
University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 12: The Cheeger Inequality

For any undirected graph G = (V,E) and a set S ⊂ V , let

hG(S) =
|∂S|

min{vol(S), vol(V \ S)}
,

where vol(S) =
∑

u∈ du and ∂S = E(S, V \ S) denotes the set of edges with one endpoint in S
and the other endpoint in V \ S. The Cheeger constant or the conductance of graph G is
defined as

hG = min
S
hG(S).

By definition, the set S achieving hG corresponds to the sparsest cut in G, and finding such
set S has numerous applications in computer science. For instance, when analysing a physical
network, one can view the servers and the links connecting different servers as the vertices and
edges in G. Hence, a higher value of hG shows that the underlying network is more reliable,
since one have to remove many links to make the network disconnected. Moreover, as the
number of edges corresponds to the construction cost, it is desired to construct a network G
with higher value of hG while in the mean time keeping the number of edges in G as small as
possible. For image segmentation, a common approach is to construct a graph G based on the
RGB values and the pairwise distances among different pixels, and the sparsest cuts in G are
used to identify different objects in a picture. While we can formulate a sparse cut in different
ways with respect to different settings, one of the simplest formulations is as follows:

Problem 1 (The Sparsest Cut Problem). Given an undirected graph G = (V,E) of n
vertices as input, find a set S ⊂ V such that hG(S) = hG.

The sparest cut problem is NP-hard, and the current best approximation algorithm achieves
approximation ratio O(

√
log n), which is based spectral geometry and semi-definite programming.

Designing approximation algorithms for the sparsest cut problem is one of the most central
problems in approximation algorithms.

In this lecture, we will see how hG relates to λ2, which is polynomial-time computable, and
design an approximation algorithm for the sparsest cut problem. We will also briefly discuss the
high-order generalisation of the Cheeger inequality.

1 The Cheeger Inequality
We have seen several equivalent formulations for λ2 from the last lecture. From these formulations,
we can write λ2 as the minimum of a function g(x) over possible x ∈ D ⊆ Rn, and g(x) for any
x ∈ D gives an upper bound of λ2. Now, we use the same method to show that λ2 can be upper
bounded with respect to hG.

Lemma 2. λ2 ≤ 2 · hG.



Proof. Let C = (A,B) be the optimal cut that achieves hG, and let |C| be the number of edges
in this cut. We define a vector x ∈ Rn such that xu = 1/ vol(A) if u ∈ A, and xu = −1/ vol(B)
of u ∈ B. Since

〈x,D1〉 =
∑
u∈A

du
vol(A)

−
∑
u∈B

du
vol(B)

= 0,

it holds that

λ2 ≤
∑

u∼v(xu − xv)2∑
u du · x2u

=
|C| · (1/ vol(A) + 1/ vol(B))2

1/ vol(A) + 1/ vol(B)

= |C| ·
(

1

vol(A)
+

1

vol(B)

)
≤ 2|C|

min{vol(A), vol(B)}
= 2 · hG,

which proves the statement.

Next, we will show that hG can be upper bounded with respect to λ2 as well.

Theorem 3 (Cheeger Inequality). It holds that hG ≤
√
2 · λ2.

The core behind the proof of the Cheeger inequality is the following fact, which corresponds
to an approximation algorithm for finding a sparse cut. For any vector y ∈ Rn, we assume that
y1 ≤ . . . ≤ yn. For any t ∈ R, define

St = {u : yu ≤ t}.

We call these {St}nt=1 sweep sets.

Lemma 4. For any vector y satisfying yᵀD1 = 0, there is a number t such that

hG(St) ≤

√
2 · y

ᵀLy

yᵀDy
.

Notice that the vector y = D−1/2f2 satisfies

yᵀLy

yᵀDy
=
fᵀ
2D
−1/2LD−1/2f2

fᵀ
2D
−1/2DD−1/2f2

=
fᵀ
2Lf2
fᵀ
2 f2

= λ2.

Hence, based on Lemma 4 we have the following Algorithm 1, whose output is a set S satisfying
hG(S) ≤

√
2 · λ2.

Proof of Lemma 4. Let

ρ =
yᵀLy

yᵀDy
=

∑
u∼v(yu − yv)2∑

u du · y2u
.

Without loss of generality, we assume that y1 ≤ . . . ≤ yn, and let j be the smallest number such
that

∑
i≤j di ≥ vol(G)/2.

We introduce another vector z ∈ Rn such that zu = yu − yj, and hence zj = 0. Moreover, it
is easy to show that

zᵀLz

zᵀDz
=

yᵀLy

yᵀDy + vol(G) · y2j
≤ ρ.

We further scale vector z such that z21 + z2n = 1, and define set

Vt = {u : zu ≤ t}.

2



Algorithm 1 Algorithm for finding a sparse cut
1: f = D−1/2f2
2: Sort all the vertices such that f(u1) ≤ . . . ≤ f(un)
3: t = 0
4: S = ∅
5: S? = {u1}
6: while t ≤ n do
7: t = t+ 1
8: S = S ∪ {ut}
9: if hG(S) ≤ hG(S

?) then S? = S
10: end if
11: end while
12: return S?

Since
hG(Vt) =

|∂Vt|
min{vol(Vt), vol(V \ Vt)}

,

our goal is to define a distribution on t such that

E [|∂Vt|]
E [min{vol(Vt), vol(V \ Vt)}]

≤
√

2ρ, (1)

Notice that (1) is equivalent to show that E
[√

2ρ ·min {vol(Vt), vol(V \ Vt)} − |∂Vt|
]
≥ 0.

Therefore, there is a set V ′ such that
√
2ρ ·min {vol(V ′), vol(V \ V ′)} ≥ |∂V ′|, i.e.,

|∂V ′|
min {vol(V ′), vol(V \ V ′)}

≤
√
2ρ.

