Hashing Functions

He Sun
University of Edinburgh

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.
- insert(u): add element $u \in U$ to S.

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.
- insert (u) : add element $u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.
- insert (u) : add element $u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).
- lookup (u) : is u in S ?

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.
- insert (u) : add element $u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).
- lookup (u) : is u in S ?

Easy solution. Build an array b of length $|U|$, where $b[u]$ indicates if u appears in S.

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S are efficient.

Dictionary interface.

- create(): initialise a dictionary with $S=\emptyset$.
- insert(u): add element $u \in U$ to S.
- delete (u) : delete u from S (if u is currently in S).
- lookup (u) : is u in S ?

Easy solution. Build an array b of length $|U|$, where $b[u]$ indicates if u appears in S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

Hashing

Hash function. $h: U \rightarrow[n]$, where $[n]:=\{0,1, \ldots, n-1\}$.
Hashing. Create an array a of length n. When processing element u, access array element $a[h(u)$].

Hashing

Hash function. $h: U \rightarrow[n]$, where $[n]:=\{0,1, \ldots, n-1\}$.
Hashing. Create an array a of length n. When processing element u, access array element $a[h(u)$].

Collision. When $h(u)=h(v)$ but $n \neq v$.

```
birthday paradox
```

- collision is expected after $\Theta(\sqrt{n})$ random insertions.
- Separate chaining: $a[i]$ stores linked list of elements u with $h(u)=i$.

Huge universe U

hash table of size n

Hashing with chaining

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

- Running time depends on length of chains.

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=m / n$.

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=m / n$.
- Choose $n \approx m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=m / n$.
- Choose $n \approx m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves $O(1)$ per operation.

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain $=m / n$.
- Choose $n \approx m \Rightarrow$ expect $O(1)$ per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves $O(1)$ per operation.

Approach. Use randomisation for the choice of h.
adversary knows the randomised algorithm you are using, but doesn't know random choices that the algorithm makes.

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1
\end{aligned}
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0
\end{aligned}
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0 \\
& \text { not universal }
\end{aligned}
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0 \\
& \text { not universal }
\end{aligned}
$$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$$
\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0 \\
& \text { not universal }
\end{aligned}
$$

$$
\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2
$$

$$
\mathbb{P}_{h \in H}[h(a)=h(c)]=1 / 2, \cdots
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0 \\
& \text { not universal }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 / 2, \cdots \\
& \mathbb{P}_{h \in H}[h(a)=h(f)]=0, \cdots
\end{aligned}
$$

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 \\
& \mathbb{P}_{h \in H}[h(a)=h(d)]=0
\end{aligned}
$$

not universal

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$$
\begin{aligned}
& \mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2 \\
& \mathbb{P}_{h \in H}[h(a)=h(c)]=1 / 2, \cdots \\
& \mathbb{P}_{h \in H}[h(a)=h(f)]=0, \cdots
\end{aligned}
$$

universal

Other expected features of hash functions:

- We can select a random h efficiently;

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2$
$\mathbb{P}_{h \in H}[h(a)=h(c)]=1$
$\mathbb{P}_{h \in H}[h(a)=h(d)]=0$
not universal

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2$
$\mathbb{P}_{h \in H}[h(a)=h(c)]=1 / 2, \cdots$
$\mathbb{P}_{h \in H}[h(a)=h(f)]=0, \cdots$
universal
Other expected features of hash functions:

- We can select a random h efficiently;
- We can also compute $h(u)$ efficiently.

