
University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 15: Spectral Sparsification of Graphs (2)

In the last lecture we discussed effective resistance, which is the potential difference between
any pair of vertices when a unit current is injected at one vertex and extracted at the other. To
derive an algebraic expression for the effective resistance between vertices u and v, we introduced
the pseudo-inverse of the Laplacian matrix L†, and proved that

Reff(u, v) , (δu − δv)ᵀL†(δu − δv),

where δu ∈ {0, 1}n is the indicator vector of vertex u. We also briefly discussed that, for
any graph G with n vertices and m edges, the effective resistances of all the edges can be
approximately computed up to a constant factor in O(m logc n) time for some constant c > 0. In
this lecture we will see how effective resistances will be applied to construct spectral sparsifiers.
Recall that, for any undirected graph G with n vertices, we call a subgraph H of G, with proper
reweighting of the edges, a (1 + ε)-spectral sparsifier if

(1− ε)xᵀLGx ≤ xᵀLHx ≤ (1 + ε)xᵀLGx (1)

holds for any x ∈ Rn, where LG and LH are the respective Laplacian matrices of G and H. The
main result of this lecture is as follows:

Theorem 1. Let G be any undirected graph with n vertices and m edges. For any ε ∈ (0, 1),
there is an algorithm that runs in O(m logc n) time for some constant c > 0 and produces a
(1 + ε)-spectral sparsifier of G with O(n log n/ε2) edges.

The algorithm behind Theorem 1 is a very simple procedure that samples edges with
probability proportional to their leverage scores, which is defined as `e , we · Reff(e) for every
edge e. Our algorithm is described in Algorithm 1.

Algorithm 1 Algorithm for constructing a spectral sparsifier
1: for every edge e do
2: let `e = we · Reff(e)
3: let pe = min {1, 5 · (log n) · `e/ε2}
4: end for
5: H = (V, ∅)
6: for every edge e do
7: with probability pe, add e into H with weight we/pe
8: end for
9: return graph H

Notice that in the algorithm every sampled edge e has a new weight we/pe in the resulting
graph H, so we first explain the reweighting scheme. Let

Le = beb
ᵀ
e



be the Laplacian matrix of the graph consisting of a single edge e = {u, v}, where

be , δu − δv.

Then, the Laplacian matrix of graph G can be written as LG =
∑

ewe · Le. Since every edge e
is sampled with probability pe and every sampled e has weight we/pe in H, we have

E [LH ] =
∑
e

pe ·
we
pe
· Le =

∑
e

we · Le = LG.

Hence, the reweighing scheme ensures that the resulting graph H equals to G in expectation.
It’s also easy to see that, once the algorithm obtains the approximate values of edges’ effective
resistances that can be computed in O(m logc n) time for some c > 0, the overall algorithm
finishes in O(m) time, which proves the runtime requirement of Theorem 1. Hence, in order to
prove Theorem 1, it remains to analyse the number of edges in H, and (1) holds for H.

During the analysis below, we assume pe = 5 · (log n) · `e/ε2 ≤ 1 to simplify our analysis. The
reason behind this assumption is due to the following trick: for any edge e with 5·(log n)·`e/ε2 > 1,
we treat e as multiple parallel edges e′, each of which is sampled with some probability pe′ < 1
satisfying

∑
e′ pe′ = 5 · (log n) · `e/ε2.

Bounding the number of edges in H. Since we sample edges with probability proportional
to their leverage scores, we have ∑

e

`e =
∑
e

weReff(e)

=
∑
e

we · bᵀeL†be

=
∑
e

we · tr
(
L†beb

ᵀ
e

)
= tr

(
L†
∑
e

webeb
ᵀ
e

)
= tr

(
L†L

)
= n− 1, (2)

where the third equality follows by the fact that the trace is invariant under cyclic permutations.
The fact

∑
e `e = n − 1 can be also explained in a combinatorial way. Notice that `e is the

probability that e appears in a random spanning tree of G when we sample spanning trees with
probability proportional to the product of their edge weights. Since every spanning tree has
n− 1 edges, the sum of these probabilities is n− 1.

Based on (2), the expected number of edges in H equals∑
e

pe =
∑
e

min
{

1, 5 · (log n)`e/ε
2
}
≤
∑
e

5 · (log n)`e/ε
2 ≤ 5n log n/ε2.

By Chernoff bound, it is exponentially unlikely that the number of edges in H is more than a
small multiplicity factor of the expected value.

Proving that H is a spectral sparsifier. Our analysis is based on the fact that, for any
positive definite matrices A and B, A � B iff

B−1/2AB−1/2 � I.

2



Similarly, LH � LG iff
L
†/2
G LHL

†/2
G � L

†/2
G LGL

†/2
G ,

where L†/2G is the square root of the pseudo-inverse of LG. Let

Π = L
†/2
G LGL

†/2
G

be the projection onto the range of LG. Then, by linearity of expectation it holds that

E
[
L
†/2
G LHL

†/2
G

]
= L

†/2
G E [LH ]L

†/2
G = L

†/2
G LGL

†/2
G = Π.

We define a random matrix Xe, where

Xe =


we
pe
· L†/2G LeL

†/2
G with probability pe

0 otherwise.

Hence, it holds that ∑
e

Xe = L
†/2
G LHL

†/2
G ,

and

E

[∑
e

Xe

]
= Π.

Notice that proving H is a spectral sparsifier is equivalent to show
∑

eXe is close to Π with high
probability. Our analysis is based on the theorem about the concentration of random matrices,
which can be viewed as matrix analog of the Chernoff bound that we saw in Lecture 9.

Lemma 2 (Matrix Chernoff Bound). Let X1, . . . , Xm ∈ Rn×n be independent random PSD such
that λmax(Xi) ≤ R almost surely. Let X =

∑m
i=1Xi, and let µmin and µmax be the minimum and

maximum eigenvalues of E[X] =
∑m

i=1 E[Xi]. Then,

P

[
λmin

(
m∑
i=1

Xi

)
≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

for 0 < ε < 1, and

P

[
λmax

(
m∑
i=1

Xi

)
≥ (1 + ε)µmax

]
≤ n

(
eε

(1 + ε)1+ε

)µmax/R

for ε > 0.

To apply Lemma 2, notice that

λmax(Xe) = (we/pe) · λmax

(
L
†/2
G LeL

†/2
G

)
= (we/pe) · λmax

(
L
†/2
G beb

ᵀ
eL
†/2
G

)
≤ (we/pe) · tr

(
L
†/2
G beb

ᵀ
eL
†/2
G

)
= (we/pe) · tr

(
bᵀeL

†
Gbe

)
= (we/pe) · Reff(e)

≤ ε2/(5 · log n),

3



where the last inequality follows by the definition and our assumption on pe. Notice that the
upper bound above is independent of edge e. Finally, we set R = ε2/(5 · log n) and apply
Lemma 2 to obtain that

P

[
λmax

(∑
e

Xe

)
≥ (1 + ε)

]
≤ n

(
eε

(1 + ε)1+ε

)1/R

≤ n

(
eε

(1 + ε)1+ε

)5 logn/ε2

≤ 1

n1.5
.

For the lower bound, remember that we only need to work orthogonal to 1 ∈ Rn, and hence can
treat λmin(Π) = 1. This gives us that

P

[
λmin

(∑
e

Xe

)
≤ (1− ε)

]
≤ n

(
e−ε

(1− ε)1−ε

)5 logn/ε2

≤ 1

n1.5
.

By the union bound, we know that with high probability
∑

eXe is close to Π, which proves (1).

4