To define such a distribution, we choose t according to the probability density function 2|t|.
Hence, the probability that a value between [a, b] is chosen is

P [t ∈ [a, b]] =

∫ b

a

2|t|dt = sgn(b) · b2 − sgn(a) · a2.

Since z21 + z2n = 1, we have that

P [t ∈ [z1, zn]] =

∫ zn

z1

2|t|dt = sgn(zn) · z2n − sgn(z1) · z21 = 1.

So it suffices to analyse E [min {vol (Vt) , vol(V \ Vt)}] and E [|∂Vt|].
Analysis of E [min {vol (Vt) , vol(V \ Vt)}]. Notice that

E [vol (Vt)] =
∑
u

P [zu ≤ t] · du.

By the choice of j, we know that t < 0 implies that vol(Vt) < vol(G)/2, while t > 0 implies that
vol(V \ Vt) ≤ vol(G)/2. Hence, it holds that

E [min {vol (Vt) , vol(V \ Vt)}]

=
∑
u

P [zu ≤ t and t < 0] · du +
∑
u

P [zu > t and t ≥ 0] · du

=
∑

u: zu≤t

du · z2u +
∑

u: zu>t

du · z2u

= zᵀDz.

3



Analysis of E [|∂Vt|]. Notice that an edge u ∼ v with zu ≤ zv is in ∂Vt iff zu ≤ t and zv ≥ t.
This event occurs with probability∫ zv

zu

2|t|dt = sgn(zv) · z2v − sgn(zu) · z2u,

which equals to |z2u − z2v | if sgn(zu) = sgn(zv), and z2u + z2v otherwise. We upper bound both
terms by the inequality

|z2u − z2v | ≤ |zu − zv| · (|zu|+ |zv|) ,
and

z2u + z2v ≤ (zu − zv)2 ≤ |zu − zv| · (|zu|+ |zv|) .
Then, it holds that

E [|∂Vt|] =
∑
{u,v}∈E

P [zu ≤ t and zv > t]

≤
∑
u∼v

|zu − zv| · (|zu|+ |zv|)

≤
√∑

u∼v

|zu − zv|2 ·
√∑

u∼v

(|zu|+ |zv|)2

≤
√
zᵀLz ·

√
2 · zᵀDz,

where the second inequality follows by the Cauchy-Schwarz inequality. Therefore, we have that

E [|∂Vt|]
E [min{vol(Vt), vol(V \ Vt)}]

≤
√
2 · z

ᵀLz

zᵀDz
≤
√

2ρ.

Therefore, there is a set Vt such that hG(Vt) ≤
√
2ρ.

2 Further discussions
Are these inequalities tight? Combining the Cheeger inequality with Lemma 2, we have
that

λ2/2 ≤ hG ≤
√
2 · λ2. (2)

The following two examples show that both sides of (2) are tight up to a constant factor.

• For a path graph Pn, the Cheeger constant is 1
d(n−1)/2e , and

λ2 = 1− cos

(
π

n− 1

)
≈ π2

2(n− 1)2
.

This shows that the Cheeger inequality is tight up to a constant factor.

• For an n-cube on 2n vertices, the Cheeger constant is 2/n which is equal to λ2. Hence,
the first inequality in (2) is tight within a constant factor as well.

Why is it called the Cheeger inequality? Theorem 3 was originally proven by Cheeger in
the setting of manifolds. It was shown about 20 years later that the same inequality by Cheeger
holds for graphs as well, and the proof for graphs essentially follows exactly from the proof for
manifolds. However, it is worth pointing out that, the easier direction of (2), i.e., λ2/2 ≤ hG
does not hold for manifolds.

4



Graphs in which the sweep cut failed to find a sparse cut. There have been extensive
studies about the graphs in which a sweep set algorithm based on f2 fails to find a sparse cut.
As an example, we define a grid graph as follows:

• There are
√
n rows and 3

√
n columns in the grid, and there is a vertex at every crossing

“point” between a horizontal line segment and a vertical line segment.

• The weight of every edge, except the edges sitting in the middle row, has weight 1.

• The weight of every edge sitting in the middle row has weight 1/
√
n.

See Figure 1 for example. it is easy to see that the “horizontal cut” crossing the “thin” edges is
the sparsest cut, while the output of a sweep set algorithm is the “vertical cut”.

3
√
n coloums

√
n rows the sparsest cut

the Cheeger’s cut

Figure 1: A grid graph with
√
n rows, and 3

√
n columns.

3 Higher-order Cheeger Inequality
So far we have discussed the relations between λ2 and hG. Based on this, one can ask if
the structure of multi-clusters in a graph relates to the other eigenvalues of L. To build this
connection, we generalise the Cheeger constant and define the k-way expansion constant as

ρ(k) , min
partition A1,...,Ak

max
1≤i≤k

hG(Ai). (3)

Here, we call subsets of vertices (i.e. clusters) A1, . . . , Ak a k-way partition of G if Ai∩Aj = ∅
for different i and j, and

⋃k
i=1Ai = V . Usually we say a graph G occurring in practice has k

clusters if we can partition the vertex set of G into k subsets A1, . . . , Ak, such that different
clusters are loosely connected, i.e., the value of ρ(k) is small. It is known that ρ(k) is related to
λk by the following higher-order Cheeger inequality:

λk
2
≤ ρ(k) ≤ O(k2)

√
λk. (4)

At a very high level, the proof of the higher-order Cheeger inequality is to apply the eigenvectors
associated with λ2, . . . , λk to embed every vertex into a point in Rk. We will discuss more about
this approach when we discuss spectral clustering algorithms in later lectures.

5


