University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019)

Homework 2

Solutions

Problem 1: Suppose you want to estimate the unkown centre of the Gaussian in \mathbb{R}^{d} which has unit variance in each direction. Show that $O\left(\log d / \epsilon^{2}\right)$ random samples from the Gaussian are sufficient to get an estimate \mathbf{m}_{s} of the true centre $\boldsymbol{\mu}$, so that with probability at least 99%,

$$
\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{\infty} \leq \epsilon
$$

How many samples are sufficient to ensure that with probability at least 99%

$$
\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{2} \leq \epsilon ?
$$

Note that $\|\mathbf{x}\|_{\infty}:=\max _{i}\left|x_{i}\right|$.

Solution: We assume that there are k samples denoted by $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}$, where every $\mathbf{x}^{i} \in \mathbb{R}^{d}$ is expressed by $\left(\mathbf{x}_{1}^{i}, \ldots, \mathbf{x}_{d}^{i}\right)$. Notice that the condition $\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{\infty} \leq \epsilon$ holds if and only if $\left|\boldsymbol{\mu}_{i}-\left(\mathbf{m}_{s}\right)_{i}\right| \leq \epsilon$ for any $1 \leq i \leq d$. Hence, our goal is find that a bound on k such that it holds with probability at least $1-O(1 / d)$ that

$$
\left|\boldsymbol{\mu}_{i}-\left(\mathbf{m}_{s}\right)_{i}\right| \leq \epsilon
$$

for any fixed i. Then applying the union bound gives us the desired statement.
Now we fix an arbitrary i, and without loss of generality we assume that $\boldsymbol{\mu}_{i}=1$. We look at the probability that $\left(\mathbf{m}_{s}\right)_{i}>(1+\epsilon)$. By definition, we have

$$
\left(\mathbf{m}_{s}\right)_{i}=\frac{1}{k}\left(\mathbf{x}_{i}^{1}+\cdots+\mathbf{x}_{i}^{k}\right)
$$

and therefore it holds for any $\lambda>0$ that

$$
\begin{aligned}
\mathbf{P}\left[\left(\mathbf{m}_{s}\right)_{i}>(1+\epsilon)\right] & =\mathbf{P}\left[\frac{1}{k}\left(\mathbf{x}_{i}^{1}+\cdots+\mathbf{x}_{i}^{k}\right) \geq(1+\epsilon)\right] \\
& =\mathbf{P}\left[\mathrm{e}^{\lambda \cdot \sum_{j=1}^{k} \mathbf{x}_{i}^{j}} \geq \mathrm{e}^{(1+\epsilon) \cdot \lambda k}\right] \\
& \leq \frac{\mathbf{E}\left[\mathrm{e}^{\lambda \cdot \sum_{j=1}^{k} \mathbf{x}_{i}^{j}}\right]}{\mathrm{e}^{(1+\epsilon) \cdot \lambda k}} \\
& =\frac{\prod_{j=1}^{k} \mathbf{E}\left[\mathrm{e}^{\lambda \cdot \mathbf{x}_{i}^{j}}\right]}{\mathrm{e}^{(1+\epsilon) \cdot \lambda k}} \\
& =\frac{\prod_{j=1}^{k} \mathrm{e}^{\lambda^{2} / 2+\lambda}}{\mathrm{e}^{(1+\epsilon) \cdot \lambda k}} \\
& =\mathrm{e}^{k \lambda^{2} / 2+k \lambda-(1+\epsilon) \lambda k} \\
& \leq \mathrm{e}^{-k \epsilon^{2} / 2}
\end{aligned}
$$

where the third equality follows by the moment generating function of normal distributions, and the last inequality holds by setting $\lambda=\epsilon$. Hence, in order to have $\mathrm{e}^{-k \epsilon^{2} / 2}=O(1 / d)$, we only need to ensure that $k=O\left(\log d / \epsilon^{2}\right)$.

For the second part, again assume we sample k points $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{d}$ such that $\mathbf{m}_{\mathbf{s}}=\frac{1}{k} \sum_{j=1}^{k} \mathbf{x}^{j}$. Also note $\left\|\boldsymbol{\mu}-\mathbf{m}_{\mathbf{s}}\right\|_{2} \leq \epsilon$ if and only if $\left\|\boldsymbol{\mu}-\mathbf{m}_{\mathbf{s}}\right\|_{2}^{2} \leq \epsilon^{2}$. Let $z_{i}=\mu_{i}-\left(\mathbf{m}_{\mathbf{s}}\right)_{i}$ and also denote

$$
Z:=\left\|\mathbf{m}_{\mathbf{s}}-\boldsymbol{\mu}\right\|^{2}=\sum_{i=1}^{d} z_{i}^{2}
$$

We have that

$$
Z=\sum_{i=1}^{d}\left(\frac{1}{k} \sum_{j=1}^{k} \mathbf{x}_{i}^{j}-\mu_{i}\right)^{2}=\sum_{i=1}^{d}\left(\frac{1}{k}\left(\sum_{j=1}^{k} \mathbf{x}_{i}^{j}-k \mu_{i}\right)\right)^{2} .
$$

