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Homework 2
Solutions

Problem 1: Suppose you want to estimate the unkown centre of the Gaussian in Rd which has unit
variance in each direction. Show that O(log d/ε2) random samples from the Gaussian are sufficient to
get an estimate ms of the true centre µ, so that with probability at least 99%,

‖µ−ms‖∞ ≤ ε.

How many samples are sufficient to ensure that with probability at least 99%

‖µ−ms‖2 ≤ ε?

Note that ‖x‖∞ := maxi |xi|.

Solution: We assume that there are k samples denoted by x1, . . . ,xk, where every xi ∈ Rd is
expressed by (xi1, . . . ,x

i
d). Notice that the condition ‖µ−ms‖∞ ≤ ε holds if and only if |µi−(ms)i| ≤ ε

for any 1 ≤ i ≤ d. Hence, our goal is find that a bound on k such that it holds with probability at least
1−O(1/d) that

|µi − (ms)i| ≤ ε,
for any fixed i. Then applying the union bound gives us the desired statement.

Now we fix an arbitrary i, and without loss of generality we assume that µi = 1. We look at the
probability that (ms)i > (1 + ε). By definition, we have
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and therefore it holds for any λ > 0 that
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where the third equality follows by the moment generating function of normal distributions, and the
last inequality holds by setting λ = ε. Hence, in order to have e−kε

2/2 = O(1/d), we only need to ensure
that k = O(log d/ε2).

For the second part, again assume we sample k points x1, . . . ,xk ∈ Rd such that ms = 1
k

∑k
j=1 x

j .
Also note ‖µ−ms‖2 ≤ ε if and only if ‖µ−ms‖22 ≤ ε2. Let zi = µi − (ms)i and also denote

Z := ‖ms − µ‖2 =

d∑
i=1

z2
i .



We have that

Z =
d∑
i=1

1

k
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Now we know that

xji ∼ N (µi, 1)⇒
k∑
j=1

xji ∼ N (kµi, k)⇒
k∑
j=1

xji − kµi ∼ N (0, k)⇒ 1

k

 k∑
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 ∼ N (0, 1/k).

Therefore Z =
∑d

i=1 y
2
i , where every yi ∼ N (0, 1/k). We can rearrange the previous equation to get

Z =
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2

k
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k

To obtain our desired bound we apply Markov’s inequality using the fact that E [Z ] = d
k as follows:

P [ ‖µ−ms‖2 ≥ ε ] = P
[
Z ≥ ε2

]
≤ E [Z ]

ε2
=

d

kε2
.

In other words, if we sample k = O(d/ε2) points in Rd with very good probability the true mean µ and
the sampled mean ms are very close in the `2-norm.

Problem 2: This question is to try to design a dimension reduction lemma for `1, similar to the
Johnson-Lindenstrauss (JL) lemma for the Euclidean space. Remember that JL lemma says that we
can pick a matrix Φ, of dimension k× d for large enough k, where each entry is chosen from a Gaussian
distribution, such that: for any x ∈ Rd, we have that 1√

k
‖Φx‖2 is a (1 + ε) approximation to ‖x‖2 with

probability at least 1− e−Ω(ε2k).
For `1, the equivalent of Gaussian distribution is the Cauchy distribution, which has probability

distribution function p(x) = 1
π(1+x2)

. Namely, the corresponding “stability” property of Cauchy

distribution is the following. Consider s =
∑d

i=1 xici, for x ∈ Rd and ci each independently chosen
from Cauchy distribution. Then s has distribution ‖x‖1 · c where c is also distributed as a Cauchy
distribution.

It is tempting to construct a dimensionality reducing map for `1 in the same way as what we did for
Euclidean space, just by replacing the Gaussian distribution with the Cauchy distribution. In particular,
let C be a matrix of size k × d, where each entry is chosen independently from the Cauchy distribution.

1. Argue that this approach does not work for dimensionality reduction for `1. Namely, for (say)
k = 1000 and x = (1, 0, 0, . . . , 0), the estimator 1

k ‖Cx‖1 is not a 2-approximation to ‖x‖1 = 1
with probability at least 10%.
In fact, it has been proven that there does not exist an equivalent dimensionality reduction for `1
at all. Instead, we will construct a sketch that provides a weaker form of “dimension reduction”.

2. The median estimate is defined as the median of the absolute values of k coordinates of the vector
Cx. Prove that for any x ∈ Rd, the median estimate is a 1 + ε approximation to ‖x‖1 with at least
1−e−Ω(ε2k) probability. You might want to use the following concentration bound, called Chernoff
bound : for any k independent and identically distributed random variables x1, . . . , xk ∈ {0, 1},
each with expectation E [xi ] = µ ∈ [0, 1], we have that

P

[ ∣∣∣∣∣1k∑
i
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∣∣∣∣∣ > ε

]
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2k.

Note that we obtain a “sketch”, which is not a regular dimension reduction scheme: namely, the
“target” space is not `1, but “median” (which is not even a metric/distance). Nevertheless, it is a
linear map, and is useful for sketching and streaming as we will see in future lectures.
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