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Abstract
We study gossip algorithms for the rumor spreading problem
which asks one node to deliver a rumor to all nodes in an
unknown network, and every node is only allowed to call
one neighbor in each round. In this work we introduce
two fundamentally new techniques in studying the rumor
spreading problem:

First, we establish a new connection between the rumor
spreading process in an arbitrary graph and certain Markov
chains. While most previous work analyzed the rumor
spreading time in general graphs by studying the rate of
the number of (un-)informed nodes after every round, we
show that the mixing time of a certain Markov chain suffices
to bound the rumor spreading time in an arbitrary graph.

Second, we construct a reduction from rumor spreading
processes to branching programs. This reduction gives us a
general framework to derandomize the rumor spreading and
other gossip processes. In particular, we show that, for any
n-vertex expander graph, there is a protocol which informs
every node in O(logn) rounds with high probability, and
uses O(logn · log logn) random bits in total. The runtime
of our protocol is tight, and the randomness requirement
of O(logn · log log n) random bits almost matches the lower
bound of Ω(logn) random bits. We further show that, for
many graph families (defined with respect to the expansion
and the degree), O(poly logn) random bits in total suffice
for fast rumor spreading. These results give us an almost
complete understanding of the role of randomness in the
rumor spreading process, which was extensively studied over
the past years.

1 Introduction

Gossip algorithms are one of the most important com-
munication primitives in large networks, and have been
studied under different names such as rumor spreading,
information dissemination, and broadcasting. Efficient
gossip algorithms for information spreading have wide
applications in failure detection [37], resource discov-
ery [27], replicated database systems [10], data aggre-
gation [3], etc.
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The simplest and widely studied form of gossip al-
gorithms is the so-called push model of rumor spread-
ing [18, 32]. Initially, a message, called a rumor, is
placed on an arbitrary node of an unknown network
with n nodes. In subsequent synchronous rounds, every
node that knows the rumor picks a neighbor uniformly
at random and sends the rumor to the chosen neighbor.
This process continues until every node gets the rumor.
It was shown that this simple protocol is very efficient
on several network topologies [12, 13, 14, 16, 19]. In
addition, the protocol is local, simple, and can tolerate
link failures.

Over the past decades extensive studies have fo-
cused on the rumor spreading time, i.e., the number
of rounds required before every node gets the rumor
with high probability. While usually good expansion
of the underlying graph implies fast rumor spread-
ing [3, 5, 6, 19, 21, 34], it was far from clear if graph
expansion is the only reason for fast rumor spreading
and more general gossip processes. For instance, most of
these gossip algorithms are inherently randomized, and
all of the analysis of these algorithms crucially rely on
choosing neighbors independently and uniformly at ran-
dom in each round. However, from a theoretical point
of view, it is not clear if randomization is essential for
efficiently spreading a rumor. From a practical point of
view, choosing neighbors independently and uniformly
at random in each round requires every node of the
graph to have access to a random source of unbiased
and independent coins, whose physical realization is un-
known. Hence, both of theoretical considerations and
practical difficulties in obtaining truly random sources
lead to the following fundamental question: What is the
role of randomness in fast rumor spreading and other
gossip algorithms? More specifically, how many ran-
dom bits are sufficient for efficiently spreading a rumor?
While for any graph with n nodes, the above-mentioned
fully-random push protocol requires O(T · n log n) ran-
dom bits for spreading a rumor within T rounds, it is
not difficult to show that, for any graph with n nodes,
there is a protocol which uses O(log n) random bits in
total, and whose rumor spreading time is as fast as
the standard fully-random protocol. However, explicit
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constructions of such protocols are widely open, and a
long line of research has been devoted to constructing
randomness-efficient and deterministic protocols for ru-
mor spreading and similar problems, e.g. [11, 22, 23, 26].

1.1 Our Results In this work we present several
randomness-efficient protocols for which both the ru-
mor spreading time and the randomness requirement
are almost-optimal. One fundamentally new technique
introduced in our work is to establish a connection be-
tween rumor spreading processes and branching pro-
grams, a well-studied computation model in complexity
theory. Based on this connection, we present a novel re-
duction from the problem of designing rumor spreading
protocols to the problem of constructing pseudorandom
generators (PRGs) for branching programs. This reduc-
tion gives the first application of the model of branching
programs in the area of parallel and distributed com-
puting, and provides a powerful tool for designing and
analyzing gossip algorithms.

To informally discuss the reduction, we notice one
natural connection between gossip processes and ran-
dom walks in a branching program: First, random walks
over a branching program resemble the rumor spreading
process where nodes send rumors to random neighbors.
Second, in the rumor spreading process, each node has
access to only its own list of neighbors, and is oblivious
to the structure of the network. This is an analogue of
the oblivious derandomization achieved by PRGs.

However, rumor spreading appears much more com-
plicated than small-space computation due to the fol-
lowing facts: First, in the rumor spreading process, ru-
mors are “duplicated” every round, although every “ex-
isting” rumor viewed individually performs a random
walk. Hence, instead of considering every single ran-
dom walk performed by any fixed rumor, we need to
study the dynamics of the whole rumor spreading pro-
cess. Second, the state of the process at some round
essentially depends on the past behavior of all nodes
and is by no means computable in small-space. Indeed,
even knowing if a single node u gets the rumor at some
round requires knowing the set of its neighbors hav-
ing the rumor in the previous rounds, and may require
deg(u) = Θ(n) bits for dense graphs. Hence, this con-
nection between rumor spreading and small-space com-
putation is delicate and not obvious.

Surprisingly, we show that such a reduction from de-
signing rumor spreading protocols to constructing PRGs
for branching programs exists. Based on this reduction,
numerous techniques developed in the constructions of
PRGs for small-space computation can be applied in de-
signing rumor spreading and other gossip processes. In
particular, we prove that certain PRGs with optimal pa-

rameters imply rumor spreading protocols whose ran-
domness complexity matches the lower bound and the
best known upper bound of the existential results from
probabilistic methods. Our main result is summarized
as follows:

Theorem 1.1 (Main Result). Let G be a graph with n
nodes, spectral gap α ∈ (0, 1), and irregularity β , ∆/δ.
Then there is an explicit protocol using O((log(1/α) +
log β+log log n) · log n) random bits, such that with high
probability all nodes get the rumor in T = O(C log n)
rounds, where C = (1/α) · β2 ·max{1, 1/(α ·∆0.499)}.

Theorem 1.1 implies that, for any expander graph
with n nodes, α = Θ(1) and β = O(1), the protocol
informs all nodes in O(log n) rounds with high proba-
bility and uses O(log n · log log n) random bits in total.
Note that any protocol needs at least Ω(log n) rounds
to spread a rumor to all nodes, hence the rumor spread-
ing time of Theorem 1.1 for expander graphs is tight.
For the randomness complexity, our result improves the
previous best bound of O(log2 n) random bits [22]. We
also proved that, for any expander graph with minimum
degree δ = nΘ(1), any protocol that finishes in O(log n)
rounds with high probability needs at least Ω(log n) ran-
dom bits, therefore the result in Theorem 1.1 is almost
tight.

We further introduce a different technique, and ad-
dress the rumor spreading problem in a slightly re-
stricted setting, where every node u knows the IDs of its
neighbors and its index for each of its neighbors1. We
prove that, under this condition, the randomness com-
plexity in Theorem 1.1 can be further improved. Com-
paring with Theorem 1.1, we analyze a more general
gossip process. Our result is summarized as follows:

Theorem 1.2. Let G be a graph with n nodes, spectral
gap α ∈ (0, 1), and irregularity β , ∆/δ. Let List(u)
be the adjacency list of node u, and N(u) be the set of
neighbors of u. We assume that each node u knows the
ID of its neighbors v ∈ N(u), and its index in List(v)
for any neighbor v ∈ N(u). Then there is an explicit
protocol using O((log(1/α) + log β + log log n) · log n)
random bits, such that with high probability all nodes
get the rumor in T = O((1/α) · β2 · log n) rounds.

We further present protocols for graphs with small
∆. In contrast to Theorem 1.1 and Theorem 1.2 that are
based on branching programs, the following result relies
on the observation that the rumor spreading process
enjoys nice locality when ∆ is small.

1We remark that similar assumptions are also made in other
references, e.g. [26], and one can deterministically use O(∆)
preprocessing time to guarantee this assumption.
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Theorem 1.3. Let G be a graph with n nodes, con-
ductance φ and irregularity β. Then there is an explicit
protocol using O

(
(1/φ) · β · log n · (log log n + log ∆)

)
random bits in total, such that with high probability all
nodes get the rumor in O((1/φ) · β · log n) rounds.

The rumor spreading time in Theorem 1.3 matches
the upper bound known in the truly random protocol,
and is tight, in the sense that there are graphs with
diameter Ω((1/φ) ·β · log n) [5]. Our result improves the
previous best result [22], which needs O((1/φ) · log2 n)
random bits in total and only holds for graphs with
β = O(1).

Our protocol takes advantage of the locality by us-
ing a “two-level hashing” construction: We use a fam-
ily of objects called unbalanced expanders to hash the
node IDs into a smaller space, and then apply the classi-
cal pairwise independent generators. This construction
yields much smaller seed length than using pairwise in-
dependent generators alone [22]. The protocol has the
advantage of being very simple. Furthermore, a variant
of this protocol using PRGs for combinatorial rectan-
gles achieves the best possible rumor spreading time for
strong expander graphs:

Theorem 1.4. Let G be a graph with n nodes, α =
1 − o(1) and irregularity β = 1 + o(1). Then there is
an explicit protocol using O(log n · (log log n + log ∆))
random bits in total, such that with high probability all
nodes get the rumor in log n+ lnn+ o(log n) rounds.

In comparison to the protocol in Theorem 1.1
which requires O(log n) rounds for expander graphs, the
protocol in Theorem 1.4 is applied for strong expander
graphs (i.e., graphs with α = 1 − o(1)), and the rumor
spreading time of log n+ lnn+ o(log n) rounds matches
the precise rumor spreading time for the fully-random
protocol [13, 14, 16], which is known to be tight [14].
Moreover, our protocol uses O(log n · (log log n+log ∆))
random bits in total, in contrast to Ω(log3 n) random
bits used in [22]. These four results (Theorem 1.1–
Theorem 1.4), together with the existential result and
the lower bound analysis, give us an almost complete
understanding of the randomness requirement of this
fundamental gossip process on expander graphs, and
greatly extend our understanding of the randomness
requirement for more general graph families.

Remark 1.5. The analysis of our protocols can be eas-
ily adapted to the real-world settings, where communi-
cation failures are present. We assume that each node v
fails to send the rumor with probability γv,i in round i,
where γv,i is upper bounded by some parameter γ < 1.
Moreover, we assume that these link failures are inde-
pendent for different nodes and/or different rounds. Un-

der these two assumptions, our results still hold with the
runtime bound multiplied by a factor of O((1− γ)−1).

1.2 Techniques In the current work we introduce
several new techniques in studying gossip processes. In
addition to the reduction from rumor spreading pro-
cesses to branching programs, other techniques include:
approximating rumor spreading time via random walks,
analyzing the rumor spreading process via Doeblin cou-
pling, and simulating pull operations by push opera-
tions in designing randomness-efficient protocols. Let
us briefly discuss these techniques in this subsection.

Approximation via Random Walks. The usual
analyses for fast rumor spreading proceed by show-
ing that the number of informed/uninformed nodes in-
creases/decreases over time, e.g. [5, 6, 19, 21, 29, 34].
Our approach is fundamentally different from previous
work. Roughly speaking, we approximate the rumor
spreading process by a collection of random walks, and
use the rapid mixing of these random walks to prove
the property of fast rumor spreading. It turns out that
the pieces of local information provided by these ran-
dom walks give a surprisingly good control of the global
behavior of rumor spreading, despite that the walks are
complicatedly and highly correlated.

