University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 5: Best-fit Subspaces and Singular Value Decomposition (1)

1 Singular values and singular vectors

Let $a = (a_1, \ldots, a_d)$ be a point in \mathbb{R}^d . We look at the projection of the points a onto the line through the origin in the direction of v, see Figure 1 for illustration. Then we have that

 $a_1^2 + a_2^2 + \ldots + a_d^2 = (\text{length of projection})^2 + (\text{distance of point to line})^2,$

and therefore

(distance of point to line)² = $a_1^2 + a_2^2 + \ldots + a_d^2 - (\text{length of projection})^2$.

Since $\sum_{j=1}^{d} a_j^2$ is constant independent of the line, minimising *a*'s distance to the line is equivalent to maximising its projection onto the line.

Figure 1: The projection of the point a onto the line through the origin in the direction of v.

Generalising the case above, we assume that there are n points, each of which is represented in \mathbb{R}^d . We use matrix $A \in \mathbb{R}^{n \times d}$ to represent these n points. Then, for any fixed direction $v \in \mathbb{R}^d$, the length of the projection of the *i*-th point, expressed by A_i , is $|\langle A_i, v \rangle| = |A_i v|$, and therefore the best-fit line is the one that maximises $\sum_{i=1}^n |A_i v|^2 = ||Av||^2$. With this in mind, we define the *first singular vector* v_1 of A as

$$v_1 \triangleq \arg \max_{\|v\|=1} \|Av\|.$$

The value $\sigma_1(A) \triangleq ||Av_1||$ is called the first singular value of A. Notice that $\sigma_1^2(A) = \sum_{i=1}^n |A_i v_1|^2$ is the sum of the squared lengths of the projections of the points onto the line determined by v_1 .

If the data points were all either on a line or close to a line, then intuitively v_1 should give us the direction of that line. However, if the data points are not close to that line but lie close to a 2-dimensional subspace, then further work is needed. We will look at the following greedy approach. We start by finding v_1 and then find the best 2-dimensional subspace containing v_1 . Notice that, for every 2-dimensional subspace containing v_1 , the sum of squared lengths of the projections onto the subspace equals the sum of squared projections onto v_1 plus the sum of squared projections along a vector perpendicular to v_1 in the subspace. Hence, instead of looking for the best 2-dimensional subspace containing v_1 , we look for a unit vector vector v perpendicular to v_1 that maximises $||Av||^2$ among all such unit vectors. This motivates the definition of *the second singular vector* v_2 , which is the best-fit line perpendicular to v_1 . Formally, we have

$$v_2 \triangleq \arg \max_{v \perp v_1, \|v\|=1} \|Av\|.$$

The value $\sigma_2(A) = ||Av_2||$ is called the second singular value of A. The third singular vector v_3 and the thrid singular value are defined similarly by

$$v_3 \triangleq \arg \max_{\substack{v \perp v_1, v_2 \\ \|v\|=1}} \|Av\|,$$

and $\sigma_3(A) = ||Av_3||$.

The greedy algorithm finds the v_1 that maximises ||Av|| and then the best-fit 2-dimensional subspace containing v_1 , etc. The following theorem shows that this simple greedy algorithm finds the best-fit subspace of every dimension.

Theorem 1 (The Greedy Algorithm Works). Let $A \in \mathbb{R}^{n \times d}$ be a matrix with singular vectors v_1, \ldots, v_r . For any $1 \le k \le r$, let V_k be the subspace spanned by v_1, \ldots, v_k . Then, for every k, V_k is the best-fit k-dimensional subspace for A.

Proof. The proof is by induction. The statement is obviously true for k = 1. For k = 2, let W be a best-fit 2-dimensional subspace for A. For any orthonormal basis (w_1, w_2) of W, $||Aw_1||^2 + ||Aw_2||^2$ is the sum of squared lengths of the projections of the rows of A onto W. We choose an orthonormal basis (w_1, w_2) of W as follows:

- 1. If v_1 is perpendicular to W, any unit vector in W that we choose as w_2 is perpendicular to v_1 .
- 2. Otherwise, we choose w_2 to be the unit vector in W perpendicular to the projection of v_1 onto W. This makes w_2 perpendicular to v_1 .

Since v_1 maximises $||Av||^2$, it holds that $||Aw_1||^2 \leq ||Av_1||^2$. Since v_2 maximises $||Av||^2$ overall v perpendicular to v_1 , we have that $||Aw_2||^2 \leq ||Av_2||^2$. Thus, we have that

$$||Aw_1||^2 + ||Aw_2||^2 \le ||Av_1||^2 + ||Av_2||^2.$$

Hence, V_2 is at least as good as W and is a best-fit 2-dimensional subspace.

This proof can be used inductively to prove the case for a general k.

The vectors v_1, \ldots, v_r are called the right-singular vectors. We normalise these vectors and define

$$u_i \triangleq \frac{1}{\sigma_i(A)} A v_i.$$

These u_i are called the left-singular vectors. It is easy to show that u_i similarly maximises $||u^{\intercal}A||$ over all u perpendicular to $u_1, \ldots u_{i-1}$, and these left-singular vectors are also orthogonal. Lemma 2. Let $A \in \mathbb{R}^{n \times d}$. Then it holds that $\sum_{i=1}^n \sum_{j=1}^d a_{ij}^2 = \sum_{i=1}^r \sigma_i^2(A)$.

Proof. Let v_1, \ldots, v_r be the singular vectors of A. Then it holds that

$$\sum_{j=1}^{n} \|A_j\|^2 = \sum_{j=1}^{n} \sum_{i=1}^{r} (A_j v_i)^2 = \sum_{i=1}^{r} \sum_{j=1}^{n} (A_j v_i)^2 = \sum_{i=1}^{r} \|Av_i\|^2 = \sum_{i=1}^{r} \sigma_i^2(A).$$

The statement holds by noticing that $\sum_{j=1}^{n} ||A_j||^2 = \sum_{i=1}^{n} \sum_{j=1}^{d} a_{ij}^2$.

2 Singular Value Decomposition

We can think of $A \in \mathbb{R}^{n \times d}$ as a linear transformation taking a vector v_1 in its row space to a vector $u_1 = Av_1$ in its column space. Many applications require to find an orthogonal basis for the row space and transform it into an orthogonal basis for the column space: $Av_i = \sigma_i u_i$. The heart of the problem is to find v_1, \ldots, v_r for the row space of A for which

$$A[v_1, v_2, \dots, v_r] = [\sigma_1 u_1, \sigma_2 u_2, \dots, \sigma_r u_r]$$
$$= [u_1, u_2, \dots, u_r] \begin{pmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_r \end{pmatrix}.$$
(1)

Then, it is easy to see that the left and right-singular vectors $u_i = \frac{1}{\sigma_i} A v_i$, v_i , and their associated singular values σ_i satisfy (1). With these vectors u_i s, v_i s, and the singular values σ_i s, we can write A in matrix notation as

$$A = UDV^{\intercal}.$$

where u_i is the *i*-th column of U, v_i^{T} is the *i*-th row of V^{T} , and D is the diagonal matrix with σ_i as the *i*-th entry on its diagonal. This factorisation of A in the form of UDV^{T} is called *Singular* value decomposition. It is easy to check that

$$A = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}.$$