University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 5: Best-fit Subspaces and Singular Value Decomposition (1)

1 Singular values and singular vectors

Let $a=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{R}^{d}. We look at the projection of the points a onto the line through the origin in the direction of v, see Figure 1 for illustration. Then we have that

$$
a_{1}^{2}+a_{2}^{2}+\ldots+a_{d}^{2}=(\text { length of projection })^{2}+(\text { distance of point to line })^{2},
$$

and therefore

$$
(\text { distance of point to line })^{2}=a_{1}^{2}+a_{2}^{2}+\ldots+a_{d}^{2}-(\text { length of projection })^{2} .
$$

Since $\sum_{j=1}^{d} a_{j}^{2}$ is constant independent of the line, minimising a 's distance to the line is equivalent to maximising its projection onto the line.

Figure 1: The projection of the point a onto the line through the origin in the direction of v.
Generalising the case above, we assume that there are n points, each of which is represented in \mathbb{R}^{d}. We use matrix $A \in \mathbb{R}^{n \times d}$ to represent these n points. Then, for any fixed direction $v \in \mathbb{R}^{d}$, the length of the projection of the i-th point, expressed by A_{i}, is $\left|\left\langle A_{i}, v\right\rangle\right|=\left|A_{i} v\right|$, and therefore the best-fit line is the one that maximises $\sum_{i=1}^{n}\left|A_{i} v\right|^{2}=\|A v\|^{2}$. With this in mind, we define the first singular vector v_{1} of A as

$$
v_{1} \triangleq \arg \max _{\|v\|=1}\|A v\| .
$$

The value $\sigma_{1}(A) \triangleq\left\|A v_{1}\right\|$ is called the first singular value of A. Notice that $\sigma_{1}^{2}(A)=\sum_{i=1}^{n}\left|A_{i} v_{1}\right|^{2}$ is the sum of the squared lengths of the projections of the points onto the line determined by v_{1}.

If the data points were all either on a line or close to a line, then intuitively v_{1} should give us the direction of that line. However, if the data points are not close to that line but lie close to a 2-dimensional subspace, then further work is needed. We will look at the following greedy approach.

We start by finding v_{1} and then find the best 2-dimensional subspace containing v_{1}. Notice that, for every 2 -dimensional subspace containing v_{1}, the sum of squared lengths of the projections onto the subspace equals the sum of squared projections onto v_{1} plus the sum of squared projections along a vector perpendicular to v_{1} in the subspace. Hence, instead of looking for the best 2-dimensional subspace containing v_{1}, we look for a unit vector vector v perpendicular to v_{1} that maximises $\|A v\|^{2}$ among all such unit vectors. This motivates the definition of the second singular vector v_{2}, which is the best-fit line perpendicular to v_{1}. Formally, we have

$$
v_{2} \triangleq \arg \max _{v \perp v_{1}\|v\|=1}\|A v\| .
$$

The value $\sigma_{2}(A)=\left\|A v_{2}\right\|$ is called the second singular value of A. The third singular vector v_{3} and the thrid singular value are defined similarly by

$$
v_{3} \triangleq \arg \max _{\substack{v \perp v_{1}, v_{2} \\\|v\|=1}}\|A v\|
$$

and $\sigma_{3}(A)=\left\|A v_{3}\right\|$.
The greedy algorithm finds the v_{1} that maximises $\|A v\|$ and then the best-fit 2-dimensional subspace containing v_{1}, etc. The following theorem shows that this simple greedy algorithm finds the best-fit subspace of every dimension.
Theorem 1 (The Greedy Algorithm Works). Let $A \in \mathbb{R}^{n \times d}$ be a matrix with singular vectors v_{1}, \ldots, v_{r}. For any $1 \leq k \leq r$, let V_{k} be the subspace spanned by v_{1}, \ldots, v_{k}. Then, for every k, V_{k} is the best-fit k-dimensional subspace for A.
Proof. The proof is by induction. The statement is obviously true for $k=1$. For $k=2$, let W be a best-fit 2-dimensional subspace for A. For any orthonormal basis (w_{1}, w_{2}) of W, $\left\|A w_{1}\right\|^{2}+\left\|A w_{2}\right\|^{2}$ is the sum of squared lengths of the projections of the rows of A onto W. We choose an orthonormal basis $\left(w_{1}, w_{2}\right)$ of W as follows:

