are trained from data collected

with a fixed interaction policy, cannot adapt their behaviour according to modifications of

the SDS.

A metric obtained from IRL addresses many of the features listed in Section 2. It would provide

a single scalar value that is automatically computed and can serve to rank and optimize user

models. It could be used to predict performances of real users when interacting with an SDS since

this metric is related to user satisfaction. It would not be sensitive to unseen dialogues that are

generated by simulation since if they reach good performance, the dialogues themselves are not

important but can be judged as realistic from the user’s point of view. It could be automatically

obtained regardless of the task since nothing is task dependent in the IRL paradigm.

Several issues have still to be solved. First, there is inter-user variability that makes the notion

of satisfaction user dependent. Thus, it would be hard to compute a single reward function for a

whole set of users. A method for automatically clustering the user population according to the

metric while learning this metric is required. Moreover, users may not always be optimal according

to their internal reward function (they can make errors) and a tolerance factor has to be included

in the learning algorithm.
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Table 1 A comparison of metrics presented in this paper with respect to the list of desired features presented in Section 2

Metric Consistency

Quality of

learnt

strategy

Performance

prediction

(In-direct/

Direct) Generalisation

Ranking and

optimization criteria

Consistent

sequences

Task

independence

Automatic

computation

Turn level

DA statistics Yes No No (D) No No No No Yes

Precision Recall Yes No No (D) No Yes (F-score) No Yes Yes

KL Yes No No (D) No Yes (but un-bounded) No Yes Yes

Dialogue level

Task completion Yes No Yes (I) No Yes (but not in isolation) No No Obj (Yes)

Subj (No)

Perplexity Yes No No (D) No Yes Yes Yes Yes

HMMs Yes No No (D) Yes Yes Yes Yes Yes

Cramér von Mises Yes No Yes (I) Yes Yes No Yes Yes

BLEU, D-BLEU Yes No No (D) No Yes Yes Yes Yes

SUPER Yes No No (D) Yes Yes Yes Yes Yes

Human evaluation Yes No Yes (I) No Yes No No No

Absolute performance

of learnt strategy

Yes–depends on

strategy performance

metrics

Yes Yes (I) Yes Yes No No Yes—but require

real user tests

Strategy evaluation on

real data

Yes–depends on

Sim measure

Yes Yes (I) No Yes No No Yes

N-gram KL divergence Yes No No (D) No Yes (but un-bounded) Yes Yes Yes

DAs5 dialogue acts; KL5Kullback–Leibler; HMMs5Hidden Markov Models; BLEU 5Bilingual Evaluation Understudy; D-BLEU 5Discourse-BLEU; SUPER 5 Simulated

User Pragmatic Error Rate.

(D) is a Direct and (I) is a Indirect measure.
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5 Discussion and conclusions

Table 1 shows a comparison of metrics presented in this paper with respect to the list of desired

features presented in Section 2. In this paper, we have described metrics in terms of turn level and

dialogue level. An alternative approach is to categorize metrics into direct or indirect methods of

measuring quality of user simulation: direct methods assess the user simulation by testing the

quality of its predictions and indirect methods attempt to measure the quality of a user model by

evaluating the effect of the model on the dialogue system performance. Direct metrics include

Perplexity, HMM similarity, D-BLEU, SUPER and (N-gram) KL. Indirect metrics include Task

Completion, Cramér-von Mises divergence, human evaluation, quality of learnt strategy and

strategy evaluation on real data.

As illustrated in Table 1, not one of the existing metrics possesses all the desired features;

however, the Cramér-von Mises divergence is one metric presenting most of the desired features

together with the SUPER score. The Cramér-von Mises divergence is able to predict the performance

of a dialogue system with real users while it is not able to judge if the user simulation can

generalize to unseen situations. The SUPER score is able to measure generalization capabilities,

although it cannot be used to predict performance of a dialogue system as such. The N-gram

KL metric has all the advantages of the KL metric but is also able to capture generalization. Only

D-BLEU really focuses on the naturalness of generated dialogue but it also fails in predicting

performance of an SDS when interacting with real users. It also shares the disadvantages of the

BLEU metric, which is widely used in machine translation. All the described methods provide

metrics that can be automatically computed from the log files. Finally, a scalar value is provided

by all the metrics, however, some are easier to use for ranking than others as they provide

a bounded variable, for example, Cramér-von Mises divergence, which is between 0 and 1.

The newly proposed IRL metric fulfills all of the above-mentioned desired features with one

exception that it does not explicitly measure consistency of the sequences of dialogue acts.

In summary, this paper contains several contributions. First, a list of desired features for user

simulation evaluation metrics is provided in Section 2. This list serves as comparison criteria

for state-of-the-art metrics that can be found in the literature and summarised in Table 1.

A comprehensive list of state-of-the-art metrics for assessing user simulation are listed in Section 3.

Instead of using the standard direct/indirect classification, metrics are described according to their

level of analysis, specifically turn-level or dialogue-level analysis. For each of these metrics,

advantages and disadvantages are listed and it is evident that no one single metric fulfills all of

these desired features. Finally in Section 4, we present a promising, new metric based on IRL,

which comes close to fulfilling all the desired features of a user simulation quality metric.
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