
University of Edinburgh
INFR11156: Algorithmic Foundations of Data Science (2019)

Coursework

Due: 4pm, 8 November, 2019

Submission instructions

Your submission should be contained in a directory named as your uun. Follow the following directory
structure for your submission:

• Part A: A PDF document containing your answers. Typeset with LaTex is highly recommended.
A LaTex template for writing the coursework solutions is provided and can be downloaded from
the course webpage from Learn.

• Part B:

– readme.txt (max 1 page) - Instructions for running your code and any comments or inter-
esting observation you want us to know.

– source - contains all the source files

– build - compiled binary (e.g., jar file) (optional)

– dependency - contains any external libraries you use. E.g., external Jar files.

Finally, make a .tar.gz file named as <uun>.tar.gz and submit using the submit command on
DICE:

submit afds cw1 filename

University regulations

University Regulations On Good Scholarly Practice. Please remember the University requirement as
regards all assessed work. Details about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Remember, if you use ideas from elsewhere (including other students), cite them. And try not use
too much of these. The regulation says you can pick up “general ideas” but not “pivotal ideas”. But
“general” and “pivotal” are subjective. Play safe and avoid getting into trouble.

1

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct


Part A: Theoretical part (50%)

We have seen in class that a random vector x ∈ {−1, 1}n can be used as an initial vector for the Power
Method to approximate the largest eigenvalue of a PSD matrix. In this question, you need to prove
or disprove that a random vector x ∈ Rn, where every xi is generated according to N (0, 1), can be
used for the same purpose. That is, you need to prove or disprove that, for a suitable choice of k, with
constant probability the output vector xk from Algorithm 1 below satisfies

xᵀ
kBxk

xᵀ
kxk

≥ (1− ε) · λ1
1 + 4n(1− ε)2k

,

where λ1 is the largest eigenvalue of matrix B. The following lemma might be used in your analysis.

Lemma. Let Y be a random variable generated according to a χ2-distribution with n degrees of
freedom. Then, it holds that P[Y > n] < 1/2.

Algorithm 1: Power Method with Normal Distribution
Input: A PSD symmetric matrix B ∈ Rn×n, and k ∈ Z+.

1 Let x0 ∈ Rn, where each coordinate xi is sampled independently from N (0, 1)
2 for i = 1 to k do
3 xi = Bxi−1
4 end
5 return xk

Part B: Programming part (50%)

In this question, you will apply the Power Method and a simple algorithm to
segment an image into two regions using a graph partitioning algorithm. In
particular, you will see that how the Power Method could be used to identify
objects from images like the figure shown on the right.

Background Reading. The first task behind our job is to model an input
image as a mathematical object. Here, we choose to represent an image as an
undirected and weighted graph G = (V,E,w) with weight function w : E →
R≥0 constructed as follows: each pixel corresponds to a vertex u ∈ V [G].
Each pixel is also represented as a point (r, g, b, x, y) where r, g, b ∈ [0, 1] are
the normalised RGB values of the pixel and x, y ∈ [0, 1] are the normalised
coordinates of the pixel in the image. For any two pixels x and y, their
corresponding vertices in G are connected by an edge with weight

exp
(
− 4‖x− y‖2

)
,

where x and y are the points corresponding to pixels x and y. For efficiency, you should only include
edges between pixels close to each other; for example, ±5 rows and columns. Additionally, you should
ignore edges with weights below some threshold t. Suggested parameter is t = 0.9. Please note that
you should take the “wrap around” effect of the pixels into account, i.e., the vertices corresponding to
pixels near the top (or left) of the image should be connected to the vertices corresponding to pixels
near the bottom (or right) and the distance between their (x, y) coordinates should be considered
small.

2



As the second step, we use the following so-called normalised Laplacian matrix LG to represent G.
The normalised Laplacian matrix LG ∈ Rn×n is defined as follows: (1) All the diagonal entries satisfy
(LG)u,u = 1; (2) For any edge {u, v} ∈ E(G), (LG)u,v = (LG)v,u = −1/

√
du · dv, where du =

∑
z w(u, z)

and dv is defined in the same way; (3) For any other entries indexed by u, v, (LG)u,v = 0. The matrix
LG can also be defined as I −D−

1
2AD−

1
2 where A is the adjacency matrix of the graph and D is the

diagonal matrix with Du,u = du. The figure below gives an example of a graph and its corresponding
normalised Laplacian matrix.

