University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019) Homework 2

Problem 1: Suppose you want to estimate the unkown centre of the Gaussian in \mathbb{R}^{d} which has unit variance in each direction. Show that $O\left(\log d / \epsilon^{2}\right)$ random samples form the Gaussian are sufficient to get an estimate \mathbf{m}_{s} of the true centre $\boldsymbol{\mu}$, so that with probability at least 99%,

$$
\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{\infty} \leq \epsilon
$$

How many samples are sufficient to ensure that with probability at least 99%

$$
\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{2} \leq \epsilon ?
$$

Note that $\|\mathbf{x}\|_{\infty}:=\max _{i}\left|x_{i}\right|$.

Problem 2 (challenging): This question is to try to design a dimension reduction lemma for ℓ_{1}, similar to the Johnson-Lindenstrauss (JL) lemma for the Euclidean space. Remember that JL lemma says that we can pick a matrix Φ, of dimension $k \times d$ for large enough k, where each entry is chosen from a Gaussian distribution, such that: for any $x \in \mathbb{R}^{d}$, we have that $\frac{1}{\sqrt{k}}\|\Phi x\|_{2}$ is a ($1+\epsilon$) approximation to $\|x\|_{2}$ with probability at least $1-\mathrm{e}^{-\Omega\left(\epsilon^{2} k\right)}$.

For ℓ_{1}, the equivalent of Gaussian distribution is the Cauchy distribution, which has probability distribution function $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. Namely, the corresponding "stability" property of Cauchy distribution is the following. Consider $s=\sum_{i=1}^{d} x_{i} c_{i}$, for $x \in \mathbb{R}^{d}$ and c_{i} each independently chosen from Cauchy distribution. Then s has distribution $\|x\|_{1} \cdot c$ where c is also distributed as a Cauchy distribution.

It is tempting to construct a dimensionality reducing map for ℓ_{1} in the same way as what we did for Euclidean space, just by replacing the Gaussian distribution with the Cauchy distribution. In particular, let C be a matrix of size $k \times d$, where each entry is chosen independently from the Cauchy distribution.

1. Argue that this approach does not work for dimensionality reduction for ℓ_{1}. Namely, for (say) $k=1000$ and $x=(1,0,0, \ldots, 0)$, the estimator $\frac{1}{k}\|C x\|_{1}$ is not a 2-approximation to $\|x\|_{1}=1$ with probability at least 10%.
In fact, it has been proven that there does not exist an equivalent dimensionality reduction for ℓ_{1} at all. Instead, we will construct a sketch that provides a weaker form of "dimension reduction".
2. The median estimate is defined as the median of the absolute values of k coordinates of the vector $C x$. Prove that for any $x \in \mathbb{R}^{d}$, the median estimate is a $1+\epsilon$ approximation to $\|x\|_{1}$ with at least $1-\mathrm{e}^{-\Omega\left(\epsilon^{2} k\right)}$ probability. You might want to use the following concentration bound, called Chernoff bound: for any k independent and identically distributed random variables $x_{1}, \ldots, x_{k} \in\{0,1\}$, each with expectation $\mathbf{E}\left[x_{i}\right]=\mu \in[0,1]$, we have that

$$
\mathbf{P}\left[\left|\frac{1}{k} \sum_{i} x_{i}-\mu\right|>\epsilon\right] \leq \mathrm{e}^{-\epsilon^{2} k} .
$$

Note that we obtain a "sketch", which is not a regular dimension reduction scheme: namely, the "target" space is not ℓ_{1}, but "median" (which is not even a metric/distance). Nevertheless, it is a linear map, and is useful for sketching and streaming as we will see in future lectures.