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a universe U to the set $\{0,1, \ldots, n-1\}$ such that, for any pair of elements $u \neq v$,

$$
\mathbb{P}_{h \in H}[h(u)=h(v)] \leq 1 / n
$$

Example. $U=\{a, b, c, d, e, f\}, n=2$

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1

$\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2$
$\mathbb{P}_{h \in H}[h(a)=h(c)]=1$
$\mathbb{P}_{h \in H}[h(a)=h(d)]=0$
not universal

	a	b	c	d	e	f
$h_{1}(x)$	0	1	0	1	0	1
$h_{2}(x)$	0	0	0	1	1	1
$h_{3}(x)$	0	0	1	0	1	1
$h_{4}(x)$	1	0	0	1	1	0

$\mathbb{P}_{h \in H}[h(a)=h(b)]=1 / 2$
$\mathbb{P}_{h \in H}[h(a)=h(c)]=1 / 2, \cdots$
$\mathbb{P}_{h \in H}[h(a)=h(f)]=0, \cdots$
universal
Other expected features of hash functions:

- We can select a random h efficiently;
- We can also compute $h(u)$ efficiently.

Universal hashing: analysis

Lemma
Let H be a universal family of hash functions mapping a universe U to the set $\{0,1, \ldots, n-1\}$. Let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n, and $u \notin S$. Then, the expected number of items in S that collide with u is at most 1 .

Universal hashing: analysis

Lemma

Let H be a universal family of hash functions mapping a universe U to the set $\{0,1, \ldots, n-1\}$. Let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n, and $u \notin S$. Then, the expected number of items in S that collide with u is at most 1 .

Proof. For any $s \in S$, define random variable $X_{s}=1$ if $h(s)=h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u, so $X=\sum_{s \in S} X_{s}$.

Universal hashing: analysis

Lemma

Let H be a universal family of hash functions mapping a universe U to the set $\{0,1, \ldots, n-1\}$. Let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n, and $u \notin S$. Then, the expected number of items in S that collide with u is at most 1 .

Proof. For any $s \in S$, define random variable $X_{s}=1$ if $h(s)=h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u, so $X=\sum_{s \in S} X_{s}$.

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[\sum_{s \in S} X_{s}\right]=\sum_{s \in S} \mathbb{E}\left[X_{s}\right]=\sum_{s \in S} \mathbb{P}\left[X_{s}=1\right] \leq \sum_{s \in S} \frac{1}{n} \\
& =|S| / n \leq 1
\end{aligned}
$$

Universal hashing: analysis

Lemma

Let H be a universal family of hash functions mapping a universe U to the set $\{0,1, \ldots, n-1\}$. Let $h \in H$ be chosen uniformly at random from H; let $S \subseteq U$ be a subset of size at most n, and $u \notin S$. Then, the expected number of items in S that collide with u is at most 1 .

Proof. For any $s \in S$, define random variable $X_{s}=1$ if $h(s)=h(u)$, and 0 otherwise. Let X be a random variable counting the total number of collisions with u, so $X=\sum_{s \in S} X_{s}$.

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[\sum_{s \in S} X_{s}\right]=\sum_{s \in S} \mathbb{E}\left[X_{s}\right]=\sum_{s \in S} \mathbb{P}\left[X_{s}=1\right] \leq \sum_{s \in S} \frac{1}{n} \\
& =|S| / n \leq 1
\end{aligned}
$$

Q: How can we design a universal class of hash functions?

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element $u \in U$ with a base- p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element $u \in U$ with a base- p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash functions. Let $A=$ set of all r-digits $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$, where $0 \leq a_{i}<p$. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \quad \bmod p .
$$

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element $u \in U$ with a base- p integer of r digits: $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Hash functions. Let $A=$ set of all r-digits $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$, where $0 \leq a_{i}<p$. For each $a=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ with $0 \leq a_{i}<p$, define

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \quad \bmod p .
$$

Hash function family. $H=\left\{h_{a}: a \in A\right\}$

Designing a universal family of hash functions

$$
H=\left\{h_{a}: a \in A\right\} \text { is a universal family of hash functions. }
$$

Designing a universal family of hash functions

THEOREM

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

Designing a universal family of hash functions

Theorem

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.

