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Homework 2

Solutions

Problem 1:  Suppose you want to estimate the unkown centre of the Gaussian in R¢ which has unit
variance in each direction. Show that O(logd/€?) random samples from the Gaussian are sufficient to
get an estimate myg of the true centre p, so that with probability at least 99%,
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How many samples are sufficient to ensure that with probability at least 99%
i — |, < €?

Note that ||x||, := max; |z;|.

Solution: We assume that there are k samples denoted by x',...,x", where every x’ € R? is
expressed by (x},...,x}). Notice that the condition || — my||, < € holds if and only if |p; — (my);| < e
for any 1 < i < d. Hence, our goal is find that a bound on £ such that it holds with probability at least
1—0(1/d) that
‘Hi - (ms)z| <€

for any fixed 7. Then applying the union bound gives us the desired statement.

Now we fix an arbitrary ¢, and without loss of generality we assume that g, = 1. We look at the
probability that (mg); > (1 + €). By definition, we have
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and therefore it holds for any A > 0 that
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where the third equality follows by the moment generating function of normal distributions, and the
last inequality holds by setting A = €. Hence, in order to have e~k /2 = O(1/d), we only need to ensure
that k = O(log d/€?).

For the second part, again assume we sample k points x!,...,x* € R? such that mg = %2?:1 xJ.

Also note ||t — mg||, < € if and only if || — mgl|5 < 2. Let z; = y; — (my); and also denote

d
7= |my - plf =3 2
=1



We have that
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Now we know that
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Therefore Z = Z;;i:1 y?, where every y; ~ N(0,1/k). We can rearrange the previous equation to get
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To obtain our desired bound we apply Markov’s inequality using the fact that E[Z ] = % as follows:
E[Z] _ d
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In other words, if we sample k = O(d/€?) points in R? with very good probability the true mean g and
the sampled mean mg are very close in the fo-norm.
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Problem 2: This question is to try to design a dimension reduction lemma for ¢1, similar to the
Johnson-Lindenstrauss (JL) lemma for the Euclidean space. Remember that JL lemma says that we
can pick a matrix ®, of dimension k x d for large enough k, where each entry is chosen from a Gaussian
distribution, such that: for any = € R?, we have that ﬁ |®x||, is a (1 + €) approximation to ||z||, with

probability at least 1 — e~ UEk),

For /1, the equivalent of Gaussian distribution is the Cauchy distribution, which has probability
distribution function p(z) = m Namely, the corresponding “stability” property of Cauchy
distribution is the following. Consider s = Zgzl zici, for x € R? and ¢; each independently chosen
from Cauchy distribution. Then s has distribution ||z||; - ¢ where ¢ is also distributed as a Cauchy
distribution.

It is tempting to construct a dimensionality reducing map for ¢; in the same way as what we did for
Euclidean space, just by replacing the Gaussian distribution with the Cauchy distribution. In particular,
let C be a matrix of size k x d, where each entry is chosen independently from the Cauchy distribution.

1. Argue that this approach does not work for dimensionality reduction for ¢;. Namely, for (say)
k = 1000 and z = (1,0,0,...,0), the estimator + ||Cz||; is not a 2-approximation to ||z|; = 1
with probability at least 10%.

In fact, it has been proven that there does not exist an equivalent dimensionality reduction for ¢;
at all. Instead, we will construct a sketch that provides a weaker form of “dimension reduction”.

2. The median estimate is defined as the median of the absolute values of k coordinates of the vector
Cz. Prove that for any » € RY, the median estimate is a 1+ € approximation to ||z||; with at least
1—e k) probability. You might want to use the following concentration bound, called Chernoff
bound: for any k independent and identically distributed random variables x1, ...,z € {0,1},
each with expectation E[z;] = u € [0, 1], we have that
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Note that we obtain a “sketch”, which is not a regular dimension reduction scheme: namely, the
“target” space is not ¢1, but “median” (which is not even a metric/distance). Nevertheless, it is a
linear map, and is useful for sketching and streaming as we will see in future lectures.
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