University of Edinburgh INFR11156: Algorithmic Foundations of Data Science (2019) Homework 3

Problem 1: Project the volume of a *d*-dimensional ball of radius \sqrt{d} onto a line through the centre. For large d, give an intuitive argument that the projected volume should behave like a Gaussian.

Problem 2: Consider a nonorthogonal basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_d$. The \mathbf{e}_i are a set of linearly independent unit vectors that span the space.

- 1. Prove that the representation of any vector in this basis is unique;
- 2. Calculate the squared length of $\mathbf{z} = \frac{\sqrt{2}}{2}\mathbf{e_1} + \mathbf{e_2}$ where $\mathbf{e_1} = (1,0)$ and $\mathbf{e_2} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$;
- 3. If $\mathbf{y} = \sum_{i=1}^{d} a_i \mathbf{e_i}$ and $\mathbf{z} = \sum_{i=1}^{d} b_i \mathbf{e_i}$, with $0 < a_i < b_i$ for all $1 \le i \le d$, is it necessarily true that the length of \mathbf{z} is grater than the length of \mathbf{y} ? If yes give a proof of the statement, if no find a counterexample;
- 4. Consider the basis $\mathbf{e_1} = (1,0)$ and $\mathbf{e_2} = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
 - (a) What is the representation of the vector $\mathbf{v} = (0, 1)$ in the basis $(\mathbf{e_1}, \mathbf{e_2})$? I.e. find scalars a, bsuch that $\mathbf{v} = a\mathbf{e_1} + b\mathbf{e_2}$.
 - (b) What is the representation of the vector $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ in the basis $(\mathbf{e_1}, \mathbf{e_2})$?
 - (c) What is the representation of the vector (1, 2) in the basis $(\mathbf{e_1}, \mathbf{e_2})$?

Problem 3: Compute the right-singular vectors v_i , the left-singular vectors u_i , the singular values σ_i and hence find the Singular value decomposition of

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 3 & 0 \end{pmatrix};$$

2. $A = \begin{pmatrix} 0 & 2 \\ 2 & 0 \\ 1 & 3 \\ 3 & 1 \end{pmatrix}.$

1.