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Lecture 7: Best-fit Subspaces and Singular Value Decomposition (3)

Partitioning a set of data points into different clusters according to some criteria is a
fundamental task in Data Science, and over the years entirely different techniques have been
developed for the clustering problem. In today’s lecture, we will discuss how singular vector
decomposition is applied for clustering data points generated from mixture model. In particular,
we will informally view singular vector decomposition as dimensionality reduction, which
connection allows us to improve the condition from which different Gaussians can be easily
separated, i.e., we’ll improve the condition of ∆ = ω

(
d1/4

)
from Lecture 4.

We first recall the mixture model. Let p1, . . . , pk be Gaussian density functions, and
w1, . . . , wk are positive real numbers called mixture weighs such that

∑k
i=1wi = 1. We define

the mixture as the distribution with the probability density function

p = w1p1 + w2p2 + · · ·+ wkpk.

The model fitting problem is to fit a mixture of k basic densities from n independent, identically
distributed samples, each sample drawn according to the same mixture distribution p. For
simplicity, we assume that all the basic probability densities are spherical Gaussians. One
approach to the model fitting problem is to decompose the problem into two subproblems:

1. Cluster the set of samples into k clusters C1, C2, . . . , Ck, where Ci is the set of samples
generated according to pi;

2. Fit a single Gaussian distribution to each cluster of sample points by taking the empirical
mean and the empirical standard derivation of the sample points, see the notes of Lecture 4.

Hence, it suffices to study the first problem. Our starting point is the following lemma which
shows that the projection of a spherical Gaussian with standard deviation σ remains a spherical
Gaussian with variance σ2.

Lemma 1. Suppose p is a spherical Gaussian in Rd with centre µ and variance σ2. The density
of p projected onto a k-dimensional subspace V is a spherical Gaussian with the same standard
deviation.

Proof. Rotate the coordinate system so that V is spanned by the first k coordinate vectors. The
Gaussian remains spherical with standard deviation σ although the coordinates of its centre
has changed. For a point x = (x1, . . . , xd), we will use the notation x′ = (x1, x2, . . . , xk) and
x′′ = (xk+1, xk+1, . . . , xd). The density of the projected Gaussian at point (x1, x2, . . . , xk) is

ce−
|x′−µ′|2

2σ2

∫
x′′

e−
|x′′−µ′′|2

2σ2 dx′′ = c′e−
|x′−µ′|2

2σ2

for some parameter c′. This proves the lemma.

Based on Lemma 1, we would like to project this spherical Gaussian into Rk, and the
inter-centre separation remains the same. If this is the case, instead of assuming the inter-centre
separation distance is Ω(d1/4), the distance of Ω(k1/4) is sufficient to separate these Gaussians



from each other. We will see that the top k singular vectors produced by the SVD span the
space of the k centres.

Recall that for a set of points, the best-fit line is the line passing through the origin that
maximises the sum of squared lengths of the projections of the points. However, as our data
points are drawn from some probability distribution, we’ll slightly adjust the definition of the
best-fit line as follows.

Definition 2. If p is a probability density in Rd, then the best-fit line for p is the line in the v1
direction, where

v1 = arg max
‖v‖=1

E
[
(vᵀx)2

]
.

Lemma 3 (Best-fit line). Let p be the probability density defined as above such that µ 6= 0. The
unique best-fit 1-dimensional subspace is the line passing through µ and the origin. If µ = 0,
then any line through the origin is a best-fit line.

Proof. For an randomly chosen x according to p and a fixed unit length vector v, it holds that

Ex∼p
[
(vᵀx)2

]
= Ex∼p

[
(vᵀ(x− µ) + vᵀµ)2

]
= Ex∼p

[
(vᵀ(x− µ))2 + 2 (vᵀµ) (vᵀ(x− µ)) + (vᵀµ)2

]
= Ex∼p

[
(vᵀ(x− µ))2

]
+ 2(vᵀµ)E [vᵀ(x− µ)] + (vᵀµ)2

= Ex∼p
[
(vᵀ(x− µ))2

]
+ (vᵀµ)2 (1)

= σ2 + (vᵀµ)2 , (2)

where (1) follows from the fact that E [vᵀ(x− µ)] = 0, and (2) follows from the fact that
Ex∼p [(vᵀ(x− µ))2] is the variance of x in the direction of v.

From (2), we see that the line v maximising Ex∼p [(vᵀx)2] is the line v that maximises (vᵀµ)2,
which is the case if v is aligned with µ. From (2), we know that, when µ = 0, any line through
the origin is a best-fit line.

Generalising the result above, we study the best-fit k-dimensional subspace for p.

Definition 4. If p is a probability density function in Rd, then the best-fit k-dimensional
subspace Vk is

Vk = arg max
V :dim(V )=k

Ex∼p
[
|proj(x, V )|2

]
,

where proj(x, V ) is the orthogonal projection of x onto V .

Theorem 5. If p is a mixture of k spherical Gaussians, then the best-fit k-dimensional subspace
contains the centres. In particular, if the means of the Gaussians are linearly independent, then
space spanned by them is the unique best-fit k dimensional subspace.

Proof. Let p be the mixture w1p1 + w2p2 + · · ·+ wkpk. Let V be any subspace of dimension k
or less. Then, it holds that

Ex∼p
[
|proj(x, V )|2

]
=

k∑
i=1

wiEx∼pi
[
|proj(x, V )|2

]
.

Hence, in order to maximiseEx∼p
[
|proj(x, V )|2

]
, it suffices to maximise everyEx∼pi

[
|proj(x, V )|2

]
.

Then, by defining V as the span of k centres, the first statement follows directly from Lemma 3.
The second statement follows from the fact that the k centres are linearly independent.
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When an infinite set of points drawn from probability density p is available, then the k-
dimensional subspace from SVD gives us exactly the space of the centres. In reality, although
only a finite number of data points are available, it is intuitively clear that, as the number of
samples increases, the set of the sampled points will approximate the probability density better
and therefore the SVD subspace of the sampled points will be close to the space spanned by the
centres.

Another interesting fact about our analysis above is that, similar to the Johnson-Lindenstrauss
Lemma, we use SVD for dimension reduction: every data point in Rd is embedded in Rk through
SVD. However, for this specific setting the choice of k depends on the inherent structure of data
points and can be chosen as a constant for many applications, while for the Johnson-Lindenstrauss
Lemma, the target dimension O(log n/ε2) is known to be tight.
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