Formally, we approximate the rumor spreading
process by various random walks, distinguished by
whether the walks are lazy or non-lazy in each round.
Each walk is associated with a non-negative number
called its weight. A node u is informed within T rounds
if the total weight of random walks of length T reaching
u is positive. By Cauchy-Schwarz inequality, we lower
bound the probability of this event in terms of the
expectation of the total weights of the random walks
reaching u as well as its second moment.

Analysis of Markov Chains. We further show
that, by choosing the weights intelligently, the expecta-
tion and the second moment of the total weights reach-
ing a node are computed by certain Markov chains. The
expected total weights are computed by the chain M
representing a lazy random walk in the graph. It fol-
lows from the rapid mixing of M that it can be well
estimated using the stationary distribution of M. How-
ever, the case for the second moments is more compli-
cated as they correspond to a non-reversible Markov
chain M′. One key result we manage to show is that
M′ and M⊗M have very close stationary distributions
and comparable mixing time. This result is also very in-
teresting on its own, since M′ is a very natural Markov
chain and closely related to Doeblin coupling [30].

Simulating Pull by Push. While a randomness-
efficient protocol using a global seed can be easily
implemented in the push model, the “dual” protocol
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in the pull model is not physically realizable, as it
is impossible for a node to perform a random pull
operation before getting the random seed. Using the
technique called simulating pull by push, we are able
to use the analysis for pull operations while actually
performing push operations. This is crucial in our
analysis, since when most nodes already have the rumor,
the random walks defined via push operations become
too congested and correlated, whereas the “reversed”
random walks using pull operations work well.

1.3 Related Work Gossip and rumor spreading
have been extensively studied under various settings
and aspects over the past decades. The first line of re-
search focuses on the rumor spreading time and graph
expansion. Chierichetti et al. [5, 6] studied the rumor
spreading time and the conductance of the underlying
graph, and proved that the push-pull protocol informs
every node in Õ((1/φ) · log n) rounds with high prob-
ability, where φ is the conductance of the graph and
Õ(·) hides a poly log(1/φ) factor. Their result was im-
proved to O((1/φ) · log n) by Giakkoupis [19], and this
bound is tight. Sauerwald and Stauffer [34] proved
that, for any regular graph with vertex expansion α,
the push protocol informs every node in O((1/α)·log5 n)
rounds with high probability. Subsequent work on ru-
mor spreading versus vertex expansion includes [20, 21].
Giakkoupis [20] showed that the push-pull protocol in-
forms every node in O((1/α) · log2 n) rounds with high
probability, and this bound is tight.

While all these studies indicate that good expan-
sion properties imply fast rumor spreading, it was not
clear whether fast rumor spreading is also due to exten-
sive use of randomness in the whole process. Hence, the
second line of the research is to understand and deter-
mine the amount of randomness required in fast rumor
spreading and other gossip algorithms.

Doerr et al. [11] proposed a quasirandom version of
the rumor spreading push protocol: Every node has a
list of its neighbors, and chooses a random position on
the list when it gets the rumor the first time. From then
on, it informs its neighbors starting from that position
and continues in the order of the list. Their protocol
uses O(n log n) random bits in total, and informs every
node in polylogarithmic number of rounds with high
probability in several network topologies. Giakkoupis
and Woelfel [23] further presented a modification of the
quasirandom protocol which uses O(n log log n) random
bits in total and informs every node in O(log n) rounds
with high probability. Their result and analysis only
hold for complete graphs.

Recently, Giakkoupis et al. [22] introduced two low-
randomness rumor spreading protocols. Their protocols

are based on pairwise independent hash functions, and
Nisan’s pseudorandom generators. Comparing with the
fully-random protocol that requires O(n log n) random
bits in each round, the protocols in [22] only require
polylogarithmic number of random bits per round.
However, their analysis requires that the random choices
in different rounds are independent. Since Ω(log n)
random bits per round are needed in their analysis,
these two protocols need Ω(log2 n) random bits in total.

Randomness requirement of other gossip processes
has also been studied. Haeupler [26] studied the k-local
broadcast problem and the global broadcast problem,
and presented a deterministic protocol. These two prob-
lems in [26] assume that every node has one rumor and
the protocol requires Ω(log2 n) rounds, hence the tech-
niques of designing deterministic protocols developed
there seem difficult to be applied in our setting.

Finally, we note that our work is closely related to
multiple random walks [1, 15], derandomizing and de-
terministic random walks [8, 9], as well as derandomiz-
ing other distributed processes (e.g., averaging [3], and
load balancing [17]), for which the role of randomness
has been studied.

2 Preliminaries

Let G = (V,E) be a connected, undirected, and simple
graph with n nodes. For any node u, the degree of u is
represented by deg(u). Let ∆, δ and d be the maximum,
minimum and average degree of G, and call β , ∆/δ
the irregularity of G. The set of neighbors of a node u is
represented by N(u). Moreover, for any set S ⊆ V , let
N(S) ,

⋃
u∈S N(u), and vol(S) ,

∑
u∈S deg(u). For

any set S, T ⊆ V , we define

E(S, T ) , {{u, v} : u ∈ S and v ∈ T},

and e(S, T ) , |E(S, T )|.
Let AG be the adjacency matrix of G, and NG ,

D−1/2AGD−1/2, where D is the diagonal matrix de-
fined by Duu = deg(u) for u ∈ V [G]. Define the eigen-
values of NG by 1 = λ1 > · · · > λn > −1, and let
λmax , max{λ2, |λn|}. The spectral gap α is defined
by α , 1 − λ2, and let the absolute spectral gap be
1 − λmax. For simplicity, we also use α to express the
spectral expansion of a reversible Markov chain if the
chain is clear from the context.

For m ∈ N, vector u ∈ Rm and real number

p > 1, define the `p-norm by ‖u‖p = (
∑m
i=1 |ui|p)

1/p
. In

addition, we define ‖u‖∞ = max16i6m |ui|. The inner
product of two vectors u,v ∈ Rm is 〈u,v〉 =

∑m
i=1 uivi.

Let ei be the vector that has an one in the ith entry and
zero elsewhere. Write Im or I for the m × m identity
matrix. For a matrix M ∈ Rm×m′ , we use Mi,j to
denote the entry on M’s ith row and jth column. For
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p ∈ [1,∞) ∪ {∞}, define

‖M‖p = sup
u∈Rm\{0}

‖uM‖p
‖u‖p

,

where 0 is the zero vector. It is easy to show that ‖M‖1
equals the maximum of the `1-norms of the rows of M.
Moreover, ‖M‖∞ equals the maximum of the `1-norms
of the columns of M, or equivalently ‖Mᵀ‖1. We say
a square matrix M is stochastic if all of its entries are
non-negative and all of its rows have `1-norm 1. Clearly,
if M is stochastic, then ‖M‖1 = 1. We say M is doubly-
stochastic if both M and Mᵀ are stochastic.

By log x we denote the binary logarithm of x. For
any integer m, define [m] , {0, . . . ,m−1}. The disjoint
union of a family of sets {Ai : i ∈ I} indexed by I is
denoted by

⊔
i∈I Ai ,

⋃
i∈I{(x, i) : x ∈ Ai}.

2.1 Pairwise Independent Generators We say
X0, . . . , Xd−1 with Xi distributed over [mi] are ε-
pairwise independent if

•
∣∣∣Pr [Xi = x ]− 1

mi

∣∣∣ 6 ε for all i ∈ [d] and x ∈ [mi],

and

•
∣∣∣Pr [Xi = x ∧Xj = x′ ]− 1

mi·mj

∣∣∣ 6 ε for all dis-

tinct i, j ∈ [d] and all x ∈ [mi], x
′ ∈ [mj ].

We say they are pairwise independent if ε = 0. We say
G : {0, 1}` 7→ [m0] × · · · × [md−1] is an (ε-)pairwise
independent generator if its outputs are (ε-)pairwise
independent given a uniformly distributed seed.

Theorem 2.1 ([4]). There exists an explicit pairwise
independent generator G : {0, 1}` 7→ [m]d with seed
length ` = O(logm+ log d).

Lemma 2.2. Suppose G = (G0, . . . ,Gd−1) is a pairwise
independent generator where Gi : {0, 1}` 7→ [m]. Define
G′ = (G′0, . . . ,G′d−1), where G′i(x) = Gi(x) mod mi for

i ∈ [d]. Then G′ : {0, 1}` 7→ [m0] × · · · × [md−1] is an
ε-pairwise independent generator, where ε = 2/m.

2.2 PRGs for Combinatorial Rectangles Given
d ∈ N and a finite set S =

∏
i∈[d] Si, define CRS ,{∏

i∈[d]Ai : Ai ⊆ Si
}

. The members of CRS are called

combinatorial rectangles in S and d the dimension. For
ε > 0, d ∈ N, and S =

∏
i∈[d] Si, we call G : {0, 1}` 7→ S

an ε-PRG for CRS with seed length ` if it holds for any
A ∈ CRS that∣∣Prx∈{0,1}` [G(x) ∈ A ]− |A|/|S|

∣∣ 6 ε.

Theorem 2.3 ([24]). Let S = [m]d. There exists
an explicit ε-PRG for CRS with seed length O(logm +

log d) + Õ(log(1/ε)). 2

Lemma 2.4. Suppose G = (G0, . . . ,Gd−1) is an ε-PRG
for CRS where S = [m]d. Define G′ = (G′0, . . . ,G′d′−1),
where G′j(x) = Gij (x) mod mj for j ∈ [d′] and
i0, . . . , id′−1 ∈ [d]. Then G′ is an (ε +

∑
i∈[d′]mi/m)-

PRG for CRS′ , where S′ =
∏
i∈[d′][mi].

Lemma 2.5. There exists an explicit function G :
{0, 1}` 7→ [m]d that is both a pairwise independent
generator and an ε-PRG for CR[m]d with seed length

O(logm+ log d) + Õ(log(1/ε)).

2.3 PRGs for Branching Programs A branching
program of length L, width W and degree D, or
an (L,W,D)-branching program, is a directed (multi)-
graph with node set [W ] × [L + 1]. We say the nodes
in [W ] × {i} are on the ith layer for 0 6 i 6 L. Each
node (u, i) except those on the last layer has D outgoing
edges to nodes on the next layer, and these D edges are
associated with D distinct labels from [D].

Let B be a branching program of length L, width
W and degree D. For x = (x1, . . . , xL) ∈ [D]L and a
node (s, 0) on the first layer, define B(s, x) ∈ [W ] such
that the walk that starts from (s, 0) and takes the edge
with label xi at the ith step for 1 6 i 6 L finally arrives
at (B(s, x), L). We call a function G : {0, 1}` 7→ [D]L

an ε-PRG for (L,W,D)-branching programs if for any
(L,W,D)-branching program, and any node (s, 0) on
the first layer, it holds that∑

u∈[W ]

∣∣∣Prx∈{0,1}` [B(s,G(x)) = u ]−

Prx∈[D]L [B(s, x) = u ]
∣∣∣ 6 ε.

Theorem 2.6 ([28]). There exists an explicit ε-
PRG for (L,W,D)-branching programs with seed length
O(logL(logW + logL+ log(1/ε)) + logD).

2.4 Unbalanced Expanders Another family of
pseudorandom objects used in our paper is called un-
balanced expanders.

Definition 2.7. Let Γ : [N ] × [D] 7→
⊔
i∈[D][Mi] be a

function where Γ(x, y) ∈ [My] for any x ∈ [N ], y ∈ [D].
Function Γ specifies a left-degree D bipartite graph with
left vertex set [N ] and right vertex set

⊔
i∈[D][Mi] in the

2In [24] the seed length is presented as O((log logm)(logm +
log d+log(1/ε)))+Õ(log(1/ε)). But there are standard techniques
of reducing m and d to m′ = (1/ε)O(1), d′ = (1/ε)O(1) using
O(logm+ log d) randomness, cf. [2, 31].
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following way: for x ∈ [N ] and y ∈ [D], the yth neighbor
of x is given by Γ(x, y).

