
Hashing Functions

He Sun

University of Edinburgh

AFDS He Sun 1

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.

insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.

AFDS He Sun 2

Hashing

Hash function. h : U → [n], where [n] := {0, 1, . . . , n− 1}.

Hashing. Create an array a of length n. When processing element u, access
array element a[h(u)].

birthday paradox

Collision. When h(u) = h(v) but n 6= v.

collision is expected after Θ(
√
n) random insertions.

Separate chaining: a[i] stores linked list of elements u with h(u) = i.

Huge universe U

hash table of size n

AFDS He Sun 3

Hashing

Hash function. h : U → [n], where [n] := {0, 1, . . . , n− 1}.

Hashing. Create an array a of length n. When processing element u, access
array element a[h(u)].

birthday paradox

Collision. When h(u) = h(v) but n 6= v.

collision is expected after Θ(
√
n) random insertions.

Separate chaining: a[i] stores linked list of elements u with h(u) = i.

Huge universe U

hash table of size n

AFDS He Sun 3

Hashing with chaining

4

17

25

3

8

4

/

17 8

25 3

/ /

AFDS He Sun 4

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.

AFDS He Sun 5

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.

AFDS He Sun 5

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.

AFDS He Sun 5

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.

AFDS He Sun 5

Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.

AFDS He Sun 5

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2

Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1

Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0

not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2

Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·

Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·

universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.

AFDS He Sun 6

Universal hashing: analysis

Let H be a universal family of hash functions mapping a universe U to the set
{0, 1, . . . , n− 1}. Let h ∈ H be chosen uniformly at random from H ; let S ⊆ U
be a subset of size at most n, and u 6∈ S. Then, the expected number of items
in S that collide with u is at most 1.

LEMMA

Proof. For any s ∈ S, define random variable Xs = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, so X =

∑
s∈S Xs.

E[X] = E

[∑
s∈S

Xs

]

=
∑
s∈S

E [Xs] =
∑
s∈S

P [Xs = 1] ≤
∑
s∈S

1

n

= |S|/n ≤ 1

linearity of expectation def. of universal hasing

Q: How can we design a universal class of hash functions?

AFDS He Sun 7

Universal hashing: analysis

Let H be a universal family of hash functions mapping a universe U to the set
{0, 1, . . . , n− 1}. Let h ∈ H be chosen uniformly at random from H ; let S ⊆ U
be a subset of size at most n, and u 6∈ S. Then, the expected number of items
in S that collide with u is at most 1.

LEMMA

Proof. For any s ∈ S, define random variable Xs = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, so X =

∑
s∈S Xs.

E[X] = E

[∑
s∈S

Xs

]
=
∑
s∈S

E [Xs]

=
∑
s∈S

P [Xs = 1] ≤
∑
s∈S

1

n

= |S|/n ≤ 1

linearity of expectation

def. of universal hasing

Q: How can we design a universal class of hash functions?

AFDS He Sun 7

Universal hashing: analysis

Let H be a universal family of hash functions mapping a universe U to the set
{0, 1, . . . , n− 1}. Let h ∈ H be chosen uniformly at random from H ; let S ⊆ U
be a subset of size at most n, and u 6∈ S. Then, the expected number of items
in S that collide with u is at most 1.

LEMMA

Proof. For any s ∈ S, define random variable Xs = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, so X =

∑
s∈S Xs.

E[X] = E

[∑
s∈S

Xs

]
=
∑
s∈S

E [Xs] =
∑
s∈S

P [Xs = 1] ≤
∑
s∈S

1

n

= |S|/n ≤ 1

linearity of expectation def. of universal hasing

Q: How can we design a universal class of hash functions?

AFDS He Sun 7

Universal hashing: analysis

Let H be a universal family of hash functions mapping a universe U to the set
{0, 1, . . . , n− 1}. Let h ∈ H be chosen uniformly at random from H ; let S ⊆ U
be a subset of size at most n, and u 6∈ S. Then, the expected number of items
in S that collide with u is at most 1.

LEMMA

Proof. For any s ∈ S, define random variable Xs = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, so X =

∑
s∈S Xs.

