University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)
 Homework 1
 Solutions

Problem 1: Show that for any $a \geq 1$ there exist distributions for which Markov's inequality is tight by showing the following:

- For each $a=2,3$, and 4 give a probability distribution $p(x)$ for a nonnegative random variable x for which

$$
\mathbf{P}[x \geq a]=\frac{\mathbf{E}[x]}{a}
$$

- For arbitrary $a \geq 1$ give a probability distribution for a nonnegative random variable x where

$$
\mathbf{P}[x \geq a]=\frac{\mathbf{E}[x]}{a}
$$

Solution: For an arbitrary $a \geq 1$ we consider the probability distribution

$$
p(x)= \begin{cases}\frac{1}{a} & \text { if } \quad x=a \\ 1-\frac{1}{a} & \text { if } \quad x=0\end{cases}
$$

Then, it holds that

$$
\mathbf{E}[x]=a \cdot \mathbf{P}[x=a]+0 \cdot \mathbf{P}[x=0]=1
$$

and hence

$$
\mathbf{P}[x \geq a]=\mathbf{P}[x=a]=\frac{1}{a}=\frac{\mathbf{E}[x]}{a}
$$

Problem 2: Show that for any $c \geq 1$ there exist distributions for which Chebyshev's inequality is tight, in other words,

$$
\mathbf{P}[|x-\mathbf{E}[x]| \geq c]=\frac{\operatorname{Var}[x]}{c^{2}}
$$

Solution: For an arbitrary $c \geq 1$ we consider the following probability distribution

$$
p(x)= \begin{cases}\frac{1}{2 c} & \text { if } \quad x=c \\ 1-\frac{1}{c} & \text { if } \quad x=0 \\ \frac{1}{2 c} & \text { if } \quad x=-c\end{cases}
$$

Then, it holds that

$$
\begin{aligned}
\mathbf{E}[x] & =c \cdot p(c)+0 \cdot p(0)+(-c) \cdot p(-c)=0 \\
\mathbf{E}\left[x^{2}\right] & =c^{2} \cdot p(c)+0 \cdot p(0)+(-c)^{2} \cdot p(-c)=c \\
\operatorname{Var}[x] & =\mathbf{E}\left[x^{2}\right]-\mathbf{E}[x]^{2}=c
\end{aligned}
$$

Hence,

$$
\mathbf{P}[|x-\mathbf{E}[x]| \geq c]=\mathbf{P}[|x| \geq c]=\frac{1}{c}=\frac{\operatorname{Var}[x]}{c^{2}}
$$

Problem 3: Consider the probability density function $p(x)=0$ for $x<1$ and $p(x)=c \cdot \frac{1}{x^{4}}$ for $x \geq 1$.

- What should c be to make p a legal probability density function?
- Generate 100 random samples from this distribution. How close is the average of the samples to the expected value of x ?

Solution: Recall that p is a valid probability density function if

1. $p(x) \geq 0 \quad \forall x \in \mathbb{R}$;
2. $\int_{-\infty}^{\infty} p(x) \mathrm{d} x=1$.

Working with the second condition we have that

$$
\int_{-\infty}^{\infty} p(x) d x=\int_{1}^{\infty} c \cdot \frac{1}{x^{4}} d x=\left.c \cdot \frac{1}{-3 x^{3}}\right|_{1} ^{\infty}=\frac{c}{3},
$$

and therefore the first condition holds when $c=3$.
For the second part of the question we will use the Law of Large Numbers, i.e.,

$$
\mathbf{P}\left[\left|\frac{x_{1}+\cdots+x_{100}}{100}-\mathbf{E}[x]\right| \geq \epsilon\right] \leq \frac{\operatorname{Var}[x]}{100 \epsilon^{2}} .
$$

We know that

$$
\begin{aligned}
\mathbf{E}[x] & =\int_{-\infty}^{\infty} x p(x) d x=\int_{1}^{\infty} 3 \cdot \frac{1}{x^{3}} d x=\left.\frac{3}{-2 x^{2}}\right|_{1} ^{\infty}=\frac{3}{2}, \\
\mathbf{E}\left[x^{2}\right] & =\int_{-\infty}^{\infty} x^{2} p(x) d x=\int_{1}^{\infty} 3 \cdot \frac{1}{x^{2}} d x=\left.\frac{3}{-x}\right|_{1} ^{\infty}=3,
\end{aligned}
$$

and

$$
\operatorname{Var}[x]=\mathbf{E}\left[x^{2}\right]-\mathbf{E}[x]^{2}=3-\left(\frac{3}{2}\right)^{2}=\frac{3}{4} .
$$