We are interested in graphs Γ exhibiting excellent
expansion properties. This leads to the notion of
unbalanced expanders [25, 36].

Definition 2.8 (Unbalanced expanders, [25, 36]). Let
Γ : [N ]× [D] 7→

⊔
i∈[D][Mi] be as in Definition 2.7. We

call Γ a (K,A)-expander if for any S ⊆ [N ] of size K, it
holds that |N(S)| > AK. We call Γ a (6K,A)-expander
if it is a (K ′, A)-expander for all K ′ 6 K. 3

In particular, we are interested in (K,A)-expanders,
where the parameter A = (1 − ε)D for small ε, i.e.,
for any subset S of size K from the left set [N ], there
is almost no collision among the neighbors of nodes in
S. Explicit constructions of such unbalanced expanders
with near-optimal expansion are known.

Theorem 2.9 ([25]). For any N ∈ N, K 6 N , and
ε > 0, there is an explicit (K, (1 − ε)D)-expander

Γ : [N ] × [D] 7→
⊔
i∈[D][Mi] with D =

(
logN
ε

)O(1)

and

M0 = · · · = MD−1 6 max
{
D,KO(1)

}
.

Assume that Γ : [N ] × [D] 7→
⊔
i∈[D][Mi] is a

(K, (1 − ε)D)-expander. We consider the map Γ(·, U)
applied on any K elements of [N ], where U is uniformly
distributed over [D]. The following lemma states that
with high probability these K elements are mapped into⊔
i∈[D][Mi] with almost no collision.

Lemma 2.10. Let Γ : [N ] × [D] 7→
⊔
i∈[D][Mi] be a

(K, (1− ε)D)-expander. Let S be a subset of [N ] of size
K. Then for at least (1−

√
ε)-fraction of y ∈ [D], it

holds that

|{Γ(x, y) : x ∈ S}| > (1−
√
ε)K.

3 Gossip vs. Markov Chains

Let G be a graph with V [G] = [n]. We consider only
T ′-round protocols for G, in which nodes send rumors
in the first T ′ rounds, and assume that T ′ = O(nc) for
a constant c. Throughout this section, we assume that
each node has a unique ID, and each node initially only
knows its own ID ∈ [nc]. Let s be the initial node having
the rumor. For simplicity, we assume that the adjacency
list of each node u has length ∆, and the last ∆−deg(u)
neighbors are u itself, i.e., we add ∆− deg(u) self-loops
for every node u. We call the resulting regular graph
Reg(G). However, we use deg(u) and N(u) to represent
the degree and the set of neighbors of u in the underlying
simple graph.

3The definition here is slightly different from [25, 36] as we
require Γ(x, y) ∈ [My ]. This is analogous to the difference between
standard and strong condensers.

3.1 Analysis of the Prototype Protocol We
present our new techniques of analyzing rumor spread-
ing processes via Markov chains, and show how the mix-
ing time of certain Markov chains relates to the rumor
spreading time. We first analyze the following prototype
of rumor spreading protocols.

Protocol 1 (Prototype of Rumor Spreading). Let D be
a distribution over the set of functions f : [T ]×V [G] 7→
[∆]. Sample f according to D. In round i, an informed
node u sends the rumor to its f(i, u)th neighbor in its
adjacency list.

We analyze Protocol 1 where D = U is the uniform
distribution, i.e., the fully-random protocol where every
informed node chooses its neighbor uniformly at ran-
dom, and derive the rumor spreading time for general
graphs in the standard push model. One new approach
that we introduce in studying Protocol 1 is to approx-
imate the rumor spreading process via random walks,
i.e., we compare the process of rumor spreading with
a random walk on a branching program. For random
walks, a walk always stays at a single node during the
process, although this node keeps changing. On the
other hand, in the process of rumor spreading, each in-
formed node u randomly sends the rumor to one of its
neighbors v in each round, and then u, v are both in-
formed subsequently. So we may think of rumor spread-
ing as many random walks in parallel: When node u
sends the rumor to v, one random walk makes a non-
lazy step and moves from u to v whereas another one
makes a lazy step and stays at u. In order to charac-
terize this behavior, we introduce the notion of forward
and reversed random walks. For any round i ∈ [T ] and

node u ∈ V [G], denote by f̃(i, u) the ID of the f(i, u)th
neighbor of u in its adjacency list.

Definition 3.1 (Forward random walks). Consider
the rumor spreading process in T rounds on a graph
G using Protocol 1 determined by f ∼ D = U . A
forward random walk of length k ∈ [T ] with pattern S =
(s0, . . . , sk−1) ∈ Ck , {lazy,non-lazy}k is a sequence of
k + 1 nodes (p0, . . . , pk) of G, such that for all i ∈ [k]:
(1) if si = lazy, then pi+1 = pi; (2) if si = non-lazy,

then pi+1 = f̃(i, pi).

We also define reversed random walks, tailored
to the idea of simulating pull operations using push
operations. The basic idea of the reversed random walk
is to view a push operation (or one step of a forward
walk) as a pull operation (or one step of a reversed
walk). However, there are several complications: (1)
we let v “pull from u” only if u is the unique node
pushing to v, since v is not allowed to pull from
multiple nodes at the same time; (2) we need to use
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auxiliary randomness ri,u to equalize the probabilities of
successful pull operations made by different nodes4; (3)
we want the pull operations to be pairwise independent.
In particular, two nodes u and v pull from their common
neighbor w at the same time with probability 1/∆2. To
realize this, we combine two rounds into one round so
that w can send two rumors, say to a and b at the same
time. Also, note that there are two cases when w pushes
to both u and v, or equivalently u and v both pull from
w: (a, b) = (u, v) or (a, b) = (v, u). We admit only one
of them, so that the event occurs with probability 1/∆2

rather than 2/∆2. The formal definition of the reversed
random walks is as follows:

Definition 3.2 (Reversed random walks). Consider a
random rumor spreading process in T rounds on a graph
G using Protocol 1 determined by its own randomness
f ∼ D = U . Pick real numbers ri,u independently and
uniformly from [0, 1] for all i ∈ [T/2] and u ∈ V [G].

Fix an arbitrary total order � on V [G]. For i ∈
[T/2] and u ∈ V [G], define set Ni,u by

Ni,u =
{
f̃(T − 1− 2i, u), f̃(T − 2− 2i, u)

}
if f̃(T − 1 − 2i, u) � f̃(T − 2 − 2i, u), and Ni,u = ∅
otherwise. Moreover, let

N∨i,u = {v ∈ V [G] : v 6= u and u ∈ Ni,v} .

A reversed random walk of length k ∈ [T/2] with pattern
S = (s0, . . . , sk−1) ∈ Ck is a sequence of k + 1 nodes
(p0, . . . , pk) of G, such that for all i ∈ [k] the following
properties hold: (1) if si = lazy, then pi+1 = pi; (2)
if si = non-lazy, then pi+1 = u if N∨i,pi = {u} is a

singleton and ri,pi 6 (1 − 1/∆)∆−deg(u), and otherwise
pi+1 = pi.

Now we use forward and reversed random walks to
analyze the rumor spreading process. For k ∈ [T/2],
u, v ∈ V [G] and S ∈ Ck = {lazy,non-lazy}k, let XS

u,v

(resp. Y Su,v) be the indicator random variable of the
event that the unique forward (resp. reversed) walk
with pattern S and initial node u is at node v at the kth
step. We use the following distributions in our analysis:

• Let Dγ,k be the distribution over Ck where entries
are independently chosen to be lazy with probabil-
ity 1− γ.

• Let r = (f, {ri,u}) be the whole randomness used in
forward random walks and reversed random walks.
Let D̃ be the distribution of r, which is the product
of D with copies of the uniform distributions over
[0, 1].

4The auxiliary randomness only appears in the analysis.

We fix an arbitrary node w ∈ V [G], and study
the probability that node w is informed in T rounds.
Clearly, if there exist a forward random walk p from s
to some node u and a reversed random walk p′ from w
to u, then the rumor is sent from s to u following p and
then from u to w following the reversal of p′. Also, these
two walks exist if and only if XS

s,uY
S′

w,u > 0 for some S,
S′ and u. Therefore it holds for any k ∈ [T/4] that 5

Prf∼D [w receives the rumor in T rounds ]

> Prr∼D̃

 ∑
S,S′∈Ck,u∈V [G]

XS
s,uY

S′

w,u > 0

 .(3.1)

Now we reduce the global event∑
S,S′∈Ck,u∈V [G]X

S
s,uY

S′

w,u > 0 to local events XS
s,u

and Y S
′

w,u. By Cauchy-Schwarz inequality and linearity
of expectation, we prove that (3.1) is lower bounded by

(3.2)

∑
u,v

Er,S

[
XS
s,u

]
Er,S

[
XS
s,v

]
Er,S

[
Y Sw,u

]
Er,S

[
Y Sw,v

]
∑
u,v

Er,S,S′
[
XS
s,uX

S′
s,v

]
Er,S,S′

[
Y Sw,uY

S′
w,v

]
where the subscripts r, S and S′ are independent with
distributions D̃, Dγ,k and Dγ,k respectively. Hence
the rumor spreading time of Protocol 1 can be derived
by analyzing multiple random walks individually or
pairwisely. This presents a new approach to analyze the
rumor spreading time, where informed nodes can choose
their neighbors according to a general distribution.

Now we study the expectations in (3.2) in terms of
finite-state Markov chains. For simplicity, we represent
these Markov chains by stochastic matrices. Recall that
a stochastic matrix M′′ ∈ Rn×n ⊗ Rn×n is a coupling
of M,M′ ∈ Rn×n if (1)

∑
x∈[n] M

′′
(u,w)(v,x) = Mu,v for

any u,w, v ∈ [n], and (2)
∑
v∈[n] M

′′
(u,w)(v,x) = M′

w,x

for any u,w, x ∈ [n].
We define the “bi-lazy” analogue of lazy Markov

chains with respect to a coupling, where the two chains
choose to be lazy or non-lazy independently.

Definition 3.3. For γ ∈ [0, 1], let

Lγ(M) , (1− γ)I + γM

be the lazy Markov chain.

Definition 3.4 (Lazy coupling). Let M′′ be a coupling
of M,M′ ∈ Rn×n. For γ, γ′ ∈ [0, 1], define

Lγ,γ′(M′′) ,(1− γ)(1− γ′)(I⊗ I) + (1− γ)γ′(I⊗M′)

+ γ(1− γ′)(M⊗ I) + γγ′M′′.

5 We let k ∈ [T/4] rather than [T/2] as for technical reasons,
since we have to define reversed walks in the way that each step
takes two rounds instead of one.
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Note that Lγ,γ′(M′′) is a coupling of Lγ(M) and
Lγ′(M′).

Definition 3.5 (Doeblin coupling, [30]). Let M ∈
Rn×n be a stochastic matrix. The Doeblin coupling
Q(M) of two copies of M is defined as

Q(M)(u,w)(v,x) ,


(M⊗M)(u,w)(v,x) u 6= w,

Mu,v u = w, v = x,

0 u = w, v 6= x.

Using the above definitions, we are able to char-
acterize the expectations in (3.2) in terms of Markov
chains. For instance, the first and second mo-

ments Er,S

[
XS
u,v

]
and Er,S,S′

[
XS
u,vX

S′

w,x

]
about for-

ward random walks are characterized by the chains
Lγ
(
MReg(G)

)
and Lγ,γ ◦Q

(
MReg(G)

)
respectively, and

similar results hold for reversed random walks.

