University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019)
 Homework 3

Problem 1: Project the volume of a d-dimensional ball of radius \sqrt{d} onto a line through the centre. For large d, give an intuitive argument that the projected volume should behave like a Gaussian.

Problem 2: Consider a nonorthogonal basis $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{d}}$. The $\mathbf{e}_{\mathbf{i}}$ are a set of linearly independent unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique;
2. Calculate the squared length of $\mathbf{z}=\frac{\sqrt{2}}{2} \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}$ where $\mathbf{e}_{\mathbf{1}}=(1,0)$ and $\mathbf{e}_{\mathbf{2}}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$;
3. If $\mathbf{y}=\sum_{i=1}^{d} a_{i} \mathbf{e}_{\mathbf{i}}$ and $\mathbf{z}=\sum_{i=1}^{d} b_{i} \mathbf{e}_{\mathbf{i}}$, with $0<a_{i}<b_{i}$ for all $1 \leq i \leq d$, is it necessarily true that the length of \mathbf{z} is grater than the length of \mathbf{y} ? If yes give a proof of the statement, if no find a counterexample;
4. Consider the basis $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
(a) What is the representation of the vector $\mathbf{v}=(0,1)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right)$? I.e. find scalars a, b such that $\mathbf{v}=a \mathbf{e}_{\mathbf{1}}+b \mathbf{e}_{\mathbf{2}}$.
(b) What is the representation of the vector $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right)$?
(c) What is the representation of the vector $(1,2)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right)$?

Problem 3: Compute the right-singular vectors v_{i}, the left-singular vectors u_{i}, the singular values σ_{i} and hence find the Singular value decomposition of

1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 3 \\ 3 & 0\end{array}\right)$;
2. $A=\left(\begin{array}{ll}0 & 2 \\ 2 & 0 \\ 1 & 3 \\ 3 & 1\end{array}\right)$.
