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Background

The amount of data has been increased exponentially in the past;

For many applications computational devices’ memories are limited;

We only need good approximate solutions!
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Streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, · · · , sm, · · · ,

and every si belongs to the universe U of size n.

Constraints for streaming algorithms: the space complexity is sublinear in n,
and is independent in the length of S.

Quality of the output: The algorithm needs to give a good approximate value
with high probability.

For confidence parameter ε and approximation parameter δ, the algorithm’s out-
put Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-APPROXIMATION
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Two models of streaming algorithms

Cash register model: every item in stream S is an item in U .

Turnstile model: every item si in S associates with “ +” or “-”, which indicates if si
is added into or deleted from S.

“+” indicates that si is added into the dataset;

“-” indicates that si is deleted from the dataset.

Why turnstile model?

Data may be added or deleted over time, e.g. Facebook graph.

We need robust algorithms to handle this situation.
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Outline

Recall: Pairwise independent hashing

AMS algorithm

BJKST algorithm

Chernoff Bound
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Recall: Pairwise independent hash functions

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for any
h chosen uniformly at random from H , the following holds:

1. h(x) is uniformly distributed in [n] for any x ∈ U ;
2. For any x1 6= x2 ∈ U , h(x1) and h(x2) are independent.

PAIRWISE INDEPENDENCE

Let p be a prime number, and let ha,b(x) = (ax+ b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

THEOREM
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Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U | = n be a dataset, and mj be the number of occurrences of j in
a stream. The Fp-norm is defined by

Fp ,
∑
i∈U

|mi|p .

Fp-NORM

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating the frequency moments.

The numbers F0, F1, F2 can be approximated in logarithmic space.

Approximating Fk for k ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.
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Intuitions behind the AMS algorithm

Assume that we have a random hash function h.

Define

ρ(x) , max
i

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s at the right-side, in the binary expression
of x.

Example. ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed, the following holds:

with probability 1/2, we have ρ(h(x)) = 1

with probability 1/4, we have ρ(h(x)) = 2

· · ·
with probability 1/2r, we have ρ(h(x)) = r
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The AMS algorithm

1: Choose a random hash function h : [n]→ [n]

2: z = 0
3: while item x from stream S arrives
4: if ρ(h(x)) > z, then z = ρ(h(x))
5: return 2z+1/2

ALGORITHM: AMS

With constant probability, the algorithm’s output satisfies

2z+1/2 ∈ [F0/3, 3 · F0].

THEOREM

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the medium.

Recall (ε, δ)-approximation: P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ
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Proof of the theorem (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r.

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑
j∈S Xr,j be the number of items j reaching level r.

Since h is pairwise independent, h(j) is uniformly distributed, and hence

E[Xr,j ] = P[ρ(h(j)) ≥ r] = P[h(j) mod 2r = 0] = 1/2r.

definition of function ρ

By linearity of expectation, we have

E[Yr] =
∑
j∈S

E[Xr,j ] = F0/2
r,

V[Yr] =
∑
j∈S

V[Xr,j ] ≤
∑
j∈S

E[X2
r,j ] =

∑
j∈S

E[Xr,j ] = F0/2
r
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Proof of the theorem (2/2)

We have proved E[Yr] = F0/2
r, and V[Yr] ≤ F0/2

r.

By Markov’s inequality, we have

P[Yr > 0] = P[Yr ≥ 1] ≤
E[Yr]

1
=
F0

2r
.

By Chebyshev’s inequality, we have

P[Yr = 0] ≤ P [|Yr − E[Yr]| ≥ F0/2
r] ≤

V[Yr]

(F0/2r)2
≤ 2r

F0

.

Let z be the final index the algo. keeps. So the algo. returns Z = 2z+1/2.

Let p be the smallest index such that 2p+1/2 ≥ 3F0. Then

P[Z ≥ 3F0] = P[z ≥ p] = P[Yp > 0] ≤ F0

2p
≤
√

2

3
.

