University of Edinburgh
INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 5: Best-fit Subspaces and Singular Value Decomposition (1)

1 Singular values and singular vectors

Let a = (ai,...,aq) be a point in R%. We look at the projection of the points a onto the line
through the origin in the direction of v, see Figure 1 for illustration. Then we have that

a? + a2+ ... 4 a2 = (length of projection)® + (distance of point to line)?,
and therefore

(distance of point to line)® = a? + a2 + ... + a2 — (length of projection)”.

Since Z;l:l a]z is constant independent of the line, minimising a’s distance to the line is
equivalent to maximising its projection onto the line.
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Figure 1: The projection of the point a onto the line through the origin in the direction of v.

Generalising the case above, we assume that there are n points, each of which is represented
in RY. We use matrix A € R™*? to represent these n points. Then, for any fixed direction
v € RY, the length of the projection of the i-th point, expressed by A;, is |(A;, v)| = |Asv|, and
therefore the best-fit line is the one that maximises > i, |4;v[> = ||Av||?>. With this in mind,
we define the first singular vector v, of A as

v; 2 arg max || Av|.
[[vll=1

The value 01(A) £ || Av, || is called the first singular value of A. Notice that c2(A) = Y7 | [Ajvy|?
is the sum of the squared lengths of the projections of the points onto the line determined by v;.

If the data points were all either on a line or close to a line, then intuitively v; should give
us the direction of that line. However, if the data points are not close to that line but lie close
to a 2-dimensional subspace, then further work is needed. We will look at the following greedy
approach.



We start by finding v; and then find the best 2-dimensional subspace containing v;. Notice
that, for every 2-dimensional subspace containing v;, the sum of squared lengths of the projections
onto the subspace equals the sum of squared projections onto v; plus the sum of squared
projections along a vector perpendicular to v, in the subspace. Hence, instead of looking for
the best 2-dimensional subspace containing v;, we look for a unit vector vector v perpendicular
to v; that maximises ||Av||? among all such unit vectors. This motivates the definition of the
second singular vector ve, which is the best-fit line perpendicular to v;. Formally, we have

vy 2 arg max | Av].
vlug,|v||=1
The value oy(A) = ||Auvg|| is called the second singular value of A. The third singular vector vs
and the thrid singular value are defined similarly by

and o3(A) = || Auvs]|.

The greedy algorithm finds the v; that maximises || Av|| and then the best-fit 2-dimensional
subspace containing v, etc. The following theorem shows that this simple greedy algorithm
finds the best-fit subspace of every dimension.

Theorem 1 (The Greedy Algorithm Works). Let A € R"™¢ be a matriz with singular vectors
Uy .U Forany 1 < k <vr, let Vi, be the subspace spanned by vy, ...,vx. Then, for every k,
Vi is the best-fit k-dimensional subspace for A.

Proof. The proof is by induction. The statement is obviously true for £ = 1. For k = 2,
let W be a best-fit 2-dimensional subspace for A. For any orthonormal basis (wy,ws) of W,
|| Awy ||* + || Aws ||? is the sum of squared lengths of the projections of the rows of A onto W. We
choose an orthonormal basis (wy,ws) of W as follows:

1. If vy is perpendicular to W, any unit vector in W that we choose as wy is perpendicular

to v;.

2. Otherwise, we choose wy to be the unit vector in W perpendicular to the projection of v;
onto W. This makes wy perpendicular to v;.

Since v; maximises ||Av||?, it holds that ||Aw,[|? < ||Avy||®. Since vy maximises ||Av||? overall v
perpendicular to v1, we have that ||Aw,||? < ||Avs||?. Thus, we have that

[[Awn][* + || Aws||* < [ Avy || + || Ava|*.

Hence, V5 is at least as good as W and is a best-fit 2-dimensional subspace.

This proof can be used inductively to prove the case for a general k. O]
The vectors vy, ..., v, are called the right-singular vectors. We normalise these vectors and
define )
A
u; = Av;.
(2 O_Z(A) (2

These u; are called the left—singular vectors. It is easy to show that u; similarly maximises
|uTAl| over all u perpendicular to uq, ...u; 1, and these left—singular vectors are also orthogonal.

Lemma 2. Let A € R Then it holds that Y ;. Z] Va3 =i 02 (A).
Proof. Let vy, ..., v, be the singular vectors of A. Then it holds that
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The statement holds by noticing that Y77 [|4;]* = Y71, ZJ | a3 O
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2 Singular Value Decomposition

We can think of A € R™ as a linear transformation taking a vector v; in its row space to a
vector u; = Awv; in its column space. Many applications require to find an orthogonal basis for
the row space and transform it into an orthogonal basis for the column space: Av; = o;u;. The

heart of the problem is to find vy, ..., v, for the row space of A for which
Alvy,ve, ... v = [oug, oous, . . ., o,
01
= [ug, ug, ..., Uyl . (1)
Or

Then, it is easy to see that the left and right-singular vectors u; = %Avi, v;, and their associated
singular values o; satisfy (1). With these vectors u;s, v;s, and the singular values o;s, we can
write A in matrix notation as

A=UDVT,

where w; is the i-th column of U, v] is the i-th row of VT, and D is the diagonal matrix with o;
as the i-th entry on its diagonal. This factorisation of A in the form of UDVT is called Singular
value decomposition. It is easy to check that
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A= o; U ;.
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