University of Edinburgh INFR11156: Algorithmic Foundations of Data Science (2019) Homework 5

Problem 1: Let $H = \{h : [m] \to \{0, 1\}^n\}$ be a family of pairwise independent hash functions. Let $I \subseteq [m]$ and $\mu := \frac{|I|}{2^n}$. Then, it holds for every $y \in \{0, 1\}^n$ that

$$\mathbb{P}_{h\sim H}\Big[\big||\{i\in I: h(i)=y\}|-\mu\big|>\varepsilon\mu\Big]<\frac{1}{\varepsilon^2\mu}$$

where $h \sim H$ stands for the fact that h is chosen uniformly at random from H.

Problem 2: Let Y_1, \ldots, Y_n be independent random variables with $\mathbb{P}[Y_i = 0] = \mathbb{P}[Y_i = 1] = 1/2$. Let $Y := \sum_{i=1}^n Y_i$ and $\mu := \mathbb{E}[Y] = n/2$. Apply the uniform Chernoff Bound to prove it holds for any $0 < \lambda < \mu$ that

$$\mathbb{P}[Y \ge \mu + \lambda] \le e^{-2\lambda^2/n}.$$

Problem 3: Prove that the median of the returned values from $\Theta(\log(1/\delta))$ independent copies of the BJKST algorithm gives an (ε, δ) -approximation of F_0 .