Lemma 3.6. Let r, S and S′ be independent with
distributions D̃ (induced by D = U), Dγ,k and Dγ,k
respectively. Then for stochastic matrices M1 =
Lγ
(
MReg(G)

)
, M2 = Lγ,γ ◦ Q

(
MReg(G)

)
, M3 = Lγ ◦

Lγ′
(
MReg(G)

)
, M4 = Lγ,γ ◦ Q ◦ Lγ′

(
MReg(G)

)
, γ′ ,

(1 − 1/∆)∆−1, and any u, v, w, x ∈ V [G], the following
statements hold:

1. Er,S

[
XS
u,v

]
=
〈
euM

k
1 , ev

〉
,

2. Er,S,S′

[
XS
u,vX

S′

w,x

]
=
〈
e(u,w)M

k
2 , e(v,x)

〉
,

3. Er,S

[
Y Su,v

]
=
〈
euM

k
3 , ev

〉
, and

4. Er,S,S′

[
Y Su,vY

S′

w,x

]
=
〈
e(u,w)M

k
4 , e(v,x)

〉
.

Notice that matrixQ(M) agrees with M⊗M except
on the rows indexed by (u, u), u ∈ V [G]. This is a
manifestation of the fact that the “non-lazy” steps from
the same node made by two different forward/reversed
random walks are not independent, i.e., every informed
node can only send the rumor to one neighbor in
each round. Despite this complication, we show that
Lγ,γ ◦ Q(M) is actually quite close to Lγ,γ(M⊗M) =
Lγ(M)⊗ Lγ(M):

Lemma 3.7. Suppose that M ∈ Rn×n is a doubly-
stochastic matrix with spectral gap α > 0, and suppose
Mu,v 6 η for any distinct u, v ∈ V [G]. Then for
any distribution u over V [G] × V [G], k ∈ N, and
0 6 γ 6 min

{
1/3, αη−1/2/9

}
, we have∥∥∥u (Lγ,γ ◦ Q(M))

k − π ⊗ π
∥∥∥

2

6 (1− γα/2)k + 2
√

2γα−1n−3/2,

where π denotes the uniform distribution over V [G].

Corollary 3.8. Let M, γ and α be as in Lemma 3.7.
Let π′ be the stationary distribution6 of Lγ,γ ◦ Q(M).
Then

‖π′ − π ⊗ π‖2 6 (1− γα/2)k + 2
√

2γα−1n−3/2.

Define the `1-mixing time

τ̄(ε) , max
u

min{k : ‖u (Lγ,γ ◦ Q(M))
k −π⊗π‖1 6 ε},

where u ranges over all distributions over V [G]×V [G].
Assuming γα−1 = O(n1/2−c) for some constant c > 0,
we have τ̄(ε) = O(γ−1α−1(log n+ log ε−1)).

We know that the stationary distribution of Q(M)
is the uniform distribution over the set of diagonal
entries {(u, u) : u ∈ V [G]}. So is the stationary
distribution of the lazy chain Lγ ◦ Q(M) for any γ ∈
(0, 1]. Interestingly, Corollary 3.8 tells us that the “bi-
lazy” chain Lγ,γ ◦Q(M) behaves very differently, as its
stationary distribution is close to π ⊗ π instead.

Using the rapid mixing of Lγ
(
MReg(G)

)
and Lγ,γ ◦

Q(M) (and similar chains for reversed random walks),
we have the following upper bound of the rumor spread-
ing time of Protocol 1:

Theorem 3.9. Let G be a graph with n nodes, spectral
expansion α ∈ (0, 1), and irregularity β. Protocol 1
with the distribution D = U informs all nodes in
T = O(C log n) rounds with high probability, where
C = (1/α) · β2 ·max{1, 1/(α ·∆0.499)}.

We remark that the analysis above provides a
fundamentally new approach to analyze the rumor
spreading process, and the rumor spreading time is
tight for certain graph families. For instance, for
any expander graph with n nodes and β = O(1),
Protocol 1 informs all nodes in O(log n) rounds with
high probability, which is known to be tight.

3.2 Proof of Lemma 3.7 In this subsection, we will
show that Lγ,γ ◦ Q(M) behaves similarly as Lγ(M) ⊗
Lγ(M), in the sense that it almost preserves the vector
π ⊗ π and shrinks vectors orthogonal to π ⊗ π. For a
distribution u over V [G] × V [G], we have the decom-
position u = π ⊗ π + u⊥, where u⊥ , u − π ⊗ π is
orthogonal to π ⊗ π. The following two results will be
used in our proof.

Lemma 3.10. Let M, π and γ be as in Lemma 3.7.
Then ∥∥((π ⊗ π)Lγ,γ ◦ Q(M))⊥

∥∥
2
6
√

2γ2n−3/2.

6The laziness and α > 0 guarantee that Lγ,γ ◦Q(M) is ergodic
and has a unique stationary distribution.
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Lemma 3.11. Let M, π and γ be as in Lemma 3.7.
For any vector u ∈ Rn ⊗ Rn orthogonal to π ⊗ π, we
have uLγ,γ ◦ Q(M) ⊥ π ⊗ π and

‖uLγ,γ ◦ Q(M)‖2 6
(

1− (1− γ)γα+ γ2
√

2η
)
‖u‖2.

Proof of Lemma 3.7. Note that we are bounding the `2-
norm of

u (Lγ,γ ◦ Q(M))
k − π ⊗ π =

(
u (Lγ,γ ◦ Q(M))

k
)⊥

.

The proof is based on the induction on k. When k = 0,
we have∥∥∥∥(u (Lγ,γ ◦ Q(M))

k
)⊥∥∥∥∥

2

6
∥∥∥u (Lγ,γ ◦ Q(M))

k
∥∥∥

2
6 1,

and hence the claim holds. For k > 0, assume the claim
holds for k′ < k. Let v = u (Lγ,γ ◦ Q(M))

k−1
. We have(

u (Lγ,γ ◦ Q(M))
k
)⊥

= (vLγ,γ ◦ Q(M))
⊥

= ((π ⊗ π)Lγ,γ ◦ Q(M))
⊥

+
(
v⊥Lγ,γ ◦ Q(M)

)⊥
.

By Lemma 3.10, we have

‖ ((π ⊗ π)Lγ,γ ◦ Q(M))
⊥ ‖2 6

√
2γ2n−3/2.

By Lemma 3.11, we have(
v⊥Lγ,γ ◦ Q(M)

)⊥
= v⊥Lγ,γ ◦ Q(M),

whose `2-norm is at most(
1− (1− γ)γα+ γ2

√
2η
)
‖v‖2 6 (1− γα/2)‖v‖2,

where we use the condition γ 6
{

1/3, αη−1/2/9
}

. This
is bounded by

(1− γα/2)
(

(1− γα/2)k−1 + 2
√

2γα−1n−3/2
)

= (1− γα/2)k + 2
√

2γα−1n−3/2(1− γα/2),

by the induction hypothesis. Then,∥∥∥∥(u (Lγ,γ ◦ Q(M))
k
)⊥∥∥∥∥

2

6
∥∥∥((π ⊗ π)Lγ,γ ◦ Q(M))

⊥
∥∥∥

2
+
∥∥∥(v⊥Lγ,γ ◦ Q(M)

)⊥∥∥∥
2

6
√

2γ2n−3/2 + (1− γα/2)k+

2
√

2γα−1n−3/2(1− γα/2)

= (1− γα/2)k + 2
√

2γα−1n−3/2,

as desired.

3.3 Proof of Theorem 3.9 We are now ready to
derive a bound on the runtime of Protocol 1. It suffices
to prove the following lemma:

Lemma 3.12. Let G be a graph with n nodes, spectral
gap α ∈ (0, 1), and irregularity β. Using Protocol 1 with
distribution D = U , any node gets the rumor in T =
O(C log n) rounds with probability at least 1−O(n−2c),
where C = (1/α) · β2 max{1, 1/(α ·∆0.5−c)} and c > 0
is an arbitrary small constant.

We first define the `2-mixing time τM(ε), and
present an upper bound of τM(ε), which will be used
in our proof. For an ergodic Markov chain represented
by the stochastic matrix M and ε > 0, define its `2-
mixing time as

τM(ε) = max
u

min{k : ‖uMk − π‖2 6 ε},

where π is the stationary distribution of M and u ranges
over all distributions over the state set of the chain.

Lemma 3.13 ([33]). Suppose that M ∈ Rn×n repre-
sents a reversible Markov chain with absolute spectral
gap α > 0. Then it holds that τM(ε) < log1−α ε+ 1.

Proof of Lemma 3.12. Let s ∈ V [G] be the initial node,
and fix a target node w ∈ V [G]. Let c > 0 be any
constant. Choose

γ = min
{

1/3,∆0.5−cα/9
}
6 n0.5−cα/9.

Choose k = (γγ′α)−1β2 log n + 1, and let T = 4k. So
T = O(C log n). Define the distributions u = esM

k
1 ,

v = e(s,s)M
k
2 , u′ = ewMk

3 , and v′ = e(w,w)M
k
4 , where

M1, . . . ,M4 are as in Lemma 3.6. Let π be the uniform
distribution over V [G]. As before, let u⊥ = u − π and
v⊥ = v − π ⊗ π, and similarly for u′ and v′. By (3.2)
and Lemma 3.6, the probability that w gets the rumor
in k rounds is lower bounded by

(3.3)

∑
u,v∈V [G]〈u, eu〉〈u, ev〉〈u′, eu〉〈u′, ev〉∑

u,v∈V [G]

〈
v, e(u,v)

〉 〈
v′, e(u,v)

〉
=
〈u,u′〉2

〈v,v′〉
=

(
1/n+ 〈u⊥,u′⊥〉

)2
1/n2 + 〈v⊥,v′⊥〉

.

Note that M1 = Lγ
(
MReg(G)

)
and M3 =(

Lγ ◦ Lγ′
(
MReg(G)

))
have absolute spectral gaps

γαβ−2 and γγ′αβ−2, respectively. This follows from the
definition of lazy Markov chains (Also, the laziness guar-
antees that the eigenvalues are all non-negative, and
hence the bounds are about absolute spectral gaps, not
just spectral gaps). By Lemma 3.13 and the fact that

k > (γγ′α)−1β2 log n+ 1 > log1−γγ′αβ−2(1/n) + 1,
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we have |〈u⊥,u′⊥〉| 6
∥∥u⊥∥∥

2

∥∥u′⊥∥∥
2

6 1/n2. By
Lemma 3.7 (with η = 1/∆), we have

|〈v⊥,v′⊥〉| 6
∥∥v⊥∥∥

2

∥∥v′⊥∥∥
2

6
(

(1− γα/2)k + 2
√

2γα−1n−3/2
)2

6 1/n2+2c.

So (3.3) is lower bounded by

(1/n− 1/n2)2

1/n2 − 1/n2+2c
= 1−O(n−2c).

Theorem 3.9 is obtained by repeating the protocol
O(1) times and applying the union bound.

3.4 A Randomness-Efficient Protocol The dis-
cussion above relates the rumor spreading process to
multiple random walks. The transitions of these ran-
dom walks from a fixed node only depend on lo-
cal information and are characterized by combinato-
rial rectangles. This memoryless property of random
walks/Markov chains allows us to compute them in log-
space, or branching programs with polynomial width.
Using PRGs for combinatorial rectangles and those for
branching programs, we obtain the distribution which
is samplable with a short random seed and has almost
the same performance as D = U in Protocol 1. This
gives Protocol 2, which corresponds to Theorem 1.1.

Protocol 2. Pick the following objects: (1) an ex-
plicit ε-PRG G = (G0, . . . ,Gn−1) : {0, 1}` 7→ [m]n

for CR[m]n with seed length `, and (2) an explicit ε′-

PRG G′ = (G′0, . . . ,G′T/2−1) : {0, 1}`′ 7→
(
{0, 1}`

)T/2
for (T/2, n2, 2`)-branching programs with seed length `′,
where ε−1, ε′−1,m = nΘ(1) are sufficiently large.