LG =


1 0 −1/

√
6 −1/

√
6

0 1 −1/
√

6 −1/
√

6

−1/
√

6 −1/
√

6 1 −1/3

−1/
√

6 −1/
√

6 −1/3 1



Figure 1: The normalised Laplacian matrix of a graph.

In the third step, the following Algorithm 2 uses the eigenvector associated with the second smallest
eigenvalue of LG to segment an image into two regions. Here, the function Φ(S) used in the pseudocode
is defined by

Φ(S) =
w(S, V \ S)

min(vol(S), vol(V \ S))
,

where
w(S, V \ S) =

∑
{u,v}∈E(G)
u∈S,v∈V \S

w(u, v),

and vol(S) =
∑

u∈S du.

Algorithm 2: Algorithm for finding a sparse cut
1 f2 = eigenvector of LG corresponding to λ2;
2 Sort the vertices of graph u1, u2, . . . , un such that f2(u1) ≤ . . . ≤ f2(un);
3 Let t be a parameter, and t = 0 initially;
4 Let S be a set of vertices, and S = ∅ initially;
5 S∗ = {u1}
6 while t < n do
7 t = t+ 1
8 S = S ∪ {ut}
9 if Φ(S) < Φ(S∗) then

10 S∗ = S
11 end
12 end

Question 1: Write a function which reads a PNG image file and downsamples it to create a 100×100
image. You should also smooth the downsampled image slightly, for example by applying Gaussian
blur. The function should display the downsampled image.

Question 2: Write a function which takes the output from Question 1 and constructs the adjacency
matrix of a graph representing a given image. The function should print the number of edges and
average degree of the constructed graph.

3

https://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html?highlight=gaussianblur
https://docs.opencv.org/2.4/doc/tutorials/imgproc/gausian_median_blur_bilateral_filter/gausian_median_blur_bilateral_filter.html?highlight=gaussianblur


Question 3: Write a function which takes the output from Question 2 and uses the Power Method
to compute the vector corresponding to the second smallest eigenvalue of LG. You are free to choose
the parameter k which controls the number of iterations in the Power Method.

Note that the Power Method finds the largest eigenvalues, so you should apply the Power Method to
2I − LG = I + D−

1
2AD−

1
2 . You may use the fact that the eigenvector with the largest eigenvalue is

D
1
21 where 1 is the constant vector.

The function should print your chosen value of k and display an image showing the value of the
computed vector at each pixel in the downsampled image.

Please note that you may not use a library for computing eigenvalues or eigenvectors in this question.

Question 4: Write a function which uses the output of Question 3 and Algorithm 2 to find a sparse
cut S, in the graph corresponding to an image. The function should display an image showing which
pixels of the downsampled image are in the set S.

Example. Figure 2 shows a sequence of expected results for each question, when the image on Page
2 is given as input. Please note that a marker will use their “common sense” to judge the quality of
your image segmentation result. For instance, you will get 0 points for this instance if your output is
like Figure 3.

Figure 2: From left to right: the expected output of the segmentation algorithm after Questions 1, 3,
and 4.

Marking Criteria. The testset will consist of 5 images. Your algorithm’s performance on each
image is worth 10% of the coursework mark. This is split across the 4 questions as follows.

• Question 1: 2%
• Question 2: 2%
• Question 3: 3%
• Question 4: 3%

Please notice that, if your algorithm does not work for some question, then you will not receive any
marks for the subsequent questions.

Programming Guidelines. You may use any programming language for this question as long as
your code runs on a DICE machine. You must provide a readme.txt file with your submission with
instructions for how to run your code. The time limit for each input instance is 10 seconds. The

4



Figure 3: An example of poor output from the segmentation algorithm.

background reading section recommends some choices of the parameters. However, you could choose
different parameters to improve the runtime and the quality of the output.

Tips

1. Use a sparse matrix data structure for the graph matrices. For example, see scipy.sparse for
Python.

2. Use standard libraries for matrix-vector multiplication rather than for loops wherever possible.
3. Three images are provided for testing your implementation. Your submission will be evaluated

with similar images.

5


