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Lecture 5: Best-fit Subspaces and Singular Value Decomposition (1)

1 Singular values and singular vectors
Let a = (a1, . . . , ad) be a point in Rd. We look at the projection of the points a onto the line
through the origin in the direction of v, see Figure 1 for illustration. Then we have that

a21 + a22 + . . .+ a2d = (length of projection)2 + (distance of point to line)2,

and therefore

(distance of point to line)2 = a21 + a22 + . . .+ a2d − (length of projection)2.

Since
∑d

j=1 a
2
j is constant independent of the line, minimising a’s distance to the line is

equivalent to maximising its projection onto the line.
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Figure 1: The projection of the point a onto the line through the origin in the direction of v.

Generalising the case above, we assume that there are n points, each of which is represented
in Rd. We use matrix A ∈ Rn×d to represent these n points. Then, for any fixed direction
v ∈ Rd, the length of the projection of the i-th point, expressed by Ai, is |〈Ai, v〉| = |Aiv|, and
therefore the best-fit line is the one that maximises

∑n
i=1 |Aiv|2 = ‖Av‖2. With this in mind,

we define the first singular vector v1 of A as

v1 , arg max
‖v‖=1

‖Av‖.

The value σ1(A) , ‖Av1‖ is called the first singular value of A. Notice that σ2
1(A) =

∑n
i=1 |Aiv1|2

is the sum of the squared lengths of the projections of the points onto the line determined by v1.
If the data points were all either on a line or close to a line, then intuitively v1 should give

us the direction of that line. However, if the data points are not close to that line but lie close
to a 2-dimensional subspace, then further work is needed. We will look at the following greedy
approach.



We start by finding v1 and then find the best 2-dimensional subspace containing v1. Notice
that, for every 2-dimensional subspace containing v1, the sum of squared lengths of the projections
onto the subspace equals the sum of squared projections onto v1 plus the sum of squared
projections along a vector perpendicular to v1 in the subspace. Hence, instead of looking for
the best 2-dimensional subspace containing v1, we look for a unit vector vector v perpendicular
to v1 that maximises ‖Av‖2 among all such unit vectors. This motivates the definition of the
second singular vector v2, which is the best-fit line perpendicular to v1. Formally, we have

v2 , arg max
v⊥v1,‖v‖=1

‖Av‖.

The value σ2(A) = ‖Av2‖ is called the second singular value of A. The third singular vector v3
and the thrid singular value are defined similarly by

v3 , arg max
v⊥v1,v2
‖v‖=1

‖Av‖,

and σ3(A) = ‖Av3‖.
The greedy algorithm finds the v1 that maximises ‖Av‖ and then the best-fit 2-dimensional

subspace containing v1, etc. The following theorem shows that this simple greedy algorithm
finds the best-fit subspace of every dimension.

Theorem 1 (The Greedy Algorithm Works). Let A ∈ Rn×d be a matrix with singular vectors
v1, . . . , vr. For any 1 ≤ k ≤ r, let Vk be the subspace spanned by v1, . . . , vk. Then, for every k,
Vk is the best-fit k-dimensional subspace for A.

Proof. The proof is by induction. The statement is obviously true for k = 1. For k = 2,
let W be a best-fit 2-dimensional subspace for A. For any orthonormal basis (w1, w2) of W ,
‖Aw1‖2 + ‖Aw2‖2 is the sum of squared lengths of the projections of the rows of A onto W . We
choose an orthonormal basis (w1, w2) of W as follows:

1. If v1 is perpendicular to W , any unit vector in W that we choose as w2 is perpendicular
to v1.

2. Otherwise, we choose w2 to be the unit vector in W perpendicular to the projection of v1
onto W . This makes w2 perpendicular to v1.

Since v1 maximises ‖Av‖2, it holds that ‖Aw1‖2 ≤ ‖Av1‖2. Since v2 maximises ‖Av‖2 overall v
perpendicular to v1, we have that ‖Aw2‖2 ≤ ‖Av2‖2. Thus, we have that

‖Aw1‖2 + ‖Aw2‖2 ≤ ‖Av1‖2 + ‖Av2‖2.

Hence, V2 is at least as good as W and is a best-fit 2-dimensional subspace.
This proof can be used inductively to prove the case for a general k.

The vectors v1, . . . , vr are called the right-singular vectors. We normalise these vectors and
define

ui ,
1

σi(A)
Avi.

These ui are called the left-singular vectors. It is easy to show that ui similarly maximises
‖uᵀA‖ over all u perpendicular to u1, . . . ui−1, and these left-singular vectors are also orthogonal.

Lemma 2. Let A ∈ Rn×d. Then it holds that
∑n

i=1

∑d
j=1 a

2
ij =

∑r
i=1 σ

2
i (A).

Proof. Let v1, . . . , vr be the singular vectors of A. Then it holds that
n∑
j=1

‖Aj‖2 =
n∑
j=1

r∑
i=1

(Ajvi)
2 =

r∑
i=1

n∑
j=1

(Ajvi)
2 =

r∑
i=1

‖Avi‖2 =
r∑
i=1

σ2
i (A).

The statement holds by noticing that
∑n

j=1 ‖Aj‖2 =
∑n

i=1

∑d
j=1 a

2
ij.
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2 Singular Value Decomposition
We can think of A ∈ Rn×d as a linear transformation taking a vector v1 in its row space to a
vector u1 = Av1 in its column space. Many applications require to find an orthogonal basis for
the row space and transform it into an orthogonal basis for the column space: Avi = σiui. The
heart of the problem is to find v1, . . . , vr for the row space of A for which

A[v1, v2, . . . , vr] = [σ1u1, σ2u2, . . . , σrur]

= [u1, u2, . . . , ur]

σ1 . . .
σr

 . (1)

Then, it is easy to see that the left and right-singular vectors ui = 1
σi
Avi, vi, and their associated

singular values σi satisfy (1). With these vectors uis, vis, and the singular values σis, we can
write A in matrix notation as

A = UDV ᵀ,

where ui is the i-th column of U , vᵀi is the i-th row of V ᵀ, and D is the diagonal matrix with σi
as the i-th entry on its diagonal. This factorisation of A in the form of UDV ᵀ is called Singular
value decomposition. It is easy to check that

A =
r∑
i=1

σiuiv
ᵀ
i .
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