The initial node having the rumor independently
chooses random strings x, y ∈ {0, 1}`′ . These random
strings are appended with the rumor and sent to other
nodes. (1) In the ith round for 0 6 i < T/2, an
informed node u sends the rumor to the neighbor with
index Gu(G′i(x)) mod ∆ in its adjacency list. (2) In the
ith round for T/2 6 i < T , let j = bT−i−1

2 c. For u ∈
V [G], let (r0, r1) = Gu(G′j(y)) mod ∆2 ∈ [∆]2. Then u
sends the rumor to the r0th neighbor if i = T − 1− 2j,
or to the r1th neighbor if i = T − 2− 2j.

Setting

C = (1/α) · β2 ·max
{

1, 1/(α ·∆0.499)
}
,

Protocol 2 uses 2`′ random bits, and with high prob-
ability informs all nodes in T = O(C log n) rounds.
The main technique behind designing Protocol 2 is
a reduction from PRGs for branching programs to
rumor spreading protocols. This reduction implies

the following results: First, combining the reduction
with known explicit constructions of PRGs (Theorem
2.3, Theorem 2.6), we obtain Theorem 1.1. Second,
we show that the existence of an explicit ε-PRG for(
max{T/2, n}, n2, nΘ(1)

)
-branching programs with seed

length O(log n) and ε−1 = nΘ(1) implies an explicit
rumor spreading protocol which uses O(log n) random
bits, and with high probability informs all nodes in
T = O(C log n) rounds (Theorem 3.17). That is, ex-
plicit constructions of PRGs for branching programs
with the optimal parameters imply explicit construc-
tions of optimal rumor spreading protocols for expander
graphs with respect to both the rumor spreading time
and the randomness complexity. This suggests that
there may exist some further and interesting connec-
tions between gossip processes and branching programs.

3.5 Analysis of Protocol 2 In this subsection, we
analyze Protocol 2, and prove Theorem 1.1. Let P
be the distribution over the set of functions f : [T ] ×
V [G] 7→ [∆] associated with Protocol 2. The values
f(i, u) in the ith round are generated using the PRG
G, and the seeds of G in different rounds are generated
by the PRG G′. We will show that Protocol 1 with
distribution D = P has almost the same performance
as the one with D = U . As an intermediate step,
we consider the distribution P ′ defined as follows: the
values of f in each round are determined by the PRG G
in the same way as for P but the seeds of G in different
rounds are now independent and random, instead of
being generated by G′. With D = P ′, Definition 3.1
and Definition 3.2 about random walks are still valid,
and the lower bound of (3.2) still holds by exactly the
same proof. Moreover, Lemma 3.6 “almost holds” in
the following sense.

Lemma 3.14. Let r, S and S′ be independent with
distributions D̃ (induced by D = P ′), Dγ,k and
Dγ,k, respectively. Then there exist stochastic matri-
ces M′

1,M
′
3 ∈ Rn×n, M′

2,M
′
4 ∈ Rn×n⊗Rn×n such that

‖M′
i−Mi‖1 6 12γ∆2(ε+ 2∆3/m) for 1 6 i 6 4, where

Mi are as in Lemma 3.6 and ε,m are as in Protocol
2. Moreover, for any u, v, w, x ∈ V [G], the following
statements hold:

1. Er,S

[
XS
u,v

]
=
〈
euM

′k
1 , ev

〉
,

2. Er,S,S′

[
XS
u,vX

S′

w,x

]
=
〈
e(u,w)M

′k
2 , e(v,x)

〉
,

3. Er,S

[
Y Su,v

]
=
〈
euM

′k
3 , ev

〉
,

4. Er,S,S′

[
Y Su,vY

S′

w,x

]
=
〈
e(u,w)M

′k
4 , e(v,x)

〉
.
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Next we consider the case D = P. By the same
proof, we can show that (3.1) is lowered bounded by
(3.2). Furthermore we show that the expectations are
almost the same as in D = P ′, since they can be
computed by small-width branching programs:

Lemma 3.15. For any u,w ∈ V [G], the quantities

(3.4)
∑

v∈V [G]

∣∣∣Er∼P̃′,S
[
XS
u,v

]
−Er∼P̃,S

[
XS
u,v

]∣∣∣
and
(3.5)∑
v,x∈V [G]

∣∣∣Er∼P̃′,S,S′
[
XS
u,vX

S′

w,x

]
−Er∼P̃,S,S′

[
XS
u,vX

S′

w,x

]∣∣∣
are bounded by ε′, where P̃ (resp. P̃ ′) is the distribution
of r induced by P (resp. P ′), S, S′ in the subscripts are
independent and have distribution Dγ,k, and ε′ is as in
Protocol 2. The same statement holds with XS

u,v and

XS
w,x replaced by Y Su,v and Y Sw,x, respectively.

Now we are ready to prove a derandomized version
of Lemma 3.12.

Theorem 3.16. Let G be a graph with spectral gap α
and irregularity β. Using Protocol 1 with distribution
D = P, any node gets the rumor in T = O(C log n)
rounds with probability at least 1 − n−2c, where C =
(1/α)·β2 max{1, 1/(α·∆0.5−c)} and c > 0 is an arbitrary
small constant.

Proof. Let s ∈ V [G] be the initial node, and fix a
target node w ∈ V [G]. Let c, γ, k, T,π,u,u′,v,v′ be
as in the proof of Lemma 3.12 and T = O(C log n).
Define ū = esM

′k
1 , v̄ = e(s,s)M

′k
2 , ū′ = ewM′k

3 , and

v̄′ = e(w,w)M
′k
4 , where M′

1, . . . ,M
′
4 are as in Lemma

3.14. Then

‖ū− u‖1 =
∥∥∥es (M′k

1 −Mk
1

)∥∥∥
1
6
∥∥∥M′k

1 −Mk
1

∥∥∥
1

6 k
∥∥M′

1 −M1

∥∥
1
6 kε0,

where ε0 = 12γ∆2(ε + 2∆3/m) (cf. Lemma 3.14).
Here the second inequality holds by a simple induc-
tion on k. Similarly ‖ū′ − u′‖1, ‖v̄ − v‖1, ‖v̄′ − v′‖1 6
kε0. Define ũ, ũ′ ∈ Rn and ṽ, ṽ′ ∈ Rn ⊗ Rn such
that ũu = Er,S

[
XS
s,u

]
, ũ′u = Er,S

[
Y Sw,u

]
, ṽu,v =

Er,S,S′
[
XS
s,uX

S
s,v

]
and ṽ′u,v = Er,S,S′

[
Y Sw,uY

S
w,v

]
,

where r, S and S′ are independent with distributions
P̃ (induced by P), Dγ,k and Dγ,k, respectively. Then
Lemma 3.14 and Lemma 3.15 altogether imply that
‖ũ − ū‖1 6 ε′ and hence ‖ũ − u‖1 6 kε0 + ε′. Ob-
viously we have ‖ũ− u‖∞ 6 1. By Hölder’s inequality,
we have ‖ũ− u‖2 6

√
kε0 + ε′. Similarly,

‖ũ′ − u′‖2, ‖ṽ − v‖2, ‖ṽ′ − v′‖2 6
√
kε0 + ε′,

As shown in the proof of Lemma 3.12, we have∥∥u⊥∥∥
2
,
∥∥u′⊥∥∥

2
6 1/n, and

∥∥v⊥∥∥
2
,
∥∥v′⊥∥∥

2
6 n−(1+c).

Note that

ũ⊥ = ũ− π = (ũ− u) + (u− π) = (ũ− u) + u⊥.

So we have
∥∥∥ũ⊥∥∥∥

2
6
√
kε0 + ε′ + 1/n and similarly∥∥∥ũ′⊥∥∥∥

2
6
√
kε0 + ε′ + 1/n, and

∥∥∥ṽ⊥∥∥∥
2
,
∥∥∥ṽ′⊥∥∥∥

2
6

√
kε0 + ε′ + n−(1+c).

By (3.1) and (3.2), the probability that node w gets
the rumor in k rounds is lower bounded by

(3.6)

∑
u,v∈V [G]〈ũ, eu〉〈ũ, ev〉〈ũ

′, eu〉〈ũ′, ev〉∑
u,v∈V [G]

〈
ṽ, e(u,v)

〉 〈
ṽ′, e(u,v)

〉
=

〈
ũ, ũ′

〉2〈
ṽ, ṽ′

〉 =

(
〈π,π〉+

〈
ũ⊥, ũ′⊥

〉)2

〈π ⊗ π,π ⊗ π〉+
〈
ṽ⊥, ṽ′⊥

〉
=

(
1/n+

〈
ũ⊥, ũ′⊥

〉)2

1/n2 +
〈
ṽ⊥, ṽ′⊥

〉
.

We have∣∣∣〈ũ⊥, ũ′⊥
〉∣∣∣ 6 ∥∥∥ũ⊥∥∥∥

2

∥∥∥ũ′⊥∥∥∥
2

= O
(
kε0 + ε′ + n−2

)
,∣∣∣〈ṽ⊥, ṽ′⊥

〉∣∣∣ 6 ∥∥∥ṽ⊥∥∥∥
2

∥∥∥ṽ′⊥∥∥∥
2

= O
(
kε0 + ε′ + n−(2+2c)

)
.

So (3.6) is lower bounded by 1−O(n2(kε0 +ε′)+n−2c),
where ε0 = 12γ∆2(ε + 2∆3/m). The claim follows
since we pick ε−1, ε′−1,m = nΘ(1) sufficiently large in
Protocol 2.

By repeating the protocol O(1) times and applying
the union bound, we obtain the following result, which
implies Theorem 1.1.

Theorem 3.17. Given an explicit ε-PRG for CR[m]n

with seed length ` and an explicit ε′-PRG for
(T/2, n2, 2`)-branching programs with seed length `′,
where ε−1, ε′−1,m = nΘ(1) are sufficiently large, there
exists an explicit protocol using 2`′ random bits such
that, with high probability all nodes get the rumor in
T = O(C log n) rounds. In particular, given an ex-
plicit ε-PRG for (L,W,D)-branching programs with seed
length O(log n) where L = max{T/2, n}, W = n2, and
D, ε−1 = nΘ(1) are sufficiently large, there exists an ex-
plicit protocol which uses O(log n) random bits, and with
high probability informs all nodes in T = O(C log n)
rounds.7

7This follows from the simple observation that combinatorial
rectangles in [m]n can be computed by (n, 2,m)-branching pro-
grams.
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4 The Averaging Protocol

In this section, we assume that every node u knows
the IDs of its neighbors and its index for each of
its neighbors, and present one protocol with improved
rumor spreading time. We remark that such condition
can be guaranteed with O(∆) preprocessing time. In
comparison to Protocol 2, the result in this section is
obtained by analyzing a more general gossip process,
called the averaging protocol, which is closely related to
other gossip processes, e.g. load balancing [35].

4.1 The Protocol

Protocol 3 (The Averaging Protocol). Let m be a
prime power. Pick the following objects:

• an explicit pairwise independent generator G =
(G0, . . . ,Gn−1) : {0, 1}` 7→ [m]n with seed length
`, and

• an explicit ε-PRG G′ = (G′0, . . . ,G′T−1) : {0, 1}`′ 7→(
{0, 1}`

)T
for (T, n2, 2`)-branching programs with

seed length `′

where ε−1,m = nΘ(1) are sufficiently large.
The initial node having the rumor independently

chooses a random string x ∈ {0, 1}`′ , which is appended
with the rumor and sent to other nodes. Once one node
gets the rumor, it gets the ID u. Let y = (y0, . . . , yT−1)
be the sequence of seeds generated by G′, i.e., yi =
G′i(x). For i ∈ [T ] and u ∈ V [G], define (wu,i, zu,i) =
Gu(yi) mod 4∆ ∈ [2∆]×{active, inactive}. We say u is
active in the ith round if zu,i is active, and otherwise
inactive. We say u selects v if v is the wu,ith neighbor
of u. In the ith round, an informed node u sends the
rumor to the unique neighbor v (if exist) if {u, v} is a
good pair, where we call {u, v} is a good pair if either of
the following two conditions is met: (1) u is active, v
is inactive, and u is the unique node selecting v, or (2)
the same holds with u and v swapped.

