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Recall: streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, · · · , sm, · · · ,

and every si belongs to the universe U of size n.

Constraints for streaming algorithms: the space complexity is sublinear in n,
and is independent in the length of S.

Quality of the output: The algorithm needs to give a good approximate value
with high probability.

For confidence parameter ε and approximation parameter δ, the algorithm’s out-
put Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-APPROXIMATION
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Recall: two models of streaming algorithms

Cash register model: every item in stream S is an item in U .

Turnstile model: every item si in S associates with “ +” or “-”, which indicates if si
is added into or deleted from S.

“+” indicates that si is added into the dataset;

“-” indicates that si is deleted from the dataset.

Why turnstile model?

Data may be added or deleted over time, e.g. Facebook graph.

We need robust algorithms to handle this situation.
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Recall: Fp-Norm

Let U with |U | = n be a dataset, and mj be the number of occurrences of j in
a stream. The Fp-norm is defined by

Fp ,
∑
i∈U

|mi|p .

Fp-NORM

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

The medium of the returned values from Θ(log(1/δ)) independent copies of the
BJKST algorithm gives an (ε, δ)-approximation of F0.

THEOREM
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Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the sampled
items directly.

Sampling probability for the current item usually depends on the whole data
stream that algorithm has seen so far.

For example, the index z in the BJKST algorithm

Deleting an item appeared before could potentially makes the current
sampling probability useless! :(

DOWNSIDE OF THIS FRAMEWORK

Sampling techniques are usually non-applicable in the turnstile model.
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Outline

Approximating F2-norm in the turnstile model

Frequency estimation in the turnstile model

AFDS He Sun 6



Algorithm to approximate F2 in the turnstile model

1: Choose a 4-wise independent hash function h : [n]→ {−1, 1}

2: Set y = 0
3: while item (x,±) from stream S arrives
4: if x is inserted, then y = y + h(x)
5: else y = y − h(x)
6: return Z := y2

ALGORITHM TO APPROXIMATE F2 (THE SIMPLIFIED DESCRIPTION)

The algorithm runs in the turnstile model!

It holds that E[Z] = F2 and V[Z] ≤ 2 ·
(∑

i∈S m
2
i

)2
= 2F 2

2 .

KEY LEMMA

Hence, we can (ε, δ)-approximate F2, by running multiple copies of the
algorithm in parallel and return the average value.
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Algorithm to approximate F2 in the turnstile model

1: t = d6/ε2e
2: Choose t 4-wise independent hash function h1, . . . , ht, where

hi : [n]→ {−1, 1}

3: Set yi = 0 for i = 1, . . . , t
4: while item (x,±) from stream S arrives
5: if x is inserted, then yi = yi + hi(x) for every 1 ≤ i ≤ t
6: else yi = yi − hi(x) for every 1 ≤ i ≤ t
7: return 1

t
·
∑t

i=1 Zi, where Zi = y2i

ANOTHER ALGORITHM TO APPROXIMATE F0

With constant probability, the returned value of the algorithm is in (1− ε, 1 + ε) ·
F2. Moreover, the algorithm’s space complexity is O

(
(1/ε2) logn

)
bits.

THEOREM
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Algorithm analysis: space complexity (upper bounding t)

Our current status:

We run t independent copies in parallel and return
(∑t

i=1 Zi

)
/t.

The key lemma tells us that E[Zi] = F2, and V[Zi] ≤ 2 · F 2
2 .

To derive a upper bound on t to ensure an (ε, δ)-approximation, we apply the
Law of Large Numbers:

P
[∣∣∣∣Z1 + · · ·+ Zt

t
− E[Zi]

∣∣∣∣ ≥ εE[Zi]

]
= P

[∣∣∣∣Z1 + · · ·+ Zt

t
− F2

∣∣∣∣ ≥ εF2

]
≤

2 · F 2
2

t · (εE[Zi])2

=
2 · F 2

2

t · ε2 · F 2
2

.

Hence, choosing t =
⌈
6/ε2

⌉
suffices for our purpose.
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Proving the key lemma: E[Z] = F2, where Z = Zi

By the algorithm description, we have y =
∑

x∈S mx · h(x), where mx is the
number of occurrences of x.

Hence,

Z =

(∑
x∈S

mx · h(x)

)2

=
∑
x∈S

m2
x · h2(x) +

∑
x,y∈S
x 6=y

mx · h(x) ·my · h(y).

By linearity of expectation, we have

E [Z] =
∑
x∈S

m2
x · E

[
h2(x)

]
+
∑

x,y∈S
x 6=y

mx ·my · E [h(x)]E [h(y)]

=
∑
x∈S

m2
x = F2.

Here we use the fact that

E [h(x)] = 0, E
[
h2(x)

]
= 1.

The key: different powers of h and E(·) give magical cancellation!
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Proving the key lemma: V[Z] ≤ 2F 2
2 , where Z = Zi

We have

E
[
Z2] = E

[(∑
x∈S

mx · h(x)

)4]
=

∑
x,y,u,v

mx ·my ·mu ·mv · E [h(x) · h(y) · h(u) · h(v)] .