Let q be the largest index such that 2q+1/2 ≤ F0/3. Then

P[Z ≤ F0/3] = P[z ≤ q] = P[Yq+1 = 0] ≤ 2q+1

F0

≤
√

2

3
.
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Let p be the smallest index such that 2p+1/2 ≥ 3F0. Then

P[Z ≥ 3F0] = P[z ≥ p] = P[Yp > 0] ≤ F0

2p
≤
√

2

3
.

Let q be the largest index such that 2q+1/2 ≤ F0/3. Then

P[Z ≤ F0/3] = P[z ≤ q] = P[Yq+1 = 0] ≤ 2q+1

F0

≤
√

2

3
.
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Another algorithm to approximate F0

1: Choose a random pairwise independent hash function h : [n]→ [n]

2: z = 0
3: B = ∅
4: while item x from stream S arrives
5: if ρ(h(x)) ≥ z, then
6: B = B ∪ {(x, ρ(h(x)))}
7: while |B| ≥ 100/ε2

8: z = z + 1
9: Shrink B by removing all (x, ρ(x)) with ρ(h(x)) < z

10: return |B| · 2z

ANOTHER ALGORITHM TO APPROXIMATE F0

The medium of the returned values from Θ(log(1/δ)) independent copies of the
algorithm above gives an (ε, δ)-approximation of F0.
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Chernoff Bounds

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables
(random variables can be discrete or continuous)

usually these bounds decrease exponentially as opposed
to a polynomial decrease in Markov’s or Chebysheff’s
inequality (see example later)
have found various applications in:

Approximation and Sampling Algorithms
Learning Theory (e.g., PAC-learning)
Statistics

Hermann Chernoff (1923-)

(1 + δ)µ(1 − δ)µ µ
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A simple Chernoff Bound for uniform coin flips

Let X1, . . . , Xn be independent random variables with P [Xi = 1 ] =
P [Xi = −1 ] = 1/2. Let X :=

∑n
i=1 Xi. Then for any λ > 0,

P [X ≥ λ ] ≤ e−λ
2/(2n).

Uniform Chernoff Bound

This is a simple yet important setting, since r.v.’s are identical and symmetric.

Bound on P [X ≤ −λ ] follows by symmetry.

Bounds for the case P [Xi = 1 ] = P [Xi = 0 ] = 1/2 through substitution, see below.

Let Y1, . . . , Yn be independent random variables with P [Yi = 0 ] =
P [Yi = 1 ] = 1/2. Let Y :=

∑n
i=1 Yi and µ := E [Y ] = n/2. Then for

any 0 < λ < µ,
P [Y ≥ µ+ λ ] ≤ e−2λ2/n.

Corollary (Homework)
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Example: Repeated uniform coin flips

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

Markov’s inequality: X =
∑100
i=1 Xi, Xi ∈ {0, 1} and E [X ] = 100 · 1

2
= 50.

P [X ≥ 3/2 · E [X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality: V [X ] =
∑100
i=1 V [Xi ] = 100 · (1/4) = 25.

P [ |X − µ| ≥ t ] ≤
V [X ]

t2
,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04, much
better than what we obtained by Markov’s inequality.

The uniform Chernoff bound (Corollary) with µ = 50, λ = 25 gives:

P [X ≥ µ+ λ ] ≤ e−2λ2/100 = e−625/50 = e−12.5 = 0.00000372 . . . .

the exact probability is 0.00000028 . . ., so the Chernoff bound overestimates
the actual probability by a factor of ≈ 10.

Chernoff bound yields a more accurate result but needs independence!
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Chernoff Bounds

Let X1, . . . , Xn be independent random variables with P [Xi = 1 ] = pi and
P [Xi = 0 ] = 1−pi for each i. LetX :=

∑n
i=1 Xi and µ := E [X ] =

∑n
i=1 pi.

Then:

For any ε ≥ 0,

P [X ≥ (1 + ε)µ ] ≤
(

eε

(1 + ε)(1+ε)

)µ
.

P [X ≤ (1− ε)µ ] ≤
(

e1−ε

(1− ε)(1−ε)

)µ
.

For any ε ∈ [0, 1], the inequality can be simplified to

P [ |X − µ| ≥ εµ ] ≤ 2e−µε
2/3.

Chernoff Bound (Multiplicative Version)
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