In addition, each node maintains a value that is
initially specified by the distribution es, i.e., the value of
node u is one if u is the initial node, and zero otherwise.
When node u sends the rumor to node v, set both the
values of u and v as the average of their original values.

Checking the conditions in Protocol 3 requires
that u and v know their index in the lists of their
neighbors as well as the IDs of the neighbors. One
can deterministically use O(∆) preprocessing time to
guarantee this assumption. Then Condition (2) can be
checked directly by u. For Condition (1), note that an
active node u can send the rumor and the seed to its
unique inactive neighbor v specified by wi,u and then
v can check if the condition is satisfied, i.e., if u is the

unique node selecting v 8.
In the following, we represent the values of nodes

after k rounds by a vector v(k) ∈ Rn, and initially the
values of nodes are represented by v(0). Define the
averaging time τavg(κ) of the protocol as the smallest
t ∈ N such that Pr

[
‖v(t)⊥‖2 < κ

]
> 1 − κ for any

distribution v, or ∞ if there is no such t.
The main result in this section is as follows:

Theorem 4.1. For δ > 0, assume 2ε < κ2 where ε is
as in Protocol 3. Then Protocol 3 uses 2`′ random bits,
and τavg(κ) = O((1/α) · β2 log(1/κ)).

Corollary 4.2. Let G be a graph with spectral gap α
and irregularity β. Then Protocol 3 uses 2` random
bits, and with high probability informs all nodes of G in
T = O((1/α) · β2 · log n) rounds.

Proof. Set κ = 1/n. By Theorem 4.1, we know
‖v(T )⊥‖2 < 1/n for sufficiently large T = O((1/α) ·β2 ·
log n). Then v(k)u must be nonzero for all u ∈ V [G],
i.e., all nodes are informed in T rounds.

As a consequence, we have the following reduction
from rumor spreading protocols to PRGs for branching
programs:

Corollary 4.3. Assume each node knows its index
in the lists of its neighbors as well as the IDs of its
neighbors. Then the following statements hold:

1. Given an explicit ε-PRG for (T/2, n2, 2`)-branching
programs with seed length `′, where ε−1 = nΘ(1) and
` = O(log n) are sufficiently large, there exists an
explicit protocol using 2`′ random bits, such that
with high probability all nodes get the rumor in
T = O((1/α) · β2 log n) rounds.

2. In particular, given an explicit ε-PRG for
(T/2, n2, ε)-branching programs with seed length
O(log n) where ε−1 = nΘ(1) is sufficiently large,
there exists an explicit protocol using O(log n) ran-
dom bits, such that with high probability all nodes
get the rumor in T = O((1/α) · β2 log n) rounds.

Combining the reduction above with known explicit
constructions of PRGs (Theorem 2.6), we obtain Theo-
rem 1.2.

In Theorem 4.1 we only consider initial values
specified by v(0) = es. Before giving a formal proof
of Theorem 4.1, we first remark that the runtime
bound and the randomness complexity hold for more

8The uniqueness requirement in Condition (1) is necessary only
for analyzing the associated averaging algorithm. For the sake of
rumor spreading, dropping the requirement only makes the rumor
spread faster.

422 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

11
/1

7/
17

 to
 1

29
.2

15
.9

0.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



general initial distributions. Assuming ε/κ2 = n−Θ(1)

is sufficiently small, it is easy to establish an upper
bound O((1/α) · β2(log n+ log(1/κ))) on the averaging
time regarding a general distribution v(0): first use
T = O((1/α) · β2 log(1/κ)) rounds to inform all the
nodes with high probability. Then set the new initial
values v′(0) = v(T ), and run the averaging protocol
for another O((1/α) ·β2(log n+ log(1/κ))) rounds. The
process with the initial value distribution v′(0) can be
viewed as a convex combination of those with initial
value distribution eu, u ∈ V [G] (note that each node
u is already informed). With high probability, for all
initial value distributions eu, the values converge to the
average up to `2-distance κ. So the same is true for
v′(0).

4.2 Analysis of the Protocol Now we analyze
Protocol 3 and prove Theorem 4.1. For x ∈ {0, 1}`,
define the matrix M(x) such that

M(x)u,v =
1/2 u 6= v and {u, v} is a good pair,

1/2 u = v and {u, v′} is a good pair for some v′,

1 u = v and {u, v′} is not a good pair for any v′,

0 u 6= v and {u, v} is not a good pair,

where the set of good pairs is determined by the seed
yi = x (c.f. Protocol 3, where the definition of good
pairs is independent from the round number i). It is
easy to check that M(x) is doubly stochastic, symmet-
ric, and M(x)2 = M(x) for all x ∈ {0, 1}`. Moreover,
it characterizes the averaging operations using the seed
yi = x.

Lemma 4.4. For any i ∈ [T ], it holds that v(i + 1) =
v(i)M(yi).

Let M = Ex∈{0,1}` [ M(x) ]. Then M is doubly-
stochastic. We have the following lemma:

Lemma 4.5. It holds that Mu,v > cL1/2

(
MReg(G)

)
u,v

,

for some constant c ∈ (0, 1).

Proof. Each edge {u, v} with u 6= v is a good pair
if either of the two mutually exclusive conditions (cf.
Protocol 3) is satisfied. The first one holds with
probability at least

Prx∈{0,1}` [u is active and selects v ]−∑
u′∈N(v)
u′ 6=u

Prx∈{0,1}` [u is active and both u, u′ select v ]

taken over the seed yi = x. As G is a pairwise
independent generator, by Lemma 2.2 this probability

is lower bounded by(
1

4∆
− 2

m

)
−∆ ·

(
1

4∆
· 1

2∆
+

2

m

)
>

c

2∆

for some c > 0 and m = Ω(∆2). The case for the
second condition is the same. So {u, v} is a good pair
with probability at least c

∆ . Note that M(x)u,v = 1/2
whenever {u, v} is a good pair. Therefore

Muv = Ex∈{0,1}` [ M(x)uv ] >
c

2∆

= cL1/2

(
MReg(G)

)
u,v

.

For u = v, note that Mu,v > 1/2 by definition, and
L1/2

(
MReg(G)

)
u,v

6 1.

Lemma 4.6. For any v ∈ Rn orthogonal to π, it holds
that

0 6 Ex∈{0,1}`
[
‖vM(x)‖22

]
6 (1− cβ−2α)‖v‖22

for some constant c ∈ (0, 1).

Proof. The first inequality is obvious. For the upper
bound, we have

Ex∈{0,1}`
[
‖vM(x)‖22

]
= Ex∈{0,1}` [ vM(x)M(x)ᵀvᵀ ]

= vEx∈{0,1}` [ M(x)M(x)ᵀ ] vᵀ

= vEx∈{0,1}` [ M(x) ] vᵀ

= vMvᵀ.

Let M′ = M−c·L1/2(MReg(G)), where c is as in Lemma
4.5. Then M′ is a non-negative matrix by Lemma 4.5.
As both M and L1/2

(
MReg(G)

)
are doubly-stochastic,

so is M′/(1−c). Then λmax(M′) 6 ‖M′‖2 6 1−c. Note
that λmax

(
L1/2

(
MReg(G)

))
6 1− β−2α/2. Therefore

λmax(M) 6 λmax(M′) + c · λmax

(
L1/2

(
MReg(G)

))
6 1− (c/2)β−2α,

and the claim follows.

Recall that π denotes the uniform distribution over
V [G]. We need the following lemma stating that a
random matrix M(x) shrinks vectors orthogonal to π
greatly:

Lemma 4.7. For any v ∈ Rn orthogonal to π and
k ∈ [T ], it holds that

Ey0,...,yk−1∈{0,1}`

∥∥∥∥∥v
k−1∏
i=0

M(yi)

∥∥∥∥∥
2

2

 6 (1−cβ−2α)k‖v‖22

for some constant c ∈ (0, 1).
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Proof. The proof is by induction k. The claim is trivial
for k = 0. For k > 0, assume the claim holds for k′ < k.
Let v ∈ Rn be a vector orthogonal to π, and define
v′ = v

∏k−2
i=0 M(yi). Then v′ is also orthogonal to π.

Hence,

Ey0,...,yk−1∈{0,1}`

∥∥∥∥∥v
k−1∏
i=0

M(yi)

∥∥∥∥∥
2

2


= Ey0,...,yk−2∈{0,1}`

[
Eyk−1∈{0,1}`

[
‖v′M(yk−1)‖22

] ]
6 Ey0,...,yk−2∈{0,1}`

[
(1− cβ−2α) ‖v′‖22

]
6 (1− cβ−2α)k‖v‖22,

where the first inequality uses Lemma 4.6 and the
second one uses the induction hypothesis.

Let P be the distribution of y = (y0, . . . , yT−1) in
Protocol 3. The following lemma bounds the difference
of the expected `2-norms of the resulting value vectors
in T rounds by using the distribution P and the uniform
distribution.

Lemma 4.8. For any u ∈ V [G], it holds that∣∣∣∣∣Ey∼P

∥∥∥∥∥eu
T−1∏
i=0

M(yi)

∥∥∥∥∥
2

2


−Ey∈({0,1}`)T

∥∥∥∥∥eu
T−1∏
i=0

M(yi)

∥∥∥∥∥
2

2

 ∣∣∣∣∣ 6 ε,

where ε is as in Protocol 3.

Proof of Theorem 4.1. By Lemma 4.7, we have

Ey∈({0,1}`)T

∥∥∥∥∥e⊥s
T−1∏
i=0

M(yi)

∥∥∥∥∥
2

2

 6 (1− cβ−2α)T .

Combining this with Lemma 4.8 and using the fact that
‖v‖22 = ‖v⊥‖22 + ‖π‖22 for any distribution v, we obtain

Ey∼P


∥∥∥∥∥∥
(

es

T−1∏
i=0

M(yi)

)⊥∥∥∥∥∥∥
2

2


= Ey∼P

∥∥∥∥∥e⊥s
T−1∏
i=0

M(yi)

∥∥∥∥∥
2

2

 6 (1− cβ−2α)T + ε < κ2

for sufficiently large T = O(β2α−1 log κ−1). The claim
follows from Lemma 4.4 and Markov’s inequality.

5 Two-Level Hashing Protocols

In this section we further present two protocols. These
two protocols are based on pairwise independent gen-
erators and unbalanced expanders with near-optimal
expansion. In contrast to the protocols in Section 3,
the protocols in this section do not need to assume
that nodes have initial IDs, and we can combine the
protocols with an ID distribution mechanism [22] so
that every node gets a unique ID once it gets the ru-
mor. This mechanism [22] further guarantees that all
informed nodes have different IDs, and the IDs are in[
2T
]

if the protocol finishes in T rounds.

5.1 Protocol For Graphs with Certain Conduc-
tance We first present one protocol for general graphs
with conductance φ. Formally, for a graph G of n nodes,
the conductance φ(G) of G is defined by

φ(G) , min
S⊆V,0<|S|<n

e(S, V \ S)

min{vol(S), vol(V \ S)}
.

At a high level, our protocol for general graphs
is based on a nice “two-level hashing” framework:
The first level is based on a pairwise independent
generator G. While the PRG-based protocol in [22]
needs to generate O(n) blocks and different nodes need
to use different blocks, our protocol only needs M =
(∆ logn)O(1) blocks, and hence O(log log n + log ∆)
random bits suffice for this purpose. The second level
uses unbalanced expanders to map the node with ID
u ∈ [nc] to r ∈

[
∆O(1)

]
by using O(log log n + log ∆)

random bits. After these, node u uses the value of the
rth block of G to choose the neighbors. It is easy to see
that every informed node u only needs O(poly log n)
arithmetic operations per round in order to determine
its neighbor. Moreover, the protocol finishing in T
rounds only needs O(T · (log log n+log ∆)) random bits
in total, see Figure 1 for an illustration and Protocol 4
below for the formal description.

