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Lecture 14: Spectral Sparsification of Graphs (1)

Graph sparsification is the procedure of approximating a graph G by a sparse graph H such
that certain quantities between G and H are approximately preserved, see Figure 1 for example.
Over the past three decades, several notions of graph sparsification have been proposed and
have led numerous applications in designing approximation algorithms. Among these, a spectral
sparsifier is a sparse subgraph H of an original graph G that maintains spectral properties
between the Laplacian matrices of G and H. Over the past 15 years, spectral sparsification has
become one of the most central components in designing efficient algorithms for a number of
important optimisation problems. The formal definition of spectral sparsifiers is as follows:

Definition 1. For any undirected graph G with n vertices and m edges, we call a subgraph H
of G, with proper reweighting of the edges, a (1 + ε)-spectral sparsifier if

(1− ε)xᵀLGx ≤ xᵀLHx ≤ (1 + ε)xᵀLGx (1)

holds for any x ∈ Rn, where LG and LH are the respective Laplacian matrices of G and H.
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Figure 1: The graph sparsification is a reweighted subgraph H of an original graph G such that
certain properties are preserved. These subgraphs are sparse, and are more space-efficient to be
stored than the original graphs. The picture above uses the thickness of edges in H to represent
their weights.

We will first prove that some important properties of an input graph G(V,E,w) are approxi-
mately preserved in its spectral sparsifier H.

Lemma 2. The following statements hold: (1) For S ⊆ V , it holds that

(1− ε) · wG(S, V \ S) ≤ wH(S, V \ S) ≤ (1 + ε) · wG(S, V \ S),

where wG(S, V \ S) and wH(S, V \ S) are the cut values between S and V \ S in G and H
respectively. (2) It holds for any 1 ≤ i ≤ n that

(1− ε) · λi(LG) ≤ λi(LH) ≤ (1 + ε) · λi(LG).



Proof. For the first statement, let S ⊆ V be an arbitrary set of vertices and let χS be the
indicator vector of S, i.e., χS(u) = 1 if u ∈ S, and χS(u) = 0 otherwise. Then, it holds that

χᵀ
SLGχS =

∑
u∼v

w(u, v) (χS(u)− χS(v))2 =
∑

u∈S,v∈V \S
u∼v

w(u, v) = wG(S, V \ S).

By Definition 1 we have

(1− ε)χᵀ
SLGχS ≤ χᵀ

SLHχS ≤ (1 + ε)χᵀ
SLGχS,

the statement holds.
For the second statement, we apply (1) and the min-max theorem, and obtain that

(1− ε) · xᵀGLGxG ≤ (1− ε) · xᵀHLGxH ≤ xᵀHLHxH ≤ xᵀGLHxG ≤ (1 + ε) · xᵀGLGxG,

where xG and xH are the eigenvectors of LG and LH corresponding to the i-th smallest eigenvalue.

1 Electrical flows
Given an undirected graph G, we fix an arbitrary orientation of the edges (The specific choice of
the orientation does not affect anything in our discussion). We introduce the incidence matrix
B ∈ Rm×n of G: the incidence matrix of G is the matrix B ∈ Rm×n, where the rows and columns
of B are indexed by the edges and vertices of graph G, and for any edge e ∈ E[G] and vertex v

Be,v =


1 if v is e’s head
−1 if v is e’s tail

0 otherwise.

We also define the diagonal matrix W ∈ Rm×m, where We,e equals to the weight of edge e.
Sometimes, we write the weight w(u, v) of edge e = {u, v} as w(e) to simply the notation.

Lemma 3. It holds that L = BᵀWB.

Proof. For any indices u, v, we have

(BᵀWB)u,v =
∑
e

Bᵀ
u,e (WB)e,v =

∑
e

Be,uWe,eBe,v. (2)

Now we first assume that u = v. Then, it holds that∑
e

Be,uWe,eBe,u =
∑
e

(Be,u)2We,e = deg(u) = Lu,u,

where the last line holds by the fact that Be,u 6= 0 iff e is adjacent to vertex u. Secondly, when
u, v are connected by an edge, it holds that∑

e

Be,uWe,eBe,v = −w(u, v) = Lu,v,

since there is exactly one edge e connecting u and v and Be,uBe,u = −1. Finally, when u and
v are not connected, we know that Be,uBe,v = 0 for any edge e, and Lu,v = 0. Combining the
three cases together proves the lemma.
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Now we treat the graph G as a resistor network by replacing each edge e with a resistor of
resistance 1/w(e). In other words, let’s think of w(e) as the conductance of edge e. We can
then study how electricity flows in the network. To this end we write two underlying properties
of electrical flows. Suppose we send one unit of flow from s to t, and let b ∈ Rn be the vector
which indicates how much current is going in at each vertex. The Kirchoff’s law states that
the difference between the outgoing and incoming current on the edges adjacent to each vertex
equals to the external current input at that vertex. To formalise this mathematically, for every
edge e let i(e) be the flow along edge e, that is i(e) is non-negative if electricity is going from u
to v and it is non-positive otherwise. Then the Kirchoff’s law can be written as

Bᵀi = b. (3)

The second property of electrical flows is the Ohm’s law, which states that the current in an
edge equals the potential difference across its ends times its conductance, i.e.,

i = WBv, (4)

where v ∈ Rn expresses the potentials of the vertices. Based on (3) and (4), we have

b = BᵀWBv = Lv,

and
v = L−1b.