Since E [h(x)] = E
[
h3(x)

]
= 0 and E

[
h2(x)

]
= E

[
h4(x)

]
= 1, we have

E
[
Z2] =

∑
x∈S

m4
x · E

[
h4(x)

]
+
∑

x,y∈S
x 6=y

1

2
·

(
4

2

)
·m2

x ·m2
y · E

[
h2(x)

]
E
[
h2(y)

]

=
∑
x∈S

m4
x +

∑
x,y∈S
x 6=y
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Streaming algorithms for approximating Fp

1. Construct an estimator Z (random variable). Prove that

Z = the target value in expectation

This is probably the most elegant part. Think of the right sampling probability,
and/or get the right cancellation by using hash functions and E[·].

2. Upper bound V[Z]

3. Apply Chebyshev’s inequality and Chernoff bound to show the number of
copies needed to run in parallel in order to have (ε, δ)-approximation.

Sadly, applications of these inequalities always introduce a factor of O(1/ε2).
Is the 1/ε2-dependency always needed?

A COMMON APPROACH
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Outline

Approximating F2-norm in the turnstile model

Frequency estimation in the turnstile model
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Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a
sequence of update operations, and each operation is one of the follows:

Insert(x): add x into the set S;

Delete(x): delete x from the set S;

Query(x): return the number of occurrences of x.

Design a streaming algorithm that supports the three operations above.

FREQUENCY ESTIMATION

We need to design an algorithm running in the turnstile model!
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The Count-Min sketch

Cormode and Muthukrishnan (2005) introduced the Count-Min sketch for the
frequency estimation problem.

Count-Min sketch: a table C of d rows and w columns, and every row j is
associated with a universal hash function hj : [N ]→ [w].

w = de/εe

d = dlog 1
δ
e

h1(x)

h2(x)

h3(x)h4(x)

The space complexity only depends on ε and δ.
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Update/Query operations for Count-Min

1: If Insert(x) arrives

2: for j = 1 to d do
3: C[j, hj(x)] = C[j, hj(x)] + 1
4: If Delete(x) arrives
5: for j = 1 to d do
6: C[j, hj(x)] = C[j, hj(x)]− 1
7: If Query(x) arrives, then
8: return m′x , min1≤i≤d C[j, hj(x)]

UPDATE/QUERY OPERATIONS FOR COUNT-MIN

Theorem: The estimate m′x satisfies m′x ≥ mx, and w. p. at least 1− δ it holds
m′x ≤ mx + ε · F1, where F1 is the first moment of the multiset S.
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Analysis of Count-Min Sketch

The estimate m′x satisfies m′x ≥ mx, and with probability at least 1− δ it holds
that m′x ≤ mx + ε · F1, where F1 is the first moment of the multiset S.

Theorem

Proof: Clearly, for any x and j it holds that C[j, hj(x)] ≥ mx, so m′x ≥ mx.

Now for the second statement. Let Zj,x be the number of items y ∈ [N ] \ {x}
such that hj(x) = hj(y). Then we have that C[j, hj(x)] = mx + Zj,x. Since
we use a universal family of hash functions, it holds that

P[hj(x) = hj(y)] ≤ 1

w
≤ ε

e
⇒ E[Zj,x] ≤ ε

e
· F1.

Hence,

P
[
m′x ≥ mx + ε · F1

]
= P

[
∀j : C[j, hj(x)] ≥ mx + ε · F1

]
= P [∀j : mx + Zj,x ≥ mx + ε · F1] = P [∀j : Zj,x ≥ ε · F1]

≤ P [∀j : Zj,x ≥ e · E[Zj,x]] ≤ e−d ≤ δ.
Markov inequality
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Distributed frequency estimation with the CM sketch

Setup: Dataset is arbitrarily allocated in different servers.

Objective: Design a communication-efficient algorithm for frequency estimation.

A naive approach:

Every site sends all the received data to a
host server;

The host maintains the CM sketch;

A communication-efficient way:

The sites communicate initially to use the
same hash functions.

All the sites maintains their own CM sketch;

The sites send their CM sketches to the host.
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Discussions of the CM Sketch

The analysis is only based on Markov inequality (no Chebyshev inequality, no
variance calculation). This gives us a very simple proof, and the space
complexity proportional to 1/ε.

Notice that the space usage of our previous
streaming algorithms is proportional to 1/ε2.

Think of ε = 0.01. This improvement from 1/ε2 to 1/ε represents reducing the
space usage by 100 times!

Since each entry is non-negative, the CM Sketch returns the minimum value
instead of the medium value.

The error bound is one-sided. This feature is crucial for many applications.

The paper introducing the CM sketch has received more than 1,100 citations
(checked in October 2018), which is very unusual for a theory paper.

For further discussion, see https://sites.google.com/site/countminsketch/home
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Summary

Key features of streaming algorithms:

It is required to read the dataset only once with a certain order.

Algorithm’s working space is sublinear in the size of the dataset, so storing an
entire input is impossible.

Algorithm is required to output a good approximate answer with high probability.

What have we seen:
Streaming algorithms for Fp-norm approximation.

A streaming algorithm for frequency estimation.

Other problems investigated in the setting of streaming algorithms:
Approximating certain norms of matrices

Counting the number of certain subgraphs in a graph

and much more...
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