University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019)
 Homework 6

Problem 1: We discussed in class an efficient construction of a family of k-wise independent hash functions h such that it holds for any x that $\mathbf{E}\left[h^{i}(x)\right]=1$ if $i \geq 1$ is an even number, and $\mathbf{E}\left[h^{i}(x)\right]=0$ otherwise. In this question, you need to construct a family of k-wise independent hash functions g such that it holds for any x that $\mathbf{E}\left[h^{i}(x)\right]=1$ if i is divisible by 3, and 0 otherwise.

Problem 2: For any undirected graph $G=(V, E)$ with n vertices, we say three vertices u, v, w form a triangle if there are three edges connecting u, v, w respectively. This problem is to analyse a streaming algorithm for approximately computing the number of triangles in an undirected graph. To describe the proposed algorithm, let \mathcal{H} be a family of 12 -wise independent hash functions, where every $h \in \mathcal{H}$ is of the form $h: V \rightarrow\{-1,1\}$. Let Z be our estimator, which is set to be 0 initially. The algorithm is described in Algorithm 1 below. Prove that the returned value $Z^{3} / 6$ is an unbiased estimator of the number of triangles in G, i.e., $\mathbf{E}\left(\frac{Z^{3}}{6}\right)=$ the number of triangles in G.

```
Algorithm 1 Approximate number of triangles
    Pick a function \(h\) uniformly at random from \(\mathcal{H}\);
    \(Z \leftarrow 0 ;\)
    while an edge \(\{u, v\}\) arrives do
        \(Z \leftarrow Z+h(u) \cdot h(v) ;\)
    end while
    Return \(Z^{3} / 6\).
```

Problem 3: We are given two independent streams of elements from $\{1, \ldots, n\}$, and we only consider the cash register model. Let $A[1, \ldots, n]$ and $B[1, \ldots, n]$ be the number of occurrences of item i in two streams, respectively. Design a streaming algorithm to estimate $X=\sum_{i=1}^{n} A[i] B[i]$ with additive error $\varepsilon \cdot\|A\|_{1} \cdot\|B\|_{1}$. You need to analyse the space complexity of your proposed algorithm, and analyse the correctness of your algorithm.

