University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)

Lecture 6: Best-fit Subspaces and Singular Value Decomposition (2)

Let $A \in \mathbb{R}^{m \times n}$ be a matrix whose SVD is written as $\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}$. We define $B=A^{\top} A$, i.e.,

$$
\begin{aligned}
B=A^{\top} A & =\left(\sum_{i} \sigma_{i} v_{i} u_{i}^{\top}\right)\left(\sum_{i} \sigma_{i} u_{i} v_{i}^{\top}\right) \\
& =\sum_{i} \sum_{j} \sigma_{i} \sigma_{j} v_{i}\left(u_{i}^{\top} u_{j}\right) v_{j}^{\top} \\
& =\sum_{i} \sigma_{i}^{2} v_{i} v_{i}^{\top} .
\end{aligned}
$$

The matrix $B \in \mathbb{R}^{n \times n}$ is a square and symmetric, and has the same left and right-singular vectors. In particular, it holds for any v_{j} that

$$
B v_{j}=\left(\sum_{i} \sigma_{i}^{2} v_{i} v_{i}^{\top}\right) v_{j}=\sigma_{j}^{2} v_{j}
$$

meaning that v_{j} is an eigenvector of B with the corresponding eigenvalue σ_{j}^{2}. We write $\lambda_{i}=\sigma_{i}^{2}$ and v_{i} for the eigenvalues and their corresponding eigenvectors of B. Without loss of generality, we assume that $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. Notice that all the eigenvalues $\lambda_{i} \geq 0$, i.e., matrix B is positive semi-definite (PSD).

Now we consider B^{2}. By definition, we have that

$$
B^{2}=\left(\sum_{i} \lambda_{i} v_{i} v_{i}^{\top}\right)\left(\sum_{i} \lambda_{i} v_{i} v_{i}^{\top}\right)=\sum_{i} \lambda_{i}^{2} v_{i} v_{i}^{\top} .
$$

By induction we have that

$$
B^{k}=B^{k-1} B=\left(\sum_{i} \lambda_{i}^{k-1} v_{i} v_{i}^{\top}\right)\left(\sum_{i} \lambda_{i} v_{i} v_{i}^{\top}\right)=\sum_{i} \lambda_{i}^{k} v_{i} v_{i}^{\top} .
$$

Hence, if $\lambda_{1}>\lambda_{2}$, then the first term in the summation dominates, and $B^{k} \rightarrow \lambda_{1}^{k} v_{1} v_{1}^{\top}$. However, this approach to approximate v_{1} requires computing B^{k} for some k, which is inefficient as the matrix multiplication takes time $\Omega\left(n^{2}\right)$. Therefore, a more efficient approach is needed.

In this lecture, we study the power method for computing eigenvalues and eigenvectors, whose ideas are summarised as follows: instead of computing B^{k}, we select a random vector x and compute $B^{k} x$. To see why this approach works, we write $x=\sum_{i} c_{i} v_{i}$ for some constants $c_{i} \in \mathbb{R}$. Then, it holds that

$$
B^{k} x=\left(\sum_{i} \lambda_{i}^{k} v_{i} v_{i}^{\top}\right) \cdot\left(\sum_{i} c_{i} v_{i}\right)=\sum_{i} c_{i} \lambda_{i}^{k} v_{i}
$$

For time complexity, notice that computing $B x$ for any vector x takes $O(n+\mathrm{nnz}(B))$ time if the non-zero entries of matrix B are stored by an adjacency list, where nnz (B) is the number of non-zero entries of matrix B. Hence, the total runtime for computing $B^{k} x$ is $O(k \cdot(n+\mathrm{nnz}(B)))$. For many applications where the matrix $B \in \mathbb{R}^{n \times n}$ is sparse, e.g., $n n z(B)=O(n)$, the power method presents a vast speedup comparing with the naive algorithm that computes B^{k} directly. The formal description of the power method for computing λ_{1} is shown in Algorithm 1.

Remark. It is important to notice that, even matrix A is spare, the matrix $B=A^{\top} A$ might not be a sparse matrix any more. In such case, to compute $B^{k} x$ it suffices to compute $\left(A^{\top} A\right)^{k} x$, which can be done in $O(k \cdot(n+\mathrm{nnz}(A)))$ time.

```
Algorithm 1 Power method for approximating \(\lambda_{1}\)
    Input: a PSD symmetric matrix \(B \in \mathbb{R}^{n \times n}\), and positive integer \(k\)
    Choose \(x_{0}\) uniformly at random from \(\{-1,1\}^{n}\).
    for \(i=1\) to \(k\) do
        \(x_{i}=B x_{i-1}\)
    end for
    return \(x_{k}\)
```

To analyse the algorithm, by definition we have that $\sigma_{1}(A)=\max _{\|x\|=1}\|A x\|$, and $\lambda_{1}(B)=$ $\sigma_{1}^{2}(A)$. Hence, we can write the largest eigenvalue of B as

$$
\lambda_{1}(B)=\max _{\|x\|=1}\|A x\|^{2}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{x^{\top} A^{\top} A x}{\|x\|}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{x^{\top} B x}{\|x\|} .
$$

This is called the Courant-Fischer Characterisation of Eigenvalues. Hence, it suffices to study $\left(x_{k}^{\top} B x_{k}\right) \cdot\left(x_{k}^{\top} x_{k}\right)^{-1}$.