E[X] = E

[∑
s∈S

Xs

]
=
∑
s∈S

E [Xs] =
∑
s∈S

P [Xs = 1] ≤
∑
s∈S

1

n

= |S|/n ≤ 1

linearity of expectation def. of universal hasing

Q: How can we design a universal class of hash functions?

AFDS He Sun 7

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u ∈ U with a base-p integer of r digits:
x = (x1, x2, . . . , xr).

Hash functions. Let A = set of all r-digits (a1, a2, . . . , ar), where 0 ≤ ai < p.
For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}

AFDS He Sun 8

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u ∈ U with a base-p integer of r digits:
x = (x1, x2, . . . , xr).

Hash functions. Let A = set of all r-digits (a1, a2, . . . , ar), where 0 ≤ ai < p.
For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}

AFDS He Sun 8

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u ∈ U with a base-p integer of r digits:
x = (x1, x2, . . . , xr).

Hash functions. Let A = set of all r-digits (a1, a2, . . . , ar), where 0 ≤ ai < p.
For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}

AFDS He Sun 8

Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u ∈ U with a base-p integer of r digits:
x = (x1, x2, . . . , xr).

Hash functions. Let A = set of all r-digits (a1, a2, . . . , ar), where 0 ≤ ai < p.
For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}

AFDS He Sun 8

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.

AFDS He Sun 9

Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.
AFDS He Sun 9

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.

AFDS He Sun 10

Universal hashing: summary

Goal. Given a universe U , maintain a subset S ⊆ U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {ha : a ∈ A},

ha(x) =

(
r∑

i=1

aixi

)
mod p

Choose p so that n ≤ p ≤ 2n, where n = |S|.
Fact: There exits a prime number between n and 2n.

Consequence.

Space used = Θ(n).

Expected number of collisions per operation is ≤ 1.

⇒ O(1) time per insert, delete, or lookup

AFDS He Sun 11

Universal hashing: summary

Goal. Given a universe U , maintain a subset S ⊆ U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {ha : a ∈ A},

ha(x) =

(
r∑

i=1

aixi

)
mod p

Choose p so that n ≤ p ≤ 2n, where n = |S|.
Fact: There exits a prime number between n and 2n.

Consequence.

Space used = Θ(n).

Expected number of collisions per operation is ≤ 1.

⇒ O(1) time per insert, delete, or lookup

AFDS He Sun 11

Universal hashing: summary

Goal. Given a universe U , maintain a subset S ⊆ U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {ha : a ∈ A},

ha(x) =

(
r∑

i=1

aixi

)
mod p

Choose p so that n ≤ p ≤ 2n, where n = |S|.
Fact: There exits a prime number between n and 2n.

Consequence.

Space used = Θ(n).

Expected number of collisions per operation is ≤ 1.

⇒ O(1) time per insert, delete, or lookup

AFDS He Sun 11

Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different
places, and we want to know if these two documents are the same.

A naive solution. Send two documents to the same place, and make a
deterministic comparison.

This method has zero-error, but produces high communication cost.

AFDS He Sun 12

Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different
places, and we want to know if these two documents are the same.

A naive solution. Send two documents to the same place, and make a
deterministic comparison.

This method has zero-error, but produces high communication cost.

AFDS He Sun 12

Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function h to map each document to
a k-bit string. We only need to send h, and h(X)(or h(Y)) instead.

Generate h & send h, h(X)

return if h(X) = h(Y)

Analysis of the error probability.

Ph∈H [err] = Ph∈H [h(X) 6= h(Y)|X = Y] + Ph∈H [h(X) = h(Y)|X 6= Y]

= 0 + Ph∈H [h(X) = h(Y)|X 6= Y]

≤ 1/2k.

AFDS He Sun 13

Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function h to map each document to
a k-bit string. We only need to send h, and h(X)(or h(Y)) instead.

Generate h & send h, h(X)

return if h(X) = h(Y)

Analysis of the error probability.

Ph∈H [err] = Ph∈H [h(X) 6= h(Y)|X = Y] + Ph∈H [h(X) = h(Y)|X 6= Y]

= 0 + Ph∈H [h(X) = h(Y)|X 6= Y]

≤ 1/2k.

AFDS He Sun 13

Pairwise independent hash functions

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for any
h chosen uniformly at random from H , the following holds:

1. h(x) is uniformly distributed in [n] for any x ∈ U ;
2. For any x1 6= x2 ∈ U , h(x1) and h(x2) are independent.