Therefore, it holds that

$$
\mathbf{P}\left[\left|\frac{x_{1}+\cdots+x_{100}}{100}-\mathbf{E}[x]\right| \geq \epsilon\right] \leq \frac{3}{400 \epsilon^{2}} .
$$

For example, if $\epsilon=0.2$, the probability that the mean of the 100 samples lies outside the interval $(1.3,1.7)$ is not grater than 0.19 .

Problem 4: Let G be a d-dimensional Gaussian with variance $1 / 2$ in each direction, centred at the origin. Derive the expected squared distance to the origin.
$\underline{\text { Solution: }: ~ S u p p o s e ~} G=\left(g_{1}, g_{2}, \ldots, g_{d}\right)$ where each $g_{i} \sim \mathcal{N}(0,1 / 2)$. Direct calculation gives us that

$$
\mathbf{E}\left[\|G-\mathbf{0}\|^{2}\right]=\mathbf{E}\left[\sum_{i=1}^{d} g_{i}^{2}\right]=\sum_{i=1}^{d} \mathbf{E}\left[g_{i}^{2}\right]=\sum_{i=1}^{d}\left(\mathbf{E}\left[g_{i}^{2}\right]-\mathbf{E}\left[g_{i}\right]^{2}\right)=\sum_{i=1}^{d} \operatorname{Var}\left[g_{i}\right]=\frac{d}{2} .
$$

Problem 5: Let x_{1}, \ldots, x_{n} be independent samples of a random variable x with mean μ and variance σ^{2}. Let

$$
m_{s}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

be the sample mean. Suppose one estimates the variance using the sample mean rather than the true mean, that is,

$$
\sigma_{s}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m_{s}\right)^{2} .
$$

Prove that

$$
\mathbf{E}\left[\sigma_{s}^{2}\right]=\frac{n-1}{n} \sigma^{2}
$$

and thus one should have divided by $n-1$ rather than n.
Solution: First of all, we will rewrite σ_{s}^{2} by

$$
\begin{aligned}
\sigma_{s}^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-m_{s}\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} m_{s}+m_{s}^{2}\right) \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-2 m_{s} \frac{\sum_{i=1}^{n} x_{i}}{n}+\frac{1}{n} \sum_{i=1}^{n} m_{s}^{2} \\
& =\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-m_{s}^{2} .
\end{aligned}
$$

Now, using the linearity of expectation we have

$$
\mathbf{E}\left[\sigma_{s}^{2}\right]=\frac{1}{n}\left(\sum_{i=1}^{n} \mathbf{E}\left[x_{i}^{2}\right]\right)-\mathbf{E}\left[m_{s}^{2}\right],
$$

where

$$
\mathbf{E}\left[x_{i}^{2}\right]=\operatorname{Var}\left[x_{i}\right]+\mathbf{E}\left[x_{i}\right]^{2}=\sigma^{2}+\mu^{2},
$$

and

$$
\begin{aligned}
\mathbf{E}\left[m_{s}^{2}\right] & =\mathbf{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\frac{1}{n^{2}} \mathbf{E}\left[\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right] \\
& =\frac{1}{n^{2}}\left(\operatorname{Var}\left[\sum_{i=1}^{n} x_{i}\right]+\mathbf{E}\left[\sum_{i=1}^{n} x_{i}\right]^{2}\right) \\
& =\frac{1}{n^{2}}\left(\sum_{i=1}^{n} \operatorname{Var}\left[x_{i}\right]+\left(\sum_{i=1}^{n} \mathbf{E}\left[x_{i}\right]\right)^{2}\right) \quad \text { using that } x_{i} \text { are independent } \\
& =\frac{\sigma^{2}}{n}+\mu^{2} .
\end{aligned}
$$

Therefore we get

$$
\mathbf{E}\left[\sigma_{s}^{2}\right]=\frac{1}{n}\left(\sum_{i=1}^{n} \sigma^{2}+\mu^{2}\right)-\frac{\sigma^{2}}{n}-\mu^{2}=\frac{n-1}{n} \sigma^{2} .
$$

