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Dictionary data type

Dictionary. Given a universe U of possible elements, maintain a subset S ⊆ U so
that inserting, deleting, and searching in S are efficient.

Dictionary interface.

create(): initialise a dictionary with S = ∅.
insert(u): add element u ∈ U to S.

delete(u): delete u from S (if u is currently in S).

lookup(u): is u in S ?

Easy solution. Build an array b of length |U |, where b[u] indicates if u appears in
S.

Challenge. Universe U can be extremely large so defining an array b is infeasible.

Applications. File systems, databases, networks, cryptography, web caching.
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Hashing

Hash function. h : U → [n], where [n] := {0, 1, . . . , n− 1}.

Hashing. Create an array a of length n. When processing element u, access
array element a[h(u)].

birthday paradox

Collision. When h(u) = h(v) but n 6= v.

collision is expected after Θ(
√
n) random insertions.

Separate chaining: a[i] stores linked list of elements u with h(u) = i.

Huge universe U

hash table of size n
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Hashing with chaining
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Hashing performance

Ideal hash function. Map m elements uniformly at random to n hash slots.

Running time depends on length of chains.

Average length of chain = m/n.

Choose n ≈ m⇒ expect O(1) per insert, lookup, or delete.

Challenge. Explicit hash function h that achieves O(1) per operation.

Approach. Use randomisation for the choice of h.

adversary knows the randomised algorithm you are using, but doesn’t know
random choices that the algorithm makes.
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Universal hashing (Carter-Wegman 1980s)

A universal family of hash functions is a set of hash functions H mapping a
universe U to the set {0, 1, . . . , n− 1} such that, for any pair of elements u 6= v,

Ph∈H
[
h(u) = h(v)

]
≤ 1/n.

Example. U = {a, b, c, d, e, f}, n = 2

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1
Ph∈H [h(a) = h(d)] = 0
not universal

a b c d e f
h1(x) 0 1 0 1 0 1
h2(x) 0 0 0 1 1 1
h3(x) 0 0 1 0 1 1
h4(x) 1 0 0 1 1 0

Ph∈H [h(a) = h(b)] = 1/2
Ph∈H [h(a) = h(c)] = 1/2, · · ·
Ph∈H [h(a) = h(f)] = 0, · · ·
universal

Other expected features of hash functions:

We can select a random h efficiently;

We can also compute h(u) efficiently.
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Universal hashing: analysis

Let H be a universal family of hash functions mapping a universe U to the set
{0, 1, . . . , n− 1}. Let h ∈ H be chosen uniformly at random from H ; let S ⊆ U
be a subset of size at most n, and u 6∈ S. Then, the expected number of items
in S that collide with u is at most 1.

LEMMA

Proof. For any s ∈ S, define random variable Xs = 1 if h(s) = h(u), and 0
otherwise. Let X be a random variable counting the total number of collisions
with u, so X =

∑
s∈S Xs.

E[X] = E

[∑
s∈S

Xs

]

=
∑
s∈S

E [Xs] =
∑
s∈S

P [Xs = 1] ≤
∑
s∈S

1

n

= |S|/n ≤ 1

linearity of expectation def. of universal hasing

Q: How can we design a universal class of hash functions?
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Designing a universal family of hash functions

Modulus. We will use a prime number p for the size of the hash table.

Integer encoding. Identify each element u ∈ U with a base-p integer of r digits:
x = (x1, x2, . . . , xr).

Hash functions. Let A = set of all r-digits (a1, a2, . . . , ar), where 0 ≤ ai < p.
For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}
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For each a = (a1, a2, . . . , ar) with 0 ≤ ai < p, define

ha(x) =

(
r∑

i=1

aixi

)
mod p.

Hash function family. H = {ha : a ∈ A}
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Designing a universal family of hash functions

H = {ha : a ∈ A} is a universal family of hash functions.

THEOREM

Proof: Let x = (x1, x2, . . . , xr) and y = (y1, . . . , yr) be two distinct elements of
U . We need to show that P[ha(x) = ha(y)] ≤ 1/p.

Since x 6= y, there exists an integer j such that xj 6= yj .