This formation is a bit problematic at the first thought, as the matrix L does not have an inverse.
However, notice that we are only interested in the solutions for b such that 〈b,1〉 = 0, i.e., the
total amount of current injected is equal to the total amount extracted, and the solution exists
as long as the graph G is connected. Hence, we introduce the pseudo-inverse L† of L as follows:

Definition 4. The pseudo-inverse L† of L is the matrix that has the same span as L and that
satisfies LL† = Π, where Π is the symmetric projection onto the span of L.

Based on the definition of L†, we have

v = L†b.

2 Effective resistance
The effective resistance between vertices u and v is the potential difference induced between
them when a unit current is injected at one vertex and extracted at the other. Let us derive
an algebraic expression for the effective resistance in terms of L†. To inject and extract a unit
current across the endpoints of an edge u ∼ v, we set bu,v = (δu − δv), where δu ∈ {0, 1}n is the
indicator vector of vertex u. Then the potentials induced by bu,v at the vertices are given by
L†bu,v. To measure the potential difference across u ∼ v, we simply multiply by (δu − δv)ᵀ on
the left, hence the effective resistance Reff(u, v) of edge u ∼ v can be written as

Reff(u, v) = bᵀu,vL
†bu,v.

The laws of series and parallel resistance are applicable for the graph setting. Namely, if a
path consists of edges of resistance r1,2, . . . , rn−1,n, then the effective resistance between the two
extreme vertices is r1,2 + · · ·+ rn−1,n. If instead we have k parallel edges between two vertices s
and t of resistances r1, . . . , rk, then the effective resistance is

Reff(s, t) =
1

1/r1 + · · ·+ 1/rk
.
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Effective resistance as a metric. Next we’ll prove that the effective resistance is a metric.
Recall that a metric on a set X is a function d : X × X → [0,∞) such that the following
holds for any x, y, z ∈ X: (1) d(x, x) = 0; (2) d(x, y) ≥ 0; (3) d(x, y) = d(y, x), and (4)
d(x, z) ≤ d(x, y) + d(y, z). It’s straightforward to see that the first three conditions hold for the
effective resistance, and we only need to prove the triangle inequality for the effective resistance.

Lemma 5 (Metric property). For any triple of vertices s, t, u,

Reff(s, t) + Reff(t, u) ≥ Reff(s, u).

Proof. By definition we have

Reff(s, u) = bᵀs,uL
†bs,u

= (bs,t + bt,u)ᵀL†(bs,t + bt,u)

= bᵀs,tL
†bs,t + bᵀt,uL

†bt,u + 2bᵀs,tL
†bt,u

= Reff(s, t) + Reff(t, u) + 2bᵀs,tL
†bt,u.

To prove the statement, it suffices to show 2bᵀs,tL
†bt,u ≤ 0. Notice that 2bᵀs,tL

†bt,u is equal to
v(t) − v(u) when we send one unit of flow from s to t. But this means that t has the lowest
potential in the network, hence the statement holds.

Effective resistance as an embedding. We can also view effective resistances as an em-
bedding F : V → Rn. For any vertex u, let F (u) , (L†)1/21u. Then, for any pair of vertices
u, v,

‖F (u)− F (v)‖2 =
∥∥(L†)1/2 (1u − 1v)

∥∥2
= bᵀu,vL

†bu,v

= Reff(u, v).

Hence, by Lemma 5 the square of the distances in this mapping is a metric. Exactly computing
the effective resistances of all the edges requires the computation of the inverse of the Laplacian
that can take O(n3) time. It is known that, based on the so-called Laplacian solvers and the
Johnson-Lindenstrauss lemma, the effective resistances of all the edges can be approximately
computed in O(m logc n) time for some constant c ≥ 0.

From effective resistance to leverage score. The leverage score of an edge e is defined by
`e , weReff(e), and serves an a measure of how important the edge is. For example, if removing
an edge disconnects the graph, then Reff(e) = 1/we, as all current flowing between its endpoints
must use the edge itself, and `e = 1.

Finally, we briefly discuss some applications of leverage scores. Consider the problem of
sampling a random spanning tree with probability proportional to the product of the weights
of its edges. The theorem below shows that the probability that edge e appears in the tree is
exactly its leverage score.

Theorem 6. If we choose a spanning tree T with probability proportional to the product of its
edge weights. Then it holds for any edge e that

P[e ∈ T ] = `(e).
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