PAIRWISE INDEPENDENCE

These two conditions state that for any different x1 6= x2 ∈ U , and any
y1, y2 ∈ [n], it holds that

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
=

1

n2
,

where the probability above is over all random choices of a function from H .

AFDS He Sun 14

Pairwise independent hash functions

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for any
h chosen uniformly at random from H , the following holds:

1. h(x) is uniformly distributed in [n] for any x ∈ U ;
2. For any x1 6= x2 ∈ U , h(x1) and h(x2) are independent.

PAIRWISE INDEPENDENCE

These two conditions state that for any different x1 6= x2 ∈ U , and any
y1, y2 ∈ [n], it holds that

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
=

1

n2
,

where the probability above is over all random choices of a function from H .

AFDS He Sun 14

Construction of pairwise independent hash functions

Let p be a prime number, and let ha,b = (ax + b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM

Recall Zp = {0, 1, . . . , p− 1}

Proof. We need to show that, for any two x1 6= x2 ∈ Zp and any y1, y2 ∈ Zp, it
holds

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
= 1/p2.

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two
equations

ax1 + b = y1 mod p,

ax2 + b = y2 mod p.

Such system has a unique solution of a and b, out of p2 possible pairs of (a, b).
Hence, the equation above holds.

AFDS He Sun 15

Construction of pairwise independent hash functions

Let p be a prime number, and let ha,b = (ax + b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM

Recall Zp = {0, 1, . . . , p− 1}

Proof. We need to show that, for any two x1 6= x2 ∈ Zp and any y1, y2 ∈ Zp, it
holds

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
= 1/p2.

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two
equations

ax1 + b = y1 mod p,

ax2 + b = y2 mod p.

Such system has a unique solution of a and b, out of p2 possible pairs of (a, b).
Hence, the equation above holds.

AFDS He Sun 15

Construction of pairwise independent hash functions

Let p be a prime number, and let ha,b = (ax + b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM

Recall Zp = {0, 1, . . . , p− 1}

Proof. We need to show that, for any two x1 6= x2 ∈ Zp and any y1, y2 ∈ Zp, it
holds

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
= 1/p2.

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two
equations

ax1 + b = y1 mod p,

ax2 + b = y2 mod p.

Such system has a unique solution of a and b, out of p2 possible pairs of (a, b).
Hence, the equation above holds.

AFDS He Sun 15

Construction of pairwise independent hash functions

Let p be a prime number, and let ha,b = (ax + b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM

Recall Zp = {0, 1, . . . , p− 1}

Proof. We need to show that, for any two x1 6= x2 ∈ Zp and any y1, y2 ∈ Zp, it
holds

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
= 1/p2.

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two
equations

ax1 + b = y1 mod p,

ax2 + b = y2 mod p.

Such system has a unique solution of a and b, out of p2 possible pairs of (a, b).
Hence, the equation above holds.

AFDS He Sun 15

Generalisation: k-wise independence

The set H = {h : U → [n]} is call a set of k-wise independent family of hash
functions if for any distinct x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ [n],

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk

]
=

1

nk

Let p be a prime, and k ≥ 2 be an integer. Assume that a seed s =
(a0, . . . , ak−1) is chosen uniformly at random from Zk

p . Then, the set of func-
tions H =

{
hs|s ∈ Zk

p

}
, where

hs(x) =

k−1∑
i=0

aix
i mod p

is k-wise independent.

CONSTRUCTION OF k-WISE HASH FUNCTIONS

AFDS He Sun 16

Generalisation: k-wise independence

The set H = {h : U → [n]} is call a set of k-wise independent family of hash
functions if for any distinct x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ [n],

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk

]
=

1

nk

Let p be a prime, and k ≥ 2 be an integer. Assume that a seed s =
(a0, . . . , ak−1) is chosen uniformly at random from Zk

p . Then, the set of func-
tions H =

{
hs|s ∈ Zk

p

}
, where

hs(x) =

k−1∑
i=0

aix
i mod p

is k-wise independent.

CONSTRUCTION OF k-WISE HASH FUNCTIONS

AFDS He Sun 16