We have ha(x) = ha(y) iff
∑r

i=1 aixi ≡
∑r

i=1 aiyi mod p, i.e.,

aj (yj − xj)︸ ︷︷ ︸
z

≡
∑
i 6=j

ai(xi − yi)︸ ︷︷ ︸
m

mod p

Can assume a was chosen uniformly at random by first selecting all
coordinates ai where i 6= j, then selecting aj at random. Thus, we can
assume ai is fixed for all coordinates i 6= j.

Since p is prime, ajz ≡ m mod p has at most one solution among p
possibilities. ⇐ See lemma on the next slide.

Thus P[ha(x) = ha(y)] ≤ 1/p.
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Number theory fact

Let p be prime, and let z 6≡ 0 mod p. Then az ≡ m mod p has at most one
solution 0 ≤ a < p.

FACT

Proof. The proof is by contradiction.

Suppose 0 ≤ a1 < p and 0 ≤ a2 < p are two different solutions.

Then (a1 − a2)z ≡ 0 mod p; hence (a1 − a2)z is divisible by p.

Since z 6≡ 0 mod p, we know that z is not divisible by p.

It follows that (a1 − a2) is divisible by p.

This implies a1 = a2.

use the fact that p is prime

Bonus fact. Can replace “at most one” with “exactly one” in above fact.
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Universal hashing: summary

Goal. Given a universe U , maintain a subset S ⊆ U so that insert, delete, and
lookup are efficient.

Universal hash function family. H = {ha : a ∈ A},

ha(x) =

(
r∑

i=1

aixi

)
mod p

Choose p so that n ≤ p ≤ 2n, where n = |S|.
Fact: There exits a prime number between n and 2n.

Consequence.

Space used = Θ(n).

Expected number of collisions per operation is ≤ 1.

⇒ O(1) time per insert, delete, or lookup
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Applications of hashing: finger printing

Problem. Suppose there are two documents X and Y located at two different
places, and we want to know if these two documents are the same.

A naive solution. Send two documents to the same place, and make a
deterministic comparison.

This method has zero-error, but produces high communication cost.
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Applications of hashing: finger printing (cont.)

An alternative solution. Use a universal hash function h to map each document to
a k-bit string. We only need to send h, and h(X)(or h(Y )) instead.

Generate h & send h, h(X)

return if h(X) = h(Y )

Analysis of the error probability.

Ph∈H [err] = Ph∈H [h(X) 6= h(Y )|X = Y ] + Ph∈H [h(X) = h(Y )|X 6= Y ]

= 0 + Ph∈H [h(X) = h(Y )|X 6= Y ]

≤ 1/2k.
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Pairwise independent hash functions

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for any
h chosen uniformly at random from H , the following holds:

1. h(x) is uniformly distributed in [n] for any x ∈ U ;
2. For any x1 6= x2 ∈ U , h(x1) and h(x2) are independent.

PAIRWISE INDEPENDENCE

These two conditions state that for any different x1 6= x2 ∈ U , and any
y1, y2 ∈ [n], it holds that

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
=

1

n2
,

where the probability above is over all random choices of a function from H .
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Construction of pairwise independent hash functions

Let p be a prime number, and let ha,b = (ax + b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM

Recall Zp = {0, 1, . . . , p− 1}

Proof. We need to show that, for any two x1 6= x2 ∈ Zp and any y1, y2 ∈ Zp, it
holds

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2

]
= 1/p2.

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two
equations

ax1 + b = y1 mod p,

ax2 + b = y2 mod p.

Such system has a unique solution of a and b, out of p2 possible pairs of (a, b).
Hence, the equation above holds.
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Generalisation: k-wise independence

The set H = {h : U → [n]} is call a set of k-wise independent family of hash
functions if for any distinct x1, . . . , xk ∈ U , and any y1, . . . , yk ∈ [n],

Ph∈H
[
h(x1) = y1 ∧ h(x2) = y2 ∧ · · · ∧ h(xk) = yk

]
=

1

nk

Let p be a prime, and k ≥ 2 be an integer. Assume that a seed s =
(a0, . . . , ak−1) is chosen uniformly at random from Zk

p . Then, the set of func-
tions H =

{
hs|s ∈ Zk

p

}
, where

hs(x) =

k−1∑
i=0

aix
i mod p

is k-wise independent.

CONSTRUCTION OF k-WISE HASH FUNCTIONS
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