Theorem 1. For every PSD matrix B, positive integer k and parameter $\varepsilon>0$, with probability $3 / 16$ over the initial choices of x_{0}, Algorithm 1 outputs a vector x_{k} such that

$$
\frac{x_{k}^{\top} B x_{k}}{x_{k}^{\top} x_{k}} \geq(1-\varepsilon) \cdot \lambda_{1} \cdot \frac{1}{1+4 n(1-\varepsilon)^{2 k}} .
$$

In particular, when setting $k=O(\log n / \varepsilon)$, we have that

$$
\frac{x_{k}^{\top} B x_{k}}{x_{k}^{\top} x_{k}} \geq(1-O(\varepsilon)) \lambda_{1} .
$$

The proof is based on the following two lemmas.
Lemma 2. Let $v \in \mathbb{R}^{n}$ such that $\|v\|=1$. Sample uniformly $x \in\{-1,1\}^{n}$. Then it holds that

$$
\mathbf{P}\left[|\langle x, v\rangle| \geq \frac{1}{2}\right] \geq \frac{3}{16} .
$$

Lemma 3. Let $x \in \mathbb{R}^{n}$ be a vector such that $\left|\left\langle x, v_{1}\right\rangle\right| \geq 1 / 2$. Then, for every positive integer k and positive $\varepsilon>0$, if we define $y=B^{k} x$, then we have that

$$
\frac{y^{\top} B y}{y^{\top} y} \geq(1-\varepsilon) \cdot \lambda_{1} \cdot \frac{1}{1+4\|x\|^{2}(1-\varepsilon)^{2 k}} .
$$

Proof of Theorem 1. By Lemma 2, with constant probability, a randomly sampled $x \in\{-1,1\}^{n}$ satisfies $|\langle x, v\rangle| \geq 1 / 2$ for any $\|v\|=1$. Conditioning on this event, Lemma 3 states that

$$
\frac{y^{\top} B y}{y^{\top} y} \geq(1-\varepsilon) \cdot \lambda_{1} \cdot \frac{1}{1+4\|x\|^{2}(1-\varepsilon)^{2 k}} .
$$

Then, the theorem holds by the fact that $\|x\|^{2}=n$.

Proof of Lemma 2. Define a random variable $S=\langle x, v\rangle$. Then, it holds that $\mathbf{E}[S]=0$, $\mathbf{E}\left[S^{2}\right]=\|v\|^{2}=1$, and 1

$$
\mathbf{E}\left[S^{4}\right]=3 \sum_{i=1}^{n} v_{i}^{2}-2 \sum_{i=1}^{n} v_{i}^{4} \leq 3
$$

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random variable with finite variance, then it holds for every $0 \leq \delta \leq 1$ that

$$
\mathbf{P}[Z \geq \delta \cdot \mathbf{E} Z] \geq(1-\delta)^{2} \cdot \frac{(\mathbf{E} Z)^{2}}{\mathbf{E}\left[Z^{2}\right]}
$$

which follows by noticing that

$$
\begin{aligned}
\mathbf{E}[Z] & =\mathbf{E}\left[Z \cdot \mathbf{1}_{Z<\delta \mathbf{E} Z}\right]+\mathbf{E}\left[Z \cdot \mathbf{1}_{Z \geq \delta \mathbf{E} Z}\right] \\
& \leq \delta \mathbf{E} Z+\sqrt{\mathbf{E} Z^{2}} \cdot \sqrt{\mathbf{E} 1_{Z \geq \delta \mathbf{E} Z}} \\
& =\delta \mathbf{E} Z+\sqrt{\mathbf{E} Z^{2}} \cdot \sqrt{\mathbf{P}[Z \geq \delta \mathbf{E} Z]}
\end{aligned}
$$

where the first inequality follows by Cauchy-Schwarz inequality. We apply the Paley-Zygmund inequality to the case $Z=S^{2}$ and $\delta=1 / 4$ and have that

$$
\mathbf{P}\left[S^{2} \geq \delta \mathbf{E}\left[S^{2}\right]\right]=\mathbf{P}\left[S^{2} \geq \frac{1}{4}\right] \geq\left(\frac{3}{4}\right)^{2} \cdot \frac{1}{3}=\frac{3}{16}
$$