Protocol 4 (Protocol for General Graphs). Let ε =
∆−Θ(1) be sufficiently small, and m = 2dlog(4/ε)e. Pick
the following objects:

• An explicit (K, (1 − ε2/4)D)-expander Γ : [nc] ×
[D] 7→

⊔
i∈[D][Mi], where K = 2, D =

((log n)/ε)
O(1)

and M0 = · · · = MD−1 = M 6 D.

• An explicit pairwise independent generator G =
(G1, . . . ,GM ) : {0, 1}` 7→ [m]M , where ` =
O(logm+ logM) = O(log log n+ log ∆).These two
objects G and Γ can be uniquely constructed from nc

and ∆Θ(1), and hence are known to every informed
node.

424 Copyright © 2015.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

11
/1

7/
17

 to
 1

29
.2

15
.9

0.
13

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



The initial node having the rumor chooses a ran-
dom string (s1, . . . , sT ), where every si is of the form
(xi, yi) ∈ [D]× {0, 1}`. This random string is appended
with the rumor and sent to other nodes. Once one node
gets the rumor, it gets the ID u. In the ith round, node
u computes r = Γ(u, xi) that is in [Mu], the uth copy of
[M ]. Node u computes y , Gr(yi) mod ∆, and chooses
the neighbor with index y in its adjacency list to send
the rumor if y 6 deg(u).

Using the explicit constructions of unbalanced ex-
panders in [25] and pairwise independent generators in
[4], our protocol is very simple and can be described
as follows: Assign each node with ID u ∈ [nc] with a
distinct polynomial pu of degree at most dc logq ne over

a finite field Fq of size q = (∆ log n)
Θ(1)

. The protocol
then uses the random string (s1, . . . , sT ), where every
si , (xi, ai, bi) ∈ F3

q. In the ith round, an informed
node u computes z = ai · pu(xi) + bi (over Fq), and
chooses the neighbor with index (z mod deg(u)) in its
adjacency list to send the rumor.

Now we analyze the protocol above, and prove
Theorem 1.3. We start by analyzing a single round t
and see the properties of our protocol. Let It be the
set of informed nodes after round t, and Ut the set of
uninformed nodes after round t. Remember that all the
random choices in round t are determined by (xt, yt),
and in Protocol 4 different rounds use independently
chosen random seeds. We need the following lemma:

Lemma 5.1. Fix any round 0 6 t < T . For any u ∈ Ut,
v ∈ It, let Xv→u be the boolean random variable whose
value is 1 if and only if v informs u in round t+1. Then
the following two statements hold:

1. |E [Xv→u ]− 1/∆| 6 ε for any u ∈ Ut, v ∈ It;

2. Cov [Xv→u, Xv′→u′ ] 6 ε for any u, u′ ∈ Ut, v, v′ ∈
It satisfying (u, v) 6= (u′, v′).

Proof. For any u ∈ Ut and v ∈ It, suppose the index
of u in the adjacency list of v is z. By construction,
Xv→u equals 1 if and only if GΓ(v,xt)(yt) mod ∆ = z. Fix
xt. The fact that G is a pairwise independent generator
together with Lemma 2.2 shows that

|E [Xv→u ]− 1/∆| 6 2/m 6 ε.

For any u, u′ ∈ Ut and v, v′ ∈ It, first assume v 6= v′.
Suppose the index of u (resp. u′) in the adjacency
list of v (resp. v′) is z (resp z′). By construction,
Xv→u equals 1 if and only if GΓ(v,xt)(yt) mod ∆ =
z, and similarly for Xv′→u′ . By Lemma 2.10 and
the fact that Γ is a (K, (1 − ε2/4)D)-expander, the
event |{Γ(v, xt),Γ(v′, xt)}| > (1 − ε/2) · 2 > 1 occurs

with probability at least 1 − ε/2 over the choices of
xt. Condition on any xt such that this event occurs.
We have Γ(v, xt) 6= Γ(v′, xt). Using the fact that
G is pairwise independent together with Lemma 2.2,
we have Cov [Xv→u, Xv′→u′ ] 6 2/m. For the other
choices of xt, we have Cov [Xv→u, Xv′→u′ ] 6 1 since
Xv→u, Xv′→u′ are boolean random variables. Therefore

Cov [Xv→u, Xv′→u′ ] 6 (1− ε/2)(2/m) + (ε/2) 6 ε

for random xt.
Now assume v = v′ and hence u 6= u′. We have

Cov [Xv→u, Xv→u′ ]

= E [Xv→u ·Xv→u′ ]−E [Xv→u ] ·E [Xv→u′ ]

= 0−E [Xv→u ] ·E [Xv→u′ ] 6 0.

Lemma 5.2. Fix a round 0 6 t < T , and the set It
of informed nodes after round t. Fix also an arbitrary
set of edges F ⊆ E(It, Ut). Let J be the set of nodes
that become informed in round t+ 1 if we consider only
transmissions of the rumor along the edges in F . Then
the following two statements hold:

1. Pr [J 6= ∅ ] > c1 min{|F |/∆, 1} for some constant
c1 > 0.

2. If |F | = Ω(∆), then Pr [ |J | > c2|F |/∆ ] > c3 for
some constant c2, c3 > 0.

Now we prove Theorem 1.3. We first define a matrix
M ∈ Rn×n that is associated with graph G. For
any u, v ∈ V [G], let Mu,v = 1/∆ if {u, v} ∈ E[G],
Mu,v = 1−deg(u)/∆ if u = v, andMu,v = 0 otherwise.
Notice that matrix M is doubly-stochastic. We further
define the conductance of matrix M by

Φ(M) , min
A⊂V
|A|6n/2

e(A,A)

∆ · |A|
.

Notice that Φ(M) 6 φ(G) 6 Φ(M) ·β. Hence it suffices
to work with Φ(M) in the following.

Proof of Theorem 1.3. By the construction of Proto-
col 4, the randomness requirement in Theorem 1.3 is
obvious, and we only need to analyze the runtime of Pro-
tocol 4. The proof is divided into four phases, depending
on the number of informed nodes |It| after round t.

Phase 1: 1 6 |It| 6 1/Φ. This phase is divided
into several subphases. For every 1 6 i 6 log(1/φ),
subphase i begins when the number of informed nodes
is at least 2i−1 and ends when this number is at least
2i. Assume that we are at the beginning of the ith
subphase. Fix an arbitrary round t of the ith subphase
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. . . (∆ logn)O(1) blocks

PRG G

O(log logn + log ∆) random bits

Γ

O(log logn + log ∆)

random bits

node ID

u ∈ [nc]

index r
rth block

Figure 1: Illustration of the protocol for general graphs. Every node u uses an unbalanced expander Γ to generate
an index r, and uses the rth block of a pairwise independent generator G to choose a neighbor to send the rumor.

and the set of informed nodes It; thus, 2i−1 6 |It| < 2i.
We consider the number of nodes that become informed
in round t + 1. Applying Lemma 5.2(1) with F =
E(It, Ut) gives

Pr [ |It+1 \ It| > 1 ] > c1 min{e(It, Ut)/∆, 1}
> c1 min{Φ · |It|/β, 1}.

Let p , c1 min{Φ · |It|/β, 1}, and hence p = O(Φ · |It|),
since |It| 6 1/Φ and β > 1. Therefore, the expected
time to increase |It| from 2i−1 to 2i is at most 2i−1/p =
O(1/Φ). By Markov’s inequality,

Pr
[
|It+τ | 6 2i | |It| > 2i−1

]
6 1/2

for some τ = O(Φ−1). Hence the time to complete
Phase 1 can be upper bounded by τ = O((1/Φ)) multi-
plied with the sum of log(1/Φ) = O(log n) independent
geometric random variables each with parameter 1/2.
Applying a Chernoff bound for the sum of independent
geometric random variables yields that the number of
rounds required for Phase 1 is at most O((1/Φ)·log n) =
O((1/φ) · β · log n) with high probability.

Phase 2: 1/Φ 6 |It| 6 n/2. Fix a round t and the
set of informed nodes It. We apply Lemma 5.2(2), with
F = E(It, Ut). Note that the precondition |F | = Ω(∆)
is satisfied, as |F | = e(It, Ut) > Φ·∆·|It| > Φ·∆·(1/Φ) =
Ω(∆). Hence we conclude from Lemma 5.2(2) that

Pr [ |It+1 \ It| > c2 · φ · δ · |It|/∆ ] > c3,

for some constant c2, c3 > 0. When this event occurs,
we have |It+1| > (1 + c2 · φ/β)|It|. So, the number of
rounds until we have |It| 6 n/2 can be upper bounded
by the sum of log1+c2·φ/β(n/2) = O((1/φ) · β · log n) in-
dependent geometric random variables with parameter
c3. Applying a Chernoff bound again we obtain that
Phase 2 is completed within at most O((1/φ) · β · log n)
rounds with high probability.

Phase 3: n/2 6 |It| 6 n−1/Φ. The analysis is the
same as in Phase 2 with the roles of It and Ut switched.

Phase 4: n − 1/Φ 6 |It| 6 n. Again, the analysis
is the same as in Phase 1 with the roles of It and Ut
switched.

Since each of these four phases requires only
O((1/φ) · β · log n) rounds with high probability, the
result follows by applying the union bound.

5.2 Protocol For Strong Expander Graphs We
further present a protocol for strong expander graphs.
Let G = {Gi}i>0 be a family of graphs. We call
G a family of strong expander graphs, if every Gi in
G has spectral gap α = 1 − o(1), and irregularity
β = 1 + o(1), where the term o(1) tends to 0 as n
goes to the infinity. This graph family includes several
interesting graphs, e.g. Ramanujan graphs, complete
graphs, random graphs G(n, p) with p = ω(log n/n),
and random d-regular graphs.

It is known that, for any strong expander graph
with n nodes, the fully-random push protocol informs
all nodes in log n + lnn + o(log n) rounds with high
probability [13, 14, 16], i.e., we know the precise rumor
spreading time for strong expander graphs, and this
bound is tight [14]. Our next protocol shows that, this
tight runtime can be achieved by only using O(log n ·
(log log n+ log ∆)) random bits in total.

Protocol 5 (Protocol for Strong Expanders). Let ε =

∆−Θ(1) be sufficiently small, ε′ = 2−
√

log logn, and
m = Θ((logn)/ε) a power of 2. Pick the following
objects: (1) An explicit (6K, (1 − ε2/4)D)-expander
Γ : [nc] × [D] 7→

⊔
i∈[D][Mi], where K = ∆, D =

((log n)/ε)
O(1)

and

M0 = · · · = MD−1 = M 6 max
{
D,∆O(1)

}
.

(2) An explicit function G = (G1, . . . ,GM ) : {0, 1}` 7→
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[m]M that is both a pairwise independent generator and
an ε′-PRG for CR[m]M , where ` = O(logm + logM) +

Õ(log(1/ε′)) = O(log log n+ log ∆)9. These two objects
G and Γ can be uniquely constructed from nc and ∆Θ(1),
and hence are known to every informed node.

The initial node having the rumor chooses a ran-
dom string (s1, . . . , sT ), where every si is of the form
(xi, yi) ∈ [D]× {0, 1}`. This random string is appended
with the rumor and sent to other nodes. Once one node
gets the rumor, it gets the ID whose value is u. In the
ith round, node u computes r = Γ(u, xi) that is in [Mu],
the uth copy of [M ]. It then chooses the neighbor with
index Gr(yi) mod deg(u) in its adjacency list to send the
rumor.

Proposition 5.3. Assume that Protocol 5 finishes in T
rounds. Then it uses O(T · (log log n + log ∆)) random
bits in total.

