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1 Generating points uniformly at random from a ball

There are various methods for generating values from the normal distribution, and here we review the
Box-Muller method: (1) Let U, V be two independent random numbers distributed uniformly on (0, 1);
(2) compute

X =
√
−2 lnU cos(2πV ), Y =

√
−2 lnU sin(2πV ).

Then both of X and Y are the standard normal distribution, and are independent.
Now we study generating points uniformly at random on the surface of the unit ball in Rd.

The algorithm is described as follows: (1) generate x1, . . . , xd where each xi ∼ N(0, 1); (2) define
x = (x1, . . . , xd), and return x

‖x‖ . This gives a distribution that is uniform on the surface of the sphere.

2 Dimensionality reduction

In the last week’s lecture we saw the concentration behaviours of high dimensional data through the
application of the Law of Large Numbers. On the other side, through a motivating example we also
saw that low dimensional data is easier to analyse. What remains is to analyse the data points in the
Euclidean space whose dimension is “medium”. In particular, ideally we would like to see whether these
data points can be embedded into a lower dimensional space while their pairwise distances are still
preserved, see the formulation below:

Given a set X ⊆ Rd of n points, describe the points in X in fewer dimensions k � n such that their
pairwise distances are almost preserved.

This question and the techniques developed to solve the question, a.k.a. dimensionality reduction, plays
fundamental roles in Data Science due to the following reasons: (1) Low dimensional datasets are more
space-efficient to be stored; (2) algorithms for low dimensional points usually run faster.

In today’s lecture, we study the Johnson-Lindenstrauss lemma, which states that any n points in
high dimensional Eucliean space can be mapped onto k dimensions where k = O(log n/ε2) without
distorting the Euclidean distance between any pair of points more than a factor of 1± ε.

Lemma 1 (Johnson-Lindenstrauss, 1984). Let X ⊆ Rd be a set of n points, ε ∈ (0, 1/5). Then, there
is a random matrix Φ ∈ Rk×d, such that it holds with constant probability that

∀x, y ∈ X : (1− ε)‖x− y‖2 ≤ ‖Φx− Φy‖2 ≤ (1 + ε)‖x− y‖2, (1)

where k = O
(
logn
ε2

)
.

Remark:

• The statement above holds for all pair of points, instead of most pairs of points.

• The number of dimensions in the projection is only a logarithmic function of n, and independent
of d. Since k is usually much less than d, we sometimes call this lemma dimension reduction
lemma. In applications, the dominant term is typically the 1/ε2 term.



• The matrix Φ is independent of the input points.

• The number of dimensions needed is shown to be optimal. It is known that there is a set of points
in Rd such that, in order to have (1), k = Ω

(
logn
ε2

)
.

The key to prove the Johnson-Lindenstrauss lemma is the following technical lemma.

Lemma 2. Given the same hypothesis, there exists a matrix Φ ∈ Rk×d such that it holds for any x ∈ Rd
that

Pr [ ‖Φx‖2 ≤ (1− ε)‖x‖2 or ‖Φx‖2 ≥ (1 + ε)‖x‖2 ] ≤ 2 · e−k·ε2/5.

Proof of Lemma 1. For any x, y ∈ X we define zx,y = x− y. We apply Lemma 2 on all possible zx,y.
Hence, using the union bound the total “failure” probability is at most

n(n− 1)

2
· 2 · e−k·ε2/5,

which is a constant if k = O
(
logn
ε2

)
.

We list several facts about the normal distributions that will be used in our proof.

Fact 3. The following statements hold:

1. If Xi ∼ N(µi, σ
2
i ) and ai ∈ R for any 1 ≤ i ≤ n, then it holds that

n∑
i=1

aiXi ∼ N

(
n∑
i=1

aiµi,
n∑
i=1

(aiσi)
2

)
.

2. If X1, . . . , Xk are independent, standard normal random variables, then the sum of their squares

Q =
k∑
i=1

X2
i

is distributed according to the χ2 distribution with k degree of freedom, denoted as Q ∼ χ2(k).

3. The moment generating function of a random variable is Mx(t) = E
[

etX
]
for t ∈ R. If X ∼ χ2(k),

then it holds that E
[

etX
]

= (1− 2t)−k/2.

Proof of Lemma 2. Let us define Φ as a matrix

Φ =
1√
k


g11 g12 g13 . . . g1d
g21 g22 g23 . . . g2d
. . . . . . . . . . . . . . . . . . . . . . .
gk1 gk2 gk3 . . . gkd

 ,
where every gi,j ∼ N(0, 1). Let x ∈ Rd be an arbitrary vector, and we assume without loss of generality
that ‖x‖ = 1. We define y = Φ · x. By definition, we have for each 1 ≤ i ≤ k that

yi =
1√
k

d∑
j=1

gi,jxj .

We apply Fact 3 and obtain that

yi ∼ N

0,
1

k

d∑
j=1

x2j

 ,

2



i.e. yi ∼ N(0, 1/k) due to the fact that ‖x‖ = 1. This gives us that
√
kyi ∼ N(0, 1), and therefore

k∑
i=1

(√
kyi

)2
= k

k∑
i=1

y2i ∼ χ2(k).

For ease of analysis we introduce h1, . . . , hk, which are independent and identically distributed random
variables such that

k∑
i=1

h2i = k
k∑
i=1

y2i . (2)

Hence, it holds that

Pr [ ‖Φx‖ ≥ 1 + ε ] ≤ Pr
[
‖Φx‖2 ≥ 1 + ε

]
= Pr

[
k∑
i=1

y2i ≥ 1 + ε

]
.

By (2) we have for any λ > 0 that

Pr [ ‖Φx‖ ≥ 1 + ε ] ≤ Pr

[
k∑
i=1

h2i ≥ (1 + ε) · k

]
= Pr

[
eλ·

∑k
i=1 h

2
i ≥ eλ(1+ε)·k

]
.

Since the hi’s are independent to each other, we apply Markov’s inequality and obtain

Pr
[

eλ·
∑k

i=1 h
2
i ≥ eλ(1+ε)·k

]
≤

E
[

eλ·
∑k

i=1 h
2
i

]
eλ(1+ε)·k

=

∏k
i=1E

[
eλ·h

2
i

]
eλ(1+ε)·k

.

Since hi ∼ N(0, 1) and E
[

eλh
2
i

]
= (1 − 2t)−1/2 by using the moment generating function of χ2

distributions, we have

Pr
[

eλ·
∑k

i=1 h
2
i ≥ eλ(1+ε)·k

]
≤
(
1/
√

1− 2λ
)k

eλ(1+ε)·k
=

e−
k
2
·log(1−2λ)

eλ(1+ε)·k
.

Since log(1− x) ≥ −x− x2/2− x3/2 for x ∈ (0, 1/5), we assume λ ≤ 1/10 and have

Pr
[

eλ·
∑k

i=1 h
2
i ≥ eλ(1+ε)·k

]
≤ e

k
2
·(2λ+2λ2+4λ3)

eλ(1+ε)·k
≤ e−kε

2/5

by setting λ = ε/2. Combining all the calculations above gives us that

Pr [ ‖Φx‖ ≥ 1 + ε ] ≤ e−kε
2/5.

By the symmetry of random variables yi’s and the union bound, we have

Pr [ ‖Φx‖2 ≤ (1− ε)‖x‖2 or ‖Φx‖2 ≥ (1 + ε)‖x‖2 ] ≤ 2 · e−kε2/5,

which finishes the proof.
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