Now we know that

$$
\mathrm{x}_{i}^{j} \sim \mathcal{N}\left(\mu_{i}, 1\right) \Rightarrow \sum_{j=1}^{k} \mathrm{x}_{i}^{j} \sim \mathcal{N}\left(k \mu_{i}, k\right) \Rightarrow \sum_{j=1}^{k} \mathrm{x}_{i}^{j}-k \mu_{i} \sim \mathcal{N}(0, k) \Rightarrow \frac{1}{k}\left(\sum_{j=1}^{k} \mathrm{x}_{i}^{j}-k \mu_{i}\right) \sim \mathcal{N}(0,1 / k) .
$$

Therefore $Z=\sum_{i=1}^{d} y_{i}^{2}$, where every $y_{i} \sim \mathcal{N}(0,1 / k)$. We can rearrange the previous equation to get

$$
Z=\sum_{i=1}^{d} \frac{\left(\sqrt{k} y_{i}\right)^{2}}{k} \sim \frac{\chi^{2}(d)}{k}
$$

To obtain our desired bound we apply Markov's inequality using the fact that $\mathbf{E}[Z]=\frac{d}{k}$ as follows:

$$
\mathbf{P}\left[\left\|\boldsymbol{\mu}-\mathbf{m}_{s}\right\|_{2} \geq \epsilon\right]=\mathbf{P}\left[Z \geq \epsilon^{2}\right] \leq \frac{\mathbf{E}[Z]}{\epsilon^{2}}=\frac{d}{k \epsilon^{2}}
$$

In other words, if we sample $k=O\left(d / \epsilon^{2}\right)$ points in \mathbb{R}^{d} with very good probability the true mean $\boldsymbol{\mu}$ and the sampled mean $\mathbf{m}_{\mathbf{s}}$ are very close in the ℓ_{2}-norm.

Problem 2: This question is to try to design a dimension reduction lemma for ℓ_{1}, similar to the Johnson-Lindenstrauss (JL) lemma for the Euclidean space. Remember that JL lemma says that we can pick a matrix Φ, of dimension $k \times d$ for large enough k, where each entry is chosen from a Gaussian distribution, such that: for any $x \in \mathbb{R}^{d}$, we have that $\frac{1}{\sqrt{k}}\|\Phi x\|_{2}$ is a $(1+\epsilon)$ approximation to $\|x\|_{2}$ with probability at least $1-\mathrm{e}^{-\Omega\left(\epsilon^{2} k\right)}$.

For ℓ_{1}, the equivalent of Gaussian distribution is the Cauchy distribution, which has probability distribution function $p(x)=\frac{1}{\pi\left(1+x^{2}\right)}$. Namely, the corresponding "stability" property of Cauchy distribution is the following. Consider $s=\sum_{i=1}^{d} x_{i} c_{i}$, for $x \in \mathbb{R}^{d}$ and c_{i} each independently chosen from Cauchy distribution. Then s has distribution $\|x\|_{1} \cdot c$ where c is also distributed as a Cauchy distribution.

It is tempting to construct a dimensionality reducing map for ℓ_{1} in the same way as what we did for Euclidean space, just by replacing the Gaussian distribution with the Cauchy distribution. In particular, let C be a matrix of size $k \times d$, where each entry is chosen independently from the Cauchy distribution.

1. Argue that this approach does not work for dimensionality reduction for ℓ_{1}. Namely, for (say) $k=1000$ and $x=(1,0,0, \ldots, 0)$, the estimator $\frac{1}{k}\|C x\|_{1}$ is not a 2 -approximation to $\|x\|_{1}=1$ with probability at least 10%.
In fact, it has been proven that there does not exist an equivalent dimensionality reduction for ℓ_{1} at all. Instead, we will construct a sketch that provides a weaker form of "dimension reduction".
2. The median estimate is defined as the median of the absolute values of k coordinates of the vector $C x$. Prove that for any $x \in \mathbb{R}^{d}$, the median estimate is a $1+\epsilon$ approximation to $\|x\|_{1}$ with at least $1-\mathrm{e}^{-\Omega\left(\epsilon^{2} k\right)}$ probability. You might want to use the following concentration bound, called Chernoff bound: for any k independent and identically distributed random variables $x_{1}, \ldots, x_{k} \in\{0,1\}$, each with expectation $\mathbf{E}\left[x_{i}\right]=\mu \in[0,1]$, we have that

$$
\mathbf{P}\left[\left|\frac{1}{k} \sum_{i} x_{i}-\mu\right|>\epsilon\right] \leq \mathrm{e}^{-\epsilon^{2} k} .
$$

Note that we obtain a "sketch", which is not a regular dimension reduction scheme: namely, the "target" space is not ℓ_{1}, but "median" (which is not even a metric/distance). Nevertheless, it is a linear map, and is useful for sketching and streaming as we will see in future lectures.