In this subsection we analyze Protocol 5, which
corresponds to Theorem 1.4. We first remark that the
condition α = 1 − o(1) is equivalent to λ , λ2 = o(1),
which will be used in the following. The following
lemma will be used in our proof.

Lemma 5.4 (Expander Mixing Lemma, [7]). Let G =
(V,E) be a graph. Then for any subset X and Y of V
it holds that∣∣∣∣e(X,Y )− vol(X) · vol(Y )

vol(G)

∣∣∣∣
6 λ ·

√
vol(X) · vol(Y ) · vol(X) · vol(Y )

vol(G)
.

Proof of Theorem 1.4. By the construction of Proto-
col 5, the randomness requirement is obvious, and we
only need to analyze the runtime of Protocol 5.

For any round t and u ∈ Ut, v ∈ It, let Xv→u
be the indicator random variable whose value is 1 if
and only if v informs u in round t + 1. Note that Γ
is a (6K, (1 − ε2/4)D)-expander, and hence a (2, (1 −
ε2/4)D)-expander. And G is a pairwise independent
generator. Then we observe that the statements in
Lemma 5.1 hold here as well by the same proof. Notice
that it holds by Lemma 5.4 that

e(It, Ut) > (1− λ) · vol(It) · (vol(G)− vol(It))

vol(G)
.(5.7)

The proof is divided into three phases, depending on
the number of informed nodes |It| after round t.

9The order Õ(·) here hides poly log log(1/ε′).

Phase 1: 1 6 |It| 6 n/ log n. We will show that
there is τ = log n+ o(log n) such that |It+τ | > n/ log n.
By (5.7) we have

e(It, Ut) > (1− λ) · δ · |It|
(

1− ∆ · |It|
nd

)
,

where d is the average degree. Since λ = o(1) and
|It| 6 n/ log n, we have

e(It, Ut) >

(
1− 1

log n
− o(1)

)
·∆ · |It|.(5.8)

Hence

|N(It) \ It| >
e(It, Ut)

∆
>

(
1− 1

log n
− o(1)

)
· |It|.

Define γ , λ + 1
logn , and A , {u ∈ N(It) \ It :

|N(u) ∩ It| > 2d
√
γ}. Then e(A, It) > |A| · 2d ·

√
γ. On

the other hand, by Lemma 5.4 it holds that

e(A, It) 6
vol(A) · vol(It)

vol(G)
+ λ
√

vol(A) · vol(It)

6
∆2 · |A| · |It|

nd
+ γ∆ ·

√
|A| · |It|.

We know e(A, It) > 2d
√
γ · |A| by the definition of set

A , and hence

|A| · 2d · √γ 6
∆2 · |A| · |It|

nd
+ γ∆ ·

√
|A| · |It|

6 (1 + o(1)) · ∆ · |A|
log n

+ γ∆ ·
√
|A| · |It|,

which implies |A| 6 γ · |It|.
Now define B , N(It) \ It \A. We have

e(B, It) = e(N(It), It)− e(A, It)

>

(
1− 1

log n
− o(1)− γ

)
∆ · |It|.

With the above estimate at hand, we compute the
expected value of |N(It)∩B|. Note that for any u ∈ B,
the chance that it gets informed in round t+ 1 is

pt+1(u) , Pr

 ∨
v∈N(u)∩It

(Xv→u = 1)

 ,
which is lower bounded by∑

v∈N(u)∩It

Pr [Xv→u = 1 ]

−
∑

v1,v2∈N(u)∩It
v1<v2

Pr

 ∧
i=1,2

(Xvi→u = 1)

 ,
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by the Bonferroni inequalities. Hence

pt+1(u)

> |N(u) ∩ It|
(

1

∆
− ε
)
−
(
|N(u) ∩ It|

2

)(
1

δ2
+ ε

)

> (1− o(1)) · |N(u) ∩ It|
∆

,

(5.9)

where the first inequality follows from Lemma 5.1 and
the fact that ε = (1/∆)Θ(1) is sufficiently small, and the
last step uses the condition that |N(u) ∩ It| 6 2d

√
γ =

o(∆). Hence, we have

E [ |It+1 \ It| ] > E [ |It+1 ∩B| ] =
∑
u∈B

pt+1(u)

> (1− o(1)) · e(B, It)
∆

> (1− o(1)) · |It|.

Since |It+1 \ It| 6 |It|, it follows by using Markov’s
inequality (applied to |It| − |It+1 \ It|) that

Pr [ |It+1| > (2− f(n))|It| ] > 1− g(n),

where f(n) and g(n) are both functions that tend to
zero. Hence, the time to reach |It| > n/ log n can be
upper bounded by the sum of log2−f(n) n independent,
identically distributed geometric random variables with
expectation at most 1 − o(1) each. Using a Chernoff
bound yields that

Pr [ |It+τ | > n/ log n ] = 1− o(1).

Phase 2: |It| ∈ [n/ log n, n − n/ log n]. We will
show that there is τ = o(log n) such that |It+τ | >
n − n/ log n. We start with the first case |It| ∈
[n/ log n, n/2].

For any u ∈ N(It) \ It, the probability pt+1(u) that
u gets informed in round t+ 1 is lowered bounded by

(1− o(1)) · |N(u) ∩ It|
∆

(
1− (1 + o(1)) · |N(u) ∩ It|

2∆

)
,

by the same argument as in (5.9). This is then lower
bounded by

(1− o(1)) · |N(u) ∩ It|
2∆

,

since we have |N(u) ∩ It| 6 ∆.
By (5.7), we have e(It, Ut) = (1 − o(1)) · δ/2 · |It|.

Similar to the analysis of Phase 1, we can lower bound
the expected number of nodes that become informed in
round t+ 1:

E [ |It+1 \ It| ] >
∑

u∈N(It)\It

pt+1(u) >
δ

8∆
|It|.

Since |It+1| 6 2|It|, we obtain that, as long as
|It| 6 n/2, there are constants α, β > 0 so that
Pr [ |It+1| > (1 + α)|It| ] > β. Hence the time to
reach |It| > n/2 can be upper bounded by the sum
of log1+α(log n) independent, identically distributed
geometric random variables with expectation at most
1/β each. Using a Chernoff bound for the sum of
geometric random variables yields that with probability
1 − o(1), we reach |It| > n/2 within at most o(log n)
additional rounds.

Consider now the case |It| ∈ [n/2, n− n/ log n]. To
analyze this case, we examine the shrinking of Ut =
V \It. Note that for any u ∈ Ut, the probability pt+1(u)
that u gets informed in round t+ 1 is lowered bounded
by

(1− o(1)) · |N(u) ∩ It|
∆

(
1− (1 + o(1)) · |N(u) ∩ It|

2∆

)
,

by the same argument as in (5.9). This is then lower
bounded by

(1− o(1)) · |N(u) ∩ It|
2∆

,

since we have |N(u) ∩ It| 6 ∆.
Again, as |Ut| 6 n/2, by (5.7) we have

e(It, Ut) > (1− o(1)) · δ
2
|Ut|.

Let us now compute the expected number of uninformed
nodes after one additional round:

E [ |Ut+1| ] =
∑
u∈Ut

(1− pt+1(u)) 6

(
1− δ

8∆

)
|Ut|.

A simple inductive argument yields for any integer τ
that

E [ |Ut+τ | ] 6
(

1− δ

8∆

)τ
|Ut|,

so for

τ , log log n/ log(1/(1− δ

8∆
)) + ω(1),

where ω(1) is an arbitrarily slow growing function,
we have E [ |Ut+τ | ] = o(n/ log n). Hence it holds by
Markov’s inequality that

Pr [ |Ut+τ | > n/ log n ] = o(1).

Phase 3: |It| ∈ [n−n/ log n, n]. We will show that
there is τ = lnn+ o(log n) such that |It+τ | = n.

Again, we analyze the shrinking of the set Ut.
By Lemma 2.10, for at least (1 − ε/2)-fraction of the
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choices of xt, it holds for any u ∈ Ut that the size of
{Γ(v, xt) : v ∈ N(u)∩It} is at least (1−ε/2)|N(u)∩It|.
From now on, we fix xt such that this event occurs.

For any u ∈ Ut, we have

Pr [u /∈ It+1 ] = Pr

 ∧
v∈N(u)∩It

(Xv→u = 0)

 .
Let F be a subset of N(u) ∩ It of size (1− ε/2)|N(u) ∩
It|, such that the map Γ(·, xt) is injective when re-
stricted to F . By Lemma 2.4, the function y 7→(
GΓ(v,xt)(y) mod deg(v)

)
v∈F is an (ε′ + |F |∆/m)-PRG

for CRS where S =
∏
v∈F [deg(v)]. Therefore, we have

Pr [u /∈ It+1 ]

6 Pr

[ ∧
v∈F

(Xv→u = 0)

]

6

(
1− 1

∆
+ ε

)(1−ε/2)|N(u)∩It|

+ ε′ + ∆2/m,

where the second inequality follows from the proper-
ties of PRGs for combinatorial rectangles, and the third
inequality follows from using pairwise independent gen-
erators. Since ε 6 1

∆ , a simple induction shows that(
1− 1

∆
+ ε

)k
6

(
1− 1

∆

)k
+ kε

for any k > 0. So we have

Pr [u /∈ It+1 ]

6

(
1− 1

∆

)(1−ε/2)|N(u)∩It|

+ (1− ε/2)∆ε+ ε′ +
∆2

m
.

The bound above applies for any choice of xt such
that the size of {Γ(v, xt) : v ∈ N(u) ∩ It} is at least
(1 − ε/2)|N(u) ∩ It|. The probability of choosing such
xt is at least 1− ε/2. So for random xt, we have

Pr [u /∈ It+1 ] 6

(
1− 1

∆

)(1−ε/2)·|N(u)∩It|

+ o(1),

where we use the fact that ε = (1/∆)Θ(1) is sufficiently
small, and m = Θ((log n)/ε).

By (5.8) it holds that e(It, Ut) > (1− 1
logn − o(1)) ·

∆|Ut|. Let A ⊆ Ut be the set of nodes v for which
|N(v)∩ It| 6 (1−√γ/2) ·∆, where γ , 1

logn +o(1). We

assume for a contradiction that |A| > 2
√
γ · |Ut|. Hence,

e(It, Ut) =
∑
v∈A
|N(v) ∩ It|+

∑
v∈Ut\A

|N(v) ∩ It|

<

(
1− 1

log n
− o(1)

)
·∆|Ut|,

which yields the desired contradiction. Hence |A| 6
2
√
γ|Ut|. Now define B , Ut \A so that for each u ∈ B,

|N(v) ∩ It| > (1 − √γ/2)∆ and |B| > (1 − 2
√
γ)|Ut|.

Using linearity of expectation,

E [ |Ut+1| ] 6
∑
u∈B

Pr [u /∈ It+1 ] +
∑
u∈A

Pr [u /∈ It+1 ]

6
∑
u∈B

(
1− 1

∆

)(1−ε/2)|N(u)∩It|

+ o(|Ut|).

Using the inequalities that (1− 1/k) 6 e−1/k for k > 1,
ex 6 1+2x for sufficiently small enough constant x > 0,
and the condition that |N(u) ∩ It| > (1−√γ/2) ·∆ for
u ∈ B, we get E [ |Ut+1| ] 6 (1 + o(1)) · e−1 · |Ut|.

By induction, it follows that for any step τ > 0,

E [ |Ut+τ | ] 6 ((1 + o(1)) · e−1)τ · |Ut|.

We choose τ , − log(1+o(1))·e−1(n) = lnn+o(log n) and
obtain that E [ |Ut+τ | ] 6 (1/ log n). So

Pr [ |Ut+τ | > 1 ] 6 E [ |Ut+τ | ] 6 1/ log n.

Combing these three phase together and applying
the union bound, we obtain the desired statement.
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