Designing a universal family of hash functions

Theorem

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff $\sum_{i=1}^{r} a_{i} x_{i} \equiv \sum_{i=1}^{r} a_{i} y_{i} \bmod p$, i.e.,

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z} \equiv \underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \quad \bmod p
$$

Designing a universal family of hash functions

Theorem

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff $\sum_{i=1}^{r} a_{i} x_{i} \equiv \sum_{i=1}^{r} a_{i} y_{i} \bmod p$, i.e.,

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z} \equiv \underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \quad \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.

Designing a universal family of hash functions

Theorem

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff $\sum_{i=1}^{r} a_{i} x_{i} \equiv \sum_{i=1}^{r} a_{i} y_{i} \bmod p$, i.e.,

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z} \equiv \underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \quad \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j} z \equiv m \bmod p$ has at most one solution among p possibilities. \Leftarrow See lemma on the next slide.

Designing a universal family of hash functions

Theorem

$H=\left\{h_{a}: a \in A\right\}$ is a universal family of hash functions.

Proof: Let $x=\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{r}\right)$ be two distinct elements of
U. We need to show that $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

- Since $x \neq y$, there exists an integer j such that $x_{j} \neq y_{j}$.
- We have $h_{a}(x)=h_{a}(y)$ iff $\sum_{i=1}^{r} a_{i} x_{i} \equiv \sum_{i=1}^{r} a_{i} y_{i} \bmod p$, i.e.,

$$
a_{j} \underbrace{\left(y_{j}-x_{j}\right)}_{z} \equiv \underbrace{\sum_{i \neq j} a_{i}\left(x_{i}-y_{i}\right)}_{m} \quad \bmod p
$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_{i} where $i \neq j$, then selecting a_{j} at random. Thus, we can assume a_{i} is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_{j} z \equiv m \bmod p$ has at most one solution among p possibilities. \Leftarrow See lemma on the next slide.
- Thus $\mathbb{P}\left[h_{a}(x)=h_{a}(y)\right] \leq 1 / p$.

Number theory fact

FACT

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Number theory fact

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Proof. The proof is by contradiction.

- Suppose $0 \leq a_{1}<p$ and $0 \leq a_{2}<p$ are two different solutions.

Number theory fact

FACT

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Proof. The proof is by contradiction.

- Suppose $0 \leq a_{1}<p$ and $0 \leq a_{2}<p$ are two different solutions.
- Then $\left(a_{1}-a_{2}\right) z \equiv 0 \bmod p$; hence $\left(a_{1}-a_{2}\right) z$ is divisible by p.

Number theory fact

FACT

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Proof. The proof is by contradiction.

- Suppose $0 \leq a_{1}<p$ and $0 \leq a_{2}<p$ are two different solutions.
- Then $\left(a_{1}-a_{2}\right) z \equiv 0 \bmod p$; hence $\left(a_{1}-a_{2}\right) z$ is divisible by p.
- Since $z \not \equiv 0 \bmod p$, we know that z is not divisible by p.

Number theory fact

FACT

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Proof. The proof is by contradiction.

- Suppose $0 \leq a_{1}<p$ and $0 \leq a_{2}<p$ are two different solutions.
- Then $\left(a_{1}-a_{2}\right) z \equiv 0 \bmod p$; hence $\left(a_{1}-a_{2}\right) z$ is divisible by p.
- Since $z \not \equiv 0 \bmod p$, we know that z is not divisible by p.
- It follows that $\left(a_{1}-a_{2}\right)$ is divisible by p.
- This implies $a_{1}=a_{2}$.

$$
\text { use the fact that } p \text { is prime }
$$

FACT

Let p be prime, and let $z \not \equiv 0 \bmod p$. Then $a z \equiv m \bmod p$ has at most one solution $0 \leq a<p$.

Proof. The proof is by contradiction.

- Suppose $0 \leq a_{1}<p$ and $0 \leq a_{2}<p$ are two different solutions.
- Then $\left(a_{1}-a_{2}\right) z \equiv 0 \bmod p$; hence $\left(a_{1}-a_{2}\right) z$ is divisible by p.
- Since $z \not \equiv 0 \bmod p$, we know that z is not divisible by p.
- It follows that $\left(a_{1}-a_{2}\right)$ is divisible by p.
- This implies $a_{1}=a_{2}$.

$$
\text { use the fact that } p \text { is prime }
$$

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

Universal hash function family. $H=\left\{h_{a}: a \in A\right\}$,

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \quad \bmod p
$$

- Choose p so that $n \leq p \leq 2 n$, where $n=|S|$.
- Fact: There exits a prime number between n and $2 n$.

Universal hashing: summary

Goal. Given a universe U, maintain a subset $S \subseteq U$ so that insert, delete, and lookup are efficient.

Universal hash function family. $H=\left\{h_{a}: a \in A\right\}$,

$$
h_{a}(x)=\left(\sum_{i=1}^{r} a_{i} x_{i}\right) \quad \bmod p
$$

- Choose p so that $n \leq p \leq 2 n$, where $n=|S|$.
- Fact: There exits a prime number between n and $2 n$.

Consequence.

- Space used $=\Theta(n)$.
- Expected number of collisions per operation is ≤ 1.
$\Rightarrow O(1)$ time per insert, delete, or lookup

Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different places, and we want to know if these two documents are the same.

Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different places, and we want to know if these two documents are the same.

A naive solution. Send two documents to the same place, and make a deterministic comparison.

This method has zero-error, but produces high communication cost.

Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function h to map each document to a k-bit string. We only need to send h, and $h(X)$ (or $h(Y)$) instead.

Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function h to map each document to a k-bit string. We only need to send h, and $h(X)$ (or $h(Y)$) instead.

Analysis of the error probability.

$$
\begin{aligned}
\mathbb{P}_{h \in H}[\mathrm{err}] & =\mathbb{P}_{h \in H}[h(X) \neq h(Y) \mid X=Y]+\mathbb{P}_{h \in H}[h(X)=h(Y) \mid X \neq Y] \\
& =0+\mathbb{P}_{h \in H}[h(X)=h(Y) \mid X \neq Y] \\
& \leq 1 / 2^{k}
\end{aligned}
$$

Pairwise independent hash functions

PAIRWISE INDEPENDENCE

A family of functions $H=\{h \mid h: U \mapsto[n]\}$ is pairwise independent if, for any h chosen uniformly at random from H, the following holds:

1. $h(x)$ is uniformly distributed in $[n]$ for any $x \in U$;
2. For any $x_{1} \neq x_{2} \in U, h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent.

Pairwise independent hash functions

PAIRWISE INDEPENDENCE

A family of functions $H=\{h \mid h: U \mapsto[n]\}$ is pairwise independent if, for any h chosen uniformly at random from H, the following holds:

1. $h(x)$ is uniformly distributed in $[n]$ for any $x \in U$;
2. For any $x_{1} \neq x_{2} \in U, h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent.

These two conditions state that for any different $x_{1} \neq x_{2} \in U$, and any $y_{1}, y_{2} \in[n]$, it holds that

$$
\mathbb{P}_{h \in \mathcal{H}}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=\frac{1}{n^{2}},
$$

where the probability above is over all random choices of a function from H.

Construction of pairwise independent hash functions

Theorem

Let p be a prime number, and let $h_{a, b}=(a x+b) \bmod p$. Define

$$
H=\left\{h_{a, b} \mid 0 \leq a, b \leq p-1\right\}
$$

Then H is a family of pairwise independent hash functions.