1. If v_{1} is perpendicular to W, any unit vector in W that we choose as w_{2} is perpendicular to v_{1}.
2. Otherwise, we choose w_{2} to be the unit vector in W perpendicular to the projection of v_{1} onto W. This makes w_{2} perpendicular to v_{1}.
Since v_{1} maximises $\|A v\|^{2}$, it holds that $\left\|A w_{1}\right\|^{2} \leq\left\|A v_{1}\right\|^{2}$. Since v_{2} maximises $\|A v\|^{2}$ overall v perpendicular to v_{1}, we have that $\left\|A w_{2}\right\|^{2} \leq\left\|A v_{2}\right\|^{2}$. Thus, we have that

$$
\left\|A w_{1}\right\|^{2}+\left\|A w_{2}\right\|^{2} \leq\left\|A v_{1}\right\|^{2}+\left\|A v_{2}\right\|^{2}
$$

Hence, V_{2} is at least as good as W and is a best-fit 2-dimensional subspace.
This proof can be used inductively to prove the case for a general k.
The vectors v_{1}, \ldots, v_{r} are called the right-singular vectors. We normalise these vectors and define

$$
u_{i} \triangleq \frac{1}{\sigma_{i}(A)} A v_{i} .
$$

These u_{i} are called the left-singular vectors. It is easy to show that u_{i} similarly maximises $\left\|u^{\top} A\right\|$ over all u perpendicular to $u_{1}, \ldots u_{i-1}$, and these left-singular vectors are also orthogonal.
Lemma 2. Let $A \in \mathbb{R}^{n \times d}$. Then it holds that $\sum_{i=1}^{n} \sum_{j=1}^{d} a_{i j}^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}(A)$.
Proof. Let v_{1}, \ldots, v_{r} be the singular vectors of A. Then it holds that

$$
\sum_{j=1}^{n}\left\|A_{j}\right\|^{2}=\sum_{j=1}^{n} \sum_{i=1}^{r}\left(A_{j} v_{i}\right)^{2}=\sum_{i=1}^{r} \sum_{j=1}^{n}\left(A_{j} v_{i}\right)^{2}=\sum_{i=1}^{r}\left\|A v_{i}\right\|^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}(A)
$$

The statement holds by noticing that $\sum_{j=1}^{n}\left\|A_{j}\right\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{d} a_{i j}^{2}$.

2 Singular Value Decomposition

We can think of $A \in \mathbb{R}^{n \times d}$ as a linear transformation taking a vector v_{1} in its row space to a vector $u_{1}=A v_{1}$ in its column space. Many applications require to find an orthogonal basis for the row space and transform it into an orthogonal basis for the column space: $A v_{i}=\sigma_{i} u_{i}$. The heart of the problem is to find v_{1}, \ldots, v_{r} for the row space of A for which

$$
\begin{align*}
A\left[v_{1}, v_{2}, \ldots, v_{r}\right] & =\left[\sigma_{1} u_{1}, \sigma_{2} u_{2}, \ldots, \sigma_{r} u_{r}\right] \\
& =\left[u_{1}, u_{2}, \ldots, u_{r}\right]\left(\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right) . \tag{1}
\end{align*}
$$

Then, it is easy to see that the left and right-singular vectors $u_{i}=\frac{1}{\sigma_{i}} A v_{i}, v_{i}$, and their associated singular values σ_{i} satisfy (1). With these vectors $u_{i} \mathrm{~s}, v_{i} \mathrm{~S}$, and the singular values $\sigma_{i} \mathrm{~s}$, we can write A in matrix notation as

$$
A=U D V^{\top}
$$

where u_{i} is the i-th column of U, v_{i}^{\top} is the i-th row of V^{\top}, and D is the diagonal matrix with σ_{i} as the i-th entry on its diagonal. This factorisation of A in the form of $U D V^{\top}$ is called Singular value decomposition. It is easy to check that

$$
A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}
$$

