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Problem 1: Project the volume of a d-dimensional ball of radius
√
d onto a line through the centre.

For large d, give an intuitive argument that the projected volume should behave like a Gaussian.

Solution: Projecting the volume of a d-dimensional ball corresponds to assigning a function
f : [−

√
d,
√
d] such that f(x) is the volume of a (d − 1)-dimensional ball with radius

√
d− x2. This

function is 0 on the endpoints of its domain, reaches its maximal value for x = 0 and is an even function,
i.e., f(−x) = f(x). We will show that, as x is increasing on the interval [0,

√
d], the function f decreases

exponentially in x2.
We will assume that d− 1 = 2k, for some natural number k, as the other case is done similarly. Let

Vn(R) denote the volume of a ball in n dimensions of radius R. Then, we know that

f(x) = Vd−1

(√
d− x2

)
=
πk

k!
·
(√

d− x2
)d−1

=
πk

k!
· d(d−1)/2 ·

(
1− x2

d

)(d−1)/2

≈ πk

k!
· d(d−1)/2 · e−

x2

2 .

Problem 2: Consider a nonorthogonal basis e1, e2, . . . , ed. The ei are a set of linearly independent
unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique;

2. Calculate the squared length of z =
√
2
2 e1 + e2 where e1 = (1, 0) and e2 =

(
−
√
2
2 ,
√
2
2

)
;

3. If y =
∑d

i=1 aiei and z =
∑d

i=1 biei, with 0 < ai < bi for all 1 ≤ i ≤ d, is it necessarily true that
the length of z is greater than the length of y? If yes give a proof of the statement, if no find a
counterexample;

4. Consider the basis e1 = (1, 0) and e2 =
(
−
√
2
2 ,
√
2
2

)
.

(a) What is the representation of the vector v = (0, 1) in the basis (e1, e2)? I.e. find scalars a, b
such that v = ae1 + be2.

(b) What is the representation of the vector
(√

2
2 ,
√
2
2

)
in the basis (e1, e2)?

(c) What is the representation of the vector (1, 2) in the basis (e1, e2)?

Solution:

1. Let v be an arbitrary vector. Since the vectors {ei}’s form a basis, they span the entire space.
So there exists a representation v =

∑d
i=1 αiei. Suppose v can also be represented as

∑d
i=1 βiei.

Then it holds that
d∑

i=1

αiei =

d∑
i=1

βiei

which gives us that
∑d

i=1(αi − βi)ei = 0. Since the vectors are linearly independent, we must
have that αi = βi for all i. We conclude that the two representations are the same.



2. We have z =
√
2
2 e1 + e2 =

(√
2
2
0

)
+

(
−
√
2
2√
2
2

)
=

(
0√
2
2

)
. Therefore the length of z is ‖z‖ =

√
2
2 .

3. We will show that the answer is false. Let u1,u2, . . . ,ud be the standard basis, i.e. ui is the
vector with 1 in position i and 0 everywhere else. We can rewrite the vectors ei, for all i, as
follows:

ei =
d∑

j=1

αijuj.

Substituting in the representations of y and z we see that

y =

d∑
i=1

ai

 d∑
j=1

αijuj

 =

d∑
j=1

(
d∑

i=1

aiαij

)
uj,

z =
d∑

i=1

bi

 d∑
j=1

αijuj

 =

d∑
j=1

(
d∑

i=1

biαij

)
uj.

Moreover, we see that the two norms can be expressed as

‖y‖2 =
d∑

j=1

(
d∑

i=1

aiαij

)2

‖z‖2 =
d∑

j=1

(
d∑

i=1

biαij

)2

.

Since the two lengths are positive real numbers, it is sufficient to compare their squared norms.
We have that

‖z‖2−‖y‖2 =
d∑

j=1

( d∑
i=1

biαij

)2

−

(
d∑

i=1

aiαij

)2
 =

d∑
j=1

((
d∑

i=1

αij(ai + bi)

)(
d∑

i=1

αij(bi − ai)

))
.

For certain choices of the numbers αij , 0 < ai < bi, the right hand side can be negative. For
example, take

α =
1√
5

(
2 1
−1 −2

)
, a1 = 0.9, a2 = 0.1, b1 = b2 = 1.

4. Suppose v = ae1 + be2. We substitute the values for the three vectors and solve for a and b as
follows:

(a) (
0
1

)
= a

(
1
0

)
+ b

(
−
√
2
2√
2
2

)
⇔

{
a−

√
2
2 b = 0

√
2
2 b = 1

⇔

{
a = 1

b =
√
2

(b) a =
√
2, b = 1.

(c) a = 3, b = 2
√
2.

Problem 3: Compute the right-singular vectors vi, the left-singular vectors ui, the singular values
σi and hence find the Singular value decomposition of

1. A =

1 1
0 3
3 0

;

2



2. A =


0 2
2 0
1 3
3 1

.

Solution: Throughout the solution we will make use of the following lemma.

Lemma 1. Let a and b be two real numbers satisfying a2 + b2 = 1 and a ≥ 0. The product ab is
maximised when a = b =

√
2
2 .

Proof. Using the initial conditions we can rewrite a =
√
1− b2. Hence maximising the product ab

reduces to maximising the function f(x) = x
√
1− x2. A point x0 maximises f(x) if x0 ≥ 0 and

f ′(x0) = 0. We have that

f ′(x) =
√

1− x2 + −x2√
1− x2

=
1− 2x2√
1− x2

.

We conclude that x0 =
√
2
2 which gives a = b =

√
2
2 .

1. For finding the first right-singular vector v1, we look at any vector v =
(
a
b

)
such that ‖v‖ = 1

and v maximises ‖Av‖. Without loss of generality we can also assume that a ≥ 0. Firstly, note
that maximising ‖Av‖ is equivalent to maximising ‖Av‖2. We also have that:

‖Av‖2 =

∥∥∥∥∥∥
a+ b

3b
3a

∥∥∥∥∥∥
2

= (a+ b)2 + 9b2 + 9a2.

Since ‖v‖ = 1, we have that a2 + b2 = 1. Therefore ‖Av‖2 = 10(a2 + b2) + 2ab = 10 + 2ab.
We see that ‖Av‖2 is maximised if and only if ab is maximised. Using Lemma 1 that happens

when a = b = 1√
2
. So the first right-singular vector v1 = 1√

2

(
1
1

)
and the first singular value is

σ1 = ‖Av1‖ =
√
11. For the first left-singular vector u1 we compute

u1 =
1

σ1
Av1 =

1√
22

2
3
3

 .

For the second right-singular vector v2, we look at vectors v =

(
a′

b′

)
such that ‖v‖ = 1, v ⊥ v1

and v maