Data streaming algorithms (2)

He Sun

Recall: streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \cdots, s_{m}, \cdots,
$$

and every s_{i} belongs to the universe U of size n.

Recall: streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \cdots, s_{m}, \cdots,
$$

and every s_{i} belongs to the universe U of size n.

- Constraints for streaming algorithms: the space complexity is sublinear in n, and is independent in the length of \mathcal{S}.

Recall: streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \cdots, s_{m}, \cdots,
$$

and every s_{i} belongs to the universe U of size n.

- Constraints for streaming algorithms: the space complexity is sublinear in n, and is independent in the length of \mathcal{S}.
- Quality of the output: The algorithm needs to give a good approximate value with high probability.

Recall: streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \cdots, s_{m}, \cdots,
$$

and every s_{i} belongs to the universe U of size n.

- Constraints for streaming algorithms: the space complexity is sublinear in n, and is independent in the length of \mathcal{S}.
- Quality of the output: The algorithm needs to give a good approximate value with high probability.
(ε, δ)-APPROXIMATION
For confidence parameter ε and approximation parameter δ, the algorithm's output Output and the exact answer Exact satisfies

$$
\mathbb{P}[\text { Output } \in(1-\varepsilon, 1+\varepsilon) \cdot \text { Exact }] \geq 1-\delta
$$

Recall: two models of streaming algorithms

Cash register model: every item in stream \mathcal{S} is an item in U.

Recall: two models of streaming algorithms

Cash register model: every item in stream \mathcal{S} is an item in U.

Turnstile model: every item s_{i} in \mathcal{S} associates with " + " or "-", which indicates if s_{i} is added into or deleted from \mathcal{S}.

- " + " indicates that s_{i} is added into the dataset;
- "-" indicates that s_{i} is deleted from the dataset.

Why turnstile model?

- Data may be added or deleted over time, e.g. Facebook graph.
- We need robust algorithms to handle this situation.

Recall: F_{p}-Norm

F_{p}-NORM
Let U with $|U|=n$ be a dataset, and m_{j} be the number of occurrences of j in a stream. The F_{p}-norm is defined by

$$
F_{p} \triangleq \sum_{i \in U}\left|m_{i}\right|^{p}
$$

Recall: F_{p}-Norm

F_{p}-NORM
Let U with $|U|=n$ be a dataset, and m_{j} be the number of occurrences of j in a stream. The F_{p}-norm is defined by

$$
F_{p} \triangleq \sum_{i \in U}\left|m_{i}\right|^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Recall: F_{p}-Norm

F_{p}-NORM
Let U with $|U|=n$ be a dataset, and m_{j} be the number of occurrences of j in a stream. The F_{p}-norm is defined by

$$
F_{p} \triangleq \sum_{i \in U}\left|m_{i}\right|^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Theorem

The medium of the returned values from $\Theta(\log (1 / \delta))$ independent copies of the BJKST algorithm gives an (ε, δ)-approximation of F_{0}.

Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

DOWNSIDE OF THIS FRAMEWORK

- Sampling probability for the current item usually depends on the whole data stream that algorithm has seen so far.
- For example, the index z in the BJKST algorithm

Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

DOWNSIDE OF THIS FRAMEWORK

- Sampling probability for the current item usually depends on the whole data stream that algorithm has seen so far.
- For example, the index z in the BJKST algorithm
- Deleting an item appeared before could potentially makes the current sampling probability useless! :(

Last lecture: algorithms in the cash register model

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

DOWNSIDE OF THIS FRAMEWORK

- Sampling probability for the current item usually depends on the whole data stream that algorithm has seen so far.
- For example, the index z in the BJKST algorithm
- Deleting an item appeared before could potentially makes the current sampling probability useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Outline

- Approximating F_{2}-norm in the turnstile model
- Frequency estimation in the turnstile model

Algorithm to approximate F_{2} in the turnstile model

_ Algorithm to approximate F_{2} (The simplified description)
1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The simplified description)
1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The simplified description)
1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The simplified description)
1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The Simplified description)

1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The Simplified description)

1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$
5:

$$
\text { else } y=y-h(x)
$$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The Simplified description)

1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$
5: \quad else $y=y-h(x)$
6: return $Z:=y^{2}$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The simplified description)

1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$
5: \quad else $y=y-h(x)$
6: return $Z:=y^{2}$

The algorithm runs in the turnstile model!

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (The Simplified description)

1: Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: Set $y=0$
while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$
5: \quad else $y=y-h(x)$
6: return $Z:=y^{2}$

The algorithm runs in the turnstile model!

Key Lemma
It holds that $\mathbb{E}[Z]=F_{2}$ and $\mathbb{V}[Z] \leq 2 \cdot\left(\sum_{i \in \mathcal{S}} m_{i}^{2}\right)^{2}=2 F_{2}^{2}$.

Algorithm to approximate F_{2} in the turnstile model

ALgorithm to approximate F_{2} (The Simplified DESCRIPTION)

Choose a 4 -wise independent hash function $h:[n] \rightarrow\{-1,1\}$
: Set $y=0$
while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted, then $y=y+h(x)$
5: \quad else $y=y-h(x)$
6: return $Z:=y^{2}$

The algorithm runs in the turnstile model!

Key Lemma
It holds that $\mathbb{E}[Z]=F_{2}$ and $\mathbb{V}[Z] \leq 2 \cdot\left(\sum_{i \in \mathcal{S}} m_{i}^{2}\right)^{2}=2 F_{2}^{2}$.

Hence, we can (ε, δ)-approximate F_{2}, by running multiple copies of the algorithm in parallel and return the average value.

Algorithm to approximate F_{2} in the turnstile model

ANOTHER ALGORITHM TO APPROXIMATE F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

Algorithm to approximate F_{2} in the turnstile model

ANOTHER ALGORITHM TO APPROXIMATE F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: Set $y_{i}=0$ for $i=1, \ldots, t$

Algorithm to approximate F_{2} in the turnstile model

ANOTHER ALGORITHM TO APPROXIMATE F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: Set $y_{i}=0$ for $i=1, \ldots, t$
4: while item (x, \pm) from stream \mathcal{S} arrives

Algorithm to approximate F_{2} in the turnstile model

Another algorithm to approximate F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: Set $y_{i}=0$ for $i=1, \ldots, t$
: while item (x, \pm) from stream \mathcal{S} arrives
5:
if x is inserted, then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$

Algorithm to approximate F_{2} in the turnstile model

ANOTHER ALGORITHM TO APPROXIMATE F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: Set $y_{i}=0$ for $i=1, \ldots, t$
while item (x, \pm) from stream \mathcal{S} arrives
5: \quad if x is inserted, then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$
6: \quad else $y_{i}=y_{i}-h_{i}(x)$ for every $1 \leq i \leq t$

Algorithm to approximate F_{2} in the turnstile model

ANOTHER ALGORITHM TO APPROXIMATE F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: Set $y_{i}=0$ for $i=1, \ldots, t$
while item (x, \pm) from stream \mathcal{S} arrives
if x is inserted, then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$ else $y_{i}=y_{i}-h_{i}(x)$ for every $1 \leq i \leq t$
7: return $\frac{1}{t} \cdot \sum_{i=1}^{t} Z_{i}$, where $Z_{i}=y_{i}^{2}$

Algorithm to approximate F_{2} in the turnstile model

Another algorithm to Approximate F_{0}

1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose $t 4$-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

Set $y_{i}=0$ for $i=1, \ldots, t$
while item (x, \pm) from stream \mathcal{S} arrives
if x is inserted, then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$ else $y_{i}=y_{i}-h_{i}(x)$ for every $1 \leq i \leq t$
7: return $\frac{1}{t} \cdot \sum_{i=1}^{t} Z_{i}$, where $Z_{i}=y_{i}^{2}$

Theorem

With constant probability, the returned value of the algorithm is in $(1-\varepsilon, 1+\varepsilon)$. F_{2}. Moreover, the algorithm's space complexity is $O\left(\left(1 / \varepsilon^{2}\right) \log n\right)$ bits.

Algorithm analysis: space complexity (upper bounding t)

Our current status:

- We run t independent copies in parallel and return $\left(\sum_{i=1}^{t} Z_{i}\right) / t$.
- The key lemma tells us that $\mathbb{E}\left[Z_{i}\right]=F_{2}$, and $\mathbb{V}\left[Z_{i}\right] \leq 2 \cdot F_{2}^{2}$.

Algorithm analysis: space complexity (upper bounding t)

Our current status:

- We run t independent copies in parallel and return $\left(\sum_{i=1}^{t} Z_{i}\right) / t$.
- The key lemma tells us that $\mathbb{E}\left[Z_{i}\right]=F_{2}$, and $\mathbb{V}\left[Z_{i}\right] \leq 2 \cdot F_{2}^{2}$.

To derive a upper bound on t to ensure an (ε, δ)-approximation, we apply the Law of Large Numbers:

$$
\begin{aligned}
\mathbb{P}\left[\left|\frac{Z_{1}+\cdots+Z_{t}}{t}-\mathbb{E}\left[Z_{i}\right]\right| \geq \varepsilon \mathbb{E}\left[Z_{i}\right]\right] & =\mathbb{P}\left[\left|\frac{Z_{1}+\cdots+Z_{t}}{t}-F_{2}\right| \geq \varepsilon F_{2}\right] \\
& \leq \frac{2 \cdot F_{2}^{2}}{t \cdot\left(\varepsilon \mathbb{E}\left[Z_{i}\right]\right)^{2}} \\
& =\frac{2 \cdot F_{2}^{2}}{t \cdot \varepsilon^{2} \cdot F_{2}^{2}}
\end{aligned}
$$

Hence, choosing $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$ suffices for our purpose.

Proving the key lemma: $\mathbb{E}[Z]=F_{2}$, where $Z=Z_{i}$

By the algorithm description, we have $y=\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)$, where m_{x} is the number of occurrences of x.

Proving the key lemma: $\mathbb{E}[Z]=F_{2}$, where $Z=Z_{i}$

By the algorithm description, we have $y=\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)$, where m_{x} is the number of occurrences of x. Hence,

$$
Z=\left(\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)\right)^{2}=\sum_{x \in \mathcal{S}} m_{x}^{2} \cdot h^{2}(x)+\sum_{\substack{x, y \in \mathcal{S} \\ x \neq y}} m_{x} \cdot h(x) \cdot m_{y} \cdot h(y)
$$

Proving the key lemma: $\mathbb{E}[Z]=F_{2}$, where $Z=Z_{i}$

By the algorithm description, we have $y=\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)$, where m_{x} is the number of occurrences of x. Hence,

$$
Z=\left(\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)\right)^{2}=\sum_{x \in \mathcal{S}} m_{x}^{2} \cdot h^{2}(x)+\sum_{\substack{x, y \in \mathcal{S} \\ x \neq y}} m_{x} \cdot h(x) \cdot m_{y} \cdot h(y)
$$

By linearity of expectation, we have

$$
\begin{aligned}
\mathbb{E}[Z] & =\sum_{x \in \mathcal{S}} m_{x}^{2} \cdot \mathbb{E}\left[h^{2}(x)\right]+\sum_{\substack{x, y \in \mathcal{S} \\
x \neq y}} m_{x} \cdot m_{y} \cdot \mathbb{E}[h(x)] \mathbb{E}[h(y)] \\
& =\sum_{x \in \mathcal{S}} m_{x}^{2}=F_{2}
\end{aligned}
$$

Here we use the fact that

$$
\mathbb{E}[h(x)]=0, \quad \mathbb{E}\left[h^{2}(x)\right]=1
$$

The key: different powers of h and $\mathbb{E}(\cdot)$ give magical cancellation!

Proving the key lemma: $\mathbb{V}[Z] \leq 2 F_{2}^{2}$, where $Z=Z_{i}$

We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)\right)^{4}\right] \\
& =\sum_{x, y, u, v} m_{x} \cdot m_{y} \cdot m_{u} \cdot m_{v} \cdot \mathbb{E}[h(x) \cdot h(y) \cdot h(u) \cdot h(v)]
\end{aligned}
$$

Proving the key lemma: $\mathbb{V}[Z] \leq 2 F_{2}^{2}$, where $Z=Z_{i}$

We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)\right)^{4}\right] \\
& =\sum_{x, y, u, v} m_{x} \cdot m_{y} \cdot m_{u} \cdot m_{v} \cdot \mathbb{E}[h(x) \cdot h(y) \cdot h(u) \cdot h(v)] .
\end{aligned}
$$

Since $\mathbb{E}[h(x)]=\mathbb{E}\left[h^{3}(x)\right]=0$ and $\mathbb{E}\left[h^{2}(x)\right]=\mathbb{E}\left[h^{4}(x)\right]=1$,

Proving the key lemma: $\mathbb{V}[Z] \leq 2 F_{2}^{2}$, where $Z=Z_{i}$

We have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\mathbb{E}\left[\left(\sum_{x \in \mathcal{S}} m_{x} \cdot h(x)\right)^{4}\right] \\
& =\sum_{x, y, u, v} m_{x} \cdot m_{y} \cdot m_{u} \cdot m_{v} \cdot \mathbb{E}[h(x) \cdot h(y) \cdot h(u) \cdot h(v)] .
\end{aligned}
$$

Since $\mathbb{E}[h(x)]=\mathbb{E}\left[h^{3}(x)\right]=0$ and $\mathbb{E}\left[h^{2}(x)\right]=\mathbb{E}\left[h^{4}(x)\right]=1$, we have

$$
\begin{aligned}
\mathbb{E}\left[Z^{2}\right] & =\sum_{x \in S} m_{x}^{4} \cdot \mathbb{E}\left[h^{4}(x)\right]+\sum_{\substack{x, y \in \mathcal{S} \\
x \neq y}} \frac{1}{2} \cdot\binom{4}{2} \cdot m_{x}^{2} \cdot m_{y}^{2} \cdot \mathbb{E}\left[h^{2}(x)\right] \mathbb{E}\left[h^{2}(y)\right] \\
& =\sum_{x \in S} m_{x}^{4}+\sum_{\substack{x, y \in \mathcal{S} \\
x \neq y}} \frac{1}{2} \cdot\binom{4}{2} \cdot m_{x}^{2} \cdot m_{y}^{2} \\
& \leq 2 \cdot\left(\sum_{x \in S} m_{x}^{2}\right)^{2}=2 \cdot F_{2}^{2} .
\end{aligned}
$$

Streaming algorithms for approximating F_{p}

A COMMON APPROACH

1. Construct an estimator Z (random variable). Prove that
$Z=$ the target value in expectation

Streaming algorithms for approximating F_{p}

A COMMON APPROACH

1. Construct an estimator Z (random variable). Prove that
$Z=$ the target value in expectation

- This is probably the most elegant part. Think of the right sampling probability, and/or get the right cancellation by using hash functions and $\mathbb{E}[\cdot]$.

Streaming algorithms for approximating F_{p}

A COMMON APPROACH

1. Construct an estimator Z (random variable). Prove that
$Z=$ the target value in expectation

- This is probably the most elegant part. Think of the right sampling probability, and/or get the right cancellation by using hash functions and $\mathbb{E}[\cdot]$.

2. Upper bound $\mathbb{V}[Z]$

Streaming algorithms for approximating F_{p}

A COMMON APPROACH

1. Construct an estimator Z (random variable). Prove that

$$
Z=\text { the target value in expectation }
$$

- This is probably the most elegant part. Think of the right sampling probability, and/or get the right cancellation by using hash functions and $\mathbb{E}[\cdot]$.

2. Upper bound $\mathbb{V}[Z]$
3. Apply Chebyshev's inequality and Chernoff bound to show the number of copies needed to run in parallel in order to have (ε, δ)-approximation.

Streaming algorithms for approximating F_{p}

A COMMON APPROACH

1. Construct an estimator Z (random variable). Prove that

$$
Z=\text { the target value in expectation }
$$

- This is probably the most elegant part. Think of the right sampling probability, and/or get the right cancellation by using hash functions and $\mathbb{E}[\cdot]$.

2. Upper bound $\mathbb{V}[Z]$
3. Apply Chebyshev's inequality and Chernoff bound to show the number of copies needed to run in parallel in order to have (ε, δ)-approximation.

- Sadly, applications of these inequalities always introduce a factor of $O\left(1 / \varepsilon^{2}\right)$.
- Is the $1 / \varepsilon^{2}$-dependency always needed?

Outline

- Approximating F_{2}-norm in the turnstile model
- Frequency estimation in the turnstile model

Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a sequence of update operations, and each operation is one of the follows:

- Insert(x): add x into the set S;

Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a sequence of update operations, and each operation is one of the follows:

- $\operatorname{Insert}(x)$: add x into the set S;
- Delete (x) : delete x from the set S;

Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a sequence of update operations, and each operation is one of the follows:

- $\operatorname{Insert}(x)$: add x into the set S;
- Delete (x) : delete x from the set S;
- Query (x) : return the number of occurrences of x.

Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a sequence of update operations, and each operation is one of the follows:

- $\operatorname{lnsert}(x)$: add x into the set S;
- Delete (x) : delete x from the set S;
- Query (x) : return the number of occurrences of x.

Frequency estimation

Design a streaming algorithm that supports the three operations above.

Frequency estimation

Let S be a multiset, and S is empty initially. The data stream consists of a sequence of update operations, and each operation is one of the follows:

- $\operatorname{lnsert}(x)$: add x into the set S;
- Delete (x) : delete x from the set S;
- Query (x) : return the number of occurrences of x.

Frequency estimation

Design a streaming algorithm that supports the three operations above.

We need to design an algorithm running in the turnstile model!

The Count-Min sketch

Cormode and Muthukrishnan (2005) introduced the Count-Min sketch for the frequency estimation problem.

The Count-Min sketch

Cormode and Muthukrishnan (2005) introduced the Count-Min sketch for the frequency estimation problem.

Count-Min sketch: a table C of d rows and w columns, and every row j is associated with a universal hash function $h_{j}:[N] \rightarrow[w]$.

The Count-Min sketch

Cormode and Muthukrishnan (2005) introduced the Count-Min sketch for the frequency estimation problem.

Count-Min sketch: a table C of d rows and w columns, and every row j is associated with a universal hash function $h_{j}:[N] \rightarrow[w]$.

The Count-Min sketch

Cormode and Muthukrishnan (2005) introduced the Count-Min sketch for the frequency estimation problem.

Count-Min sketch: a table C of d rows and w columns, and every row j is associated with a universal hash function $h_{j}:[N] \rightarrow[w]$.

The space complexity only depends on ε and δ.

Update/Query operations for Count-Min

_ Update/Query operations for Count-Min
1: If Insert (x) arrives

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do

Update/Query operations for Count-Min

Update/Query operations for Count-Min
1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$

Update/Query operations for Count-Min

Update/Query operations for Count-Min
1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives
5:
for $j=1$ to d do

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives
5: \quad for $j=1$ to d do
6:

$$
C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]-1
$$

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives
5: \quad for $j=1$ to d do
6:

$$
C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]-1
$$

7: If Query (x) arrives, then

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives
5: \quad for $j=1$ to d do
6:

$$
C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]-1
$$

7: If Query (x) arrives, then
8: \quad return $m_{x}^{\prime} \triangleq \min _{1 \leq i \leq d} C\left[j, h_{j}(x)\right]$

Update/Query operations for Count-Min

Update/Query operations for Count-Min

1: If Insert (x) arrives
2: \quad for $j=1$ to d do
3: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]+1$
4: If Delete (x) arrives
5: \quad for $j=1$ to d do
6: $\quad C\left[j, h_{j}(x)\right]=C\left[j, h_{j}(x)\right]-1$
7: If Query (x) arrives, then
8: \quad return $m_{x}^{\prime} \triangleq \min _{1 \leq i \leq d} C\left[j, h_{j}(x)\right]$

Theorem: The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and w. p. at least $1-\delta$ it holds $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Analysis of Count-Min Sketch

Theorem
The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Analysis of Count-Min Sketch

Theorem
The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.

Analysis of Count-Min Sketch

Theorem
The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$.

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$.

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w}
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Hence,
$\mathbb{P}\left[m_{x}^{\prime} \geq m_{x}+\varepsilon \cdot F_{1}\right]=\mathbb{P}\left[\forall j: C\left[j, h_{j}(x)\right] \geq m_{x}+\varepsilon \cdot F_{1}\right]$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[m_{x}^{\prime} \geq m_{x}+\varepsilon \cdot F_{1}\right] & =\mathbb{P}\left[\forall j: C\left[j, h_{j}(x)\right] \geq m_{x}+\varepsilon \cdot F_{1}\right] \\
& =\mathbb{P}\left[\forall j: m_{x}+Z_{j, x} \geq m_{x}+\varepsilon \cdot F_{1}\right]
\end{aligned}
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[m_{x}^{\prime} \geq m_{x}+\varepsilon \cdot F_{1}\right] & =\mathbb{P}\left[\forall j: C\left[j, h_{j}(x)\right] \geq m_{x}+\varepsilon \cdot F_{1}\right] \\
& =\mathbb{P}\left[\forall j: m_{x}+Z_{j, x} \geq m_{x}+\varepsilon \cdot F_{1}\right]=\mathbb{P}\left[\forall j: Z_{j, x} \geq \varepsilon \cdot F_{1}\right]
\end{aligned}
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[m_{x}^{\prime} \geq m_{x}+\varepsilon \cdot F_{1}\right] & =\mathbb{P}\left[\forall j: C\left[j, h_{j}(x)\right] \geq m_{x}+\varepsilon \cdot F_{1}\right] \\
& =\mathbb{P}\left[\forall j: m_{x}+Z_{j, x} \geq m_{x}+\varepsilon \cdot F_{1}\right]=\mathbb{P}\left[\forall j: Z_{j, x} \geq \varepsilon \cdot F_{1}\right] \\
& \leq \mathbb{P}\left[\forall j: Z_{j, x} \geq \mathrm{e} \cdot \mathbb{E}\left[Z_{j, x}\right]\right]
\end{aligned}
$$

Analysis of Count-Min Sketch

Theorem

The estimate m_{x}^{\prime} satisfies $m_{x}^{\prime} \geq m_{x}$, and with probability at least $1-\delta$ it holds that $m_{x}^{\prime} \leq m_{x}+\varepsilon \cdot F_{1}$, where F_{1} is the first moment of the multiset S.

Proof: Clearly, for any x and j it holds that $C\left[j, h_{j}(x)\right] \geq m_{x}$, so $m_{x}^{\prime} \geq m_{x}$.
Now for the second statement. Let $Z_{j, x}$ be the number of items $y \in[N] \backslash\{x\}$ such that $h_{j}(x)=h_{j}(y)$. Then we have that $C\left[j, h_{j}(x)\right]=m_{x}+Z_{j, x}$. Since we use a universal family of hash functions, it holds that

$$
\mathbb{P}\left[h_{j}(x)=h_{j}(y)\right] \leq \frac{1}{w} \leq \frac{\varepsilon}{\mathrm{e}} \quad \Rightarrow \quad \mathbb{E}\left[Z_{j, x}\right] \leq \frac{\varepsilon}{\mathrm{e}} \cdot F_{1} .
$$

Hence,

$$
\begin{aligned}
& \mathbb{P}\left[m_{x}^{\prime} \geq m_{x}+\varepsilon \cdot F_{1}\right]=\mathbb{P}\left[\forall j: C\left[j, h_{j}(x)\right] \geq m_{x}+\varepsilon \cdot F_{1}\right] \\
&=\mathbb{P}\left[\forall j: m_{x}+Z_{j, x} \geq m_{x}+\varepsilon \cdot F_{1}\right]=\mathbb{P}\left[\forall j: Z_{j, x} \geq \varepsilon \cdot F_{1}\right] \\
& \leq \mathbb{P}\left[\forall j: Z_{j, x} \geq \mathrm{e} \cdot \mathbb{E}\left[Z_{j, x}\right]\right] \leq \mathrm{e}^{-d} \leq \delta . \\
& \quad \text { Markov inequality }
\end{aligned}
$$

Distributed frequency estimation with the CM sketch

Setup: Dataset is arbitrarily allocated in different servers.
Objective: Design a communication-efficient algorithm for frequency estimation.

Distributed frequency estimation with the CM sketch

Setup: Dataset is arbitrarily allocated in different servers.
Objective: Design a communication-efficient algorithm for frequency estimation.

A naive approach:

- Every site sends all the received data to a host server;
- The host maintains the CM sketch;

Distributed frequency estimation with the CM sketch

Setup: Dataset is arbitrarily allocated in different servers.
Objective: Design a communication-efficient algorithm for frequency estimation.

A naive approach:

- Every site sends all the received data to a host server;
- The host maintains the CM sketch;

A communication-efficient way:

- The sites communicate initially to use the same hash functions.
- All the sites maintains their own CM sketch;
- The sites send their CM sketches to the host.

Discussions of the CM Sketch

- The analysis is only based on Markov inequality (no Chebyshev inequality, no variance calculation). This gives us a very simple proof, and the space complexity proportional to $1 / \varepsilon$.

Discussions of the CM Sketch

- The analysis is only based on Markov inequality (no Chebyshev inequality, no variance calculation). This gives us a very simple proof, and the space complexity proportional to $1 / \varepsilon$. Notice that the space usage of our previous streaming algorithms is proportional to $1 / \varepsilon^{2}$.
- Think of $\varepsilon=0.01$. This improvement from $1 / \varepsilon^{2}$ to $1 / \varepsilon$ represents reducing the space usage by 100 times!
- Since each entry is non-negative, the CM Sketch returns the minimum value instead of the medium value.

Discussions of the CM Sketch

- The analysis is only based on Markov inequality (no Chebyshev inequality, no variance calculation). This gives us a very simple proof, and the space complexity proportional to $1 / \varepsilon$. Notice that the space usage of our previous streaming algorithms is proportional to $1 / \varepsilon^{2}$.
- Think of $\varepsilon=0.01$. This improvement from $1 / \varepsilon^{2}$ to $1 / \varepsilon$ represents reducing the space usage by 100 times!
- Since each entry is non-negative, the CM Sketch returns the minimum value instead of the medium value.
- The error bound is one-sided. This feature is crucial for many applications.

Discussions of the CM Sketch

- The analysis is only based on Markov inequality (no Chebyshev inequality, no variance calculation). This gives us a very simple proof, and the space complexity proportional to $1 / \varepsilon$. Notice that the space usage of our previous streaming algorithms is proportional to $1 / \varepsilon^{2}$.
- Think of $\varepsilon=0.01$. This improvement from $1 / \varepsilon^{2}$ to $1 / \varepsilon$ represents reducing the space usage by 100 times!
- Since each entry is non-negative, the CM Sketch returns the minimum value instead of the medium value.
- The error bound is one-sided. This feature is crucial for many applications.
- The paper introducing the CM sketch has received more than 1,100 citations (checked in October 2018), which is very unusual for a theory paper.
- For further discussion, see https://sites.google.com/site/countminsketch/home

Summary

- Key features of streaming algorithms:

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.

Summary

- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.
- A streaming algorithm for frequency estimation.
- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.
- A streaming algorithm for frequency estimation.
- Other problems investigated in the setting of streaming algorithms:
- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.
- A streaming algorithm for frequency estimation.
- Other problems investigated in the setting of streaming algorithms:
- Approximating certain norms of matrices
- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.
- A streaming algorithm for frequency estimation.
- Other problems investigated in the setting of streaming algorithms:
- Approximating certain norms of matrices
- Counting the number of certain subgraphs in a graph
- Key features of streaming algorithms:
- It is required to read the dataset only once with a certain order.
- Algorithm's working space is sublinear in the size of the dataset, so storing an entire input is impossible.
- Algorithm is required to output a good approximate answer with high probability.
- What have we seen:
- Streaming algorithms for F_{p}-norm approximation.
- A streaming algorithm for frequency estimation.
- Other problems investigated in the setting of streaming algorithms:
- Approximating certain norms of matrices
- Counting the number of certain subgraphs in a graph
- and much more...