Construction of pairwise independent hash functions

Theorem

Let p be a prime number, and let $h_{a, b}=(a x+b) \bmod p$. Define

$$
H=\left\{h_{a, b} \mid 0 \leq a, b \leq p-1\right\} .
$$

Then H is a family of pairwise independent hash functions.

$$
\text { Recall } \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}
$$

Proof. We need to show that, for any two $x_{1} \neq x_{2} \in \mathbb{Z}_{p}$ and any $y_{1}, y_{2} \in \mathbb{Z}_{p}$, it holds

$$
\mathbb{P}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=1 / p^{2}
$$

Construction of pairwise independent hash functions

Theorem

Let p be a prime number, and let $h_{a, b}=(a x+b) \bmod p$. Define

$$
H=\left\{h_{a, b} \mid 0 \leq a, b \leq p-1\right\} .
$$

Then H is a family of pairwise independent hash functions.

$$
\text { Recall } \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}
$$

Proof. We need to show that, for any two $x_{1} \neq x_{2} \in \mathbb{Z}_{p}$ and any $y_{1}, y_{2} \in \mathbb{Z}_{p}$, it holds

$$
\mathbb{P}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=1 / p^{2}
$$

For any a, b, the conditions that $h_{a, b}\left(x_{1}\right)=y_{1}$ and $h_{a, b}\left(x_{2}\right)=y_{2}$ yield two equations

$$
\begin{aligned}
& a x_{1}+b=y_{1} \quad \bmod p \\
& a x_{2}+b=y_{2} \quad \bmod p
\end{aligned}
$$

Construction of pairwise independent hash functions

Theorem

Let p be a prime number, and let $h_{a, b}=(a x+b) \bmod p$. Define

$$
H=\left\{h_{a, b} \mid 0 \leq a, b \leq p-1\right\}
$$

Then H is a family of pairwise independent hash functions.

$$
\text { Recall } \mathbb{Z}_{p}=\{0,1, \ldots, p-1\}
$$

Proof. We need to show that, for any two $x_{1} \neq x_{2} \in \mathbb{Z}_{p}$ and any $y_{1}, y_{2} \in \mathbb{Z}_{p}$, it holds

$$
\mathbb{P}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2}\right]=1 / p^{2}
$$

For any a, b, the conditions that $h_{a, b}\left(x_{1}\right)=y_{1}$ and $h_{a, b}\left(x_{2}\right)=y_{2}$ yield two equations

$$
\begin{array}{ll}
a x_{1}+b=y_{1} & \bmod p, \\
a x_{2}+b=y_{2} & \bmod p .
\end{array}
$$

Such system has a unique solution of a and b, out of p^{2} possible pairs of (a, b). Hence, the equation above holds.

Generalisation: k-wise independence

The set $H=\{h: U \rightarrow[n]\}$ is call a set of k-wise independent family of hash functions if for any distinct $x_{1}, \ldots, x_{k} \in U$, and any $y_{1}, \ldots, y_{k} \in[n]$,

$$
\mathbb{P}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2} \wedge \cdots \wedge h\left(x_{k}\right)=y_{k}\right]=\frac{1}{n^{k}}
$$

Generalisation: k-wise independence

The set $H=\{h: U \rightarrow[n]\}$ is call a set of k-wise independent family of hash functions if for any distinct $x_{1}, \ldots, x_{k} \in U$, and any $y_{1}, \ldots, y_{k} \in[n]$,

$$
\mathbb{P}_{h \in H}\left[h\left(x_{1}\right)=y_{1} \wedge h\left(x_{2}\right)=y_{2} \wedge \cdots \wedge h\left(x_{k}\right)=y_{k}\right]=\frac{1}{n^{k}}
$$

Construction of k-wise hash functions
Let p be a prime, and $k \geq 2$ be an integer. Assume that a seed $s=$ $\left(a_{0}, \ldots, a_{k-1}\right)$ is chosen uniformly at random from \mathbb{Z}_{p}^{k}. Then, the set of functions $H=\left\{h_{s} \mid s \in \mathbb{Z}_{p}^{k}\right\}$, where

$$
h_{s}(x)=\sum_{i=0}^{k-1} a_{i} x^{i} \quad \bmod p
$$

is k-wise independent.