Proof of Lemma 3. We write x as a linear combination of the eigenvectors

$$
x=a_{1} v_{1}+\cdots+a_{n} v_{n}
$$

where the coefficients can be computed as $a_{i}=\left\langle x, v_{i}\right\rangle$. Then, we rewrite $y=B^{k} x$ as

$$
y=a_{1} \lambda_{1}^{k} v_{1}+\cdots+a_{n} \lambda_{n}^{k} v_{n}
$$

and therefore

$$
y^{\top} B y=\sum_{i=1}^{n} a_{i}^{2} \lambda_{i}^{2 k+1},
$$

as well as

$$
y^{\top} y=\sum_{i=1}^{n} a_{i}^{2} \lambda_{i}^{2 k}
$$

Without loss of generality let ℓ be the number of eigenvalues larger than $\lambda_{1} \cdot(1-\varepsilon)$. Then, it holds that

$$
\begin{equation*}
y^{\top} B y \geq \sum_{i=1}^{\ell} a_{i}^{2} \lambda_{i}^{2 k+1} \geq \lambda_{1}(1-\varepsilon) \sum_{i=1}^{\ell} a_{i}^{2} \lambda_{i}^{2 k} \tag{1}
\end{equation*}
$$

Since all the eigenvalues λ_{i} for $i \geq \ell+1$ is at most $\lambda_{1} \cdot(1-\varepsilon)$, we have that

$$
\begin{align*}
\sum_{i=\ell+1}^{n} a_{i}^{2} \lambda_{i}^{2 k} & \leq \lambda_{1}^{2 k} \cdot(1-\varepsilon)^{2 k} \sum_{i=\ell+1}^{n} a_{i}^{2} \\
& \leq \lambda_{1}^{2 k} \cdot(1-\varepsilon)^{2 k}\|x\|^{2} \\
& \leq 4 a_{1}^{2} \lambda_{1}^{2 k} \cdot(1-\varepsilon)^{2 k}\|x\|^{2} \tag{2}\\
& \leq 4\|x\|^{2}(1-\varepsilon)^{2 k} \sum_{i=1}^{\ell} a_{i}^{2} \lambda_{i}^{2 k}
\end{align*}
$$

[^0]where (2) follows from the fact that $a_{1}^{2}=\left|\left\langle x, v_{1}\right\rangle\right|^{2} \geq 1 / 4$ by the assumption of the Lemma. Hence, we have that
\[

$$
\begin{equation*}
y^{\top} y \leq\left(1+4\|x\|^{2}(1-\varepsilon)^{2 k}\right) \cdot \sum_{i=1}^{\ell} a_{i}^{2} \lambda_{i}^{2 k} . \tag{3}
\end{equation*}
$$

\]

Combining (1) with (3) gives us that

$$
\frac{y^{\top} B y}{y^{\top} y} \geq \lambda_{1} \cdot(1-\varepsilon) \cdot \frac{1}{1+4\|x\|^{2}(1-\varepsilon)^{2 k}} .
$$

Sometimes, we know the eigenvector v_{1} corresponding to λ_{1}, and we need to approximate v_{2} and λ_{2}. Then a similar approach can be applied, but we only need to ensure that the initial vector used for the "power iterations" is perpendicular to v_{1}, see Algorithm 2 for formal description.

```
Algorithm 2 Power method for approximating \(\lambda_{2}\)
    Input: a PSD symmetric matrix \(B \in \mathbb{R}^{n \times n}\), and positive integer \(k\)
    Choose \(x\) uniformly at random from \(\{-1,1\}^{n}\).
    Let \(x_{0}=x-\left\langle v_{1}, x\right\rangle \cdot v_{1}\)
    for \(i=1\) to \(k\) do
        \(x_{i}=B x_{i-1}\)
    end for
    return \(x_{k}\)
```

Now we briefly analyse this algorithm. We assume that v_{1}, \ldots, v_{n} is an orthonormal basis of the eigenvectors for the eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$ of B. Then we write the initial random vector as

$$
x=a_{1} v_{1}+\cdots+a_{n} v_{n},
$$

and with probability at least $3 / 16$ it holds that $\left|a_{2}\right|=\left|\left\langle x, v_{2}\right\rangle\right| \geq 1 / 2$. Then, x_{0} is the projection of x on the subspace orthogonal to v_{1}, i.e.,

$$
x_{0}=a_{2} v_{2}+\cdots+a_{n} v_{n} .
$$

Notice that $\left\|x_{0}\right\| \leq n$. Furthermore, the output x_{k} can be written as

$$
x_{k}=a_{2} \lambda_{2}^{k} v_{2}+\cdots+a_{n} \lambda_{n}^{k} v_{n} .
$$

Then, we can apply the same analysis as before, and have the following result:
Theorem 4. For every PSD matrix $B \in \mathbb{R}^{n \times n}$, positive integer k and parameter $\varepsilon>0$, with constant probability over the choices of x, Algorithm 2 outputs a vector $y \perp v_{1}$ such that

$$
\frac{y^{\top} B y}{y^{\top} y} \geq \lambda_{2} \cdot(1-\varepsilon) \cdot \frac{1}{1+4 n(1-\varepsilon)^{2 k}},
$$

where λ_{2} is the second largest eigenvalue of B, counting multiplicities.

[^0]: ${ }^{1}$ Obtaining the equality below is not straightforward, and involves some calculations. We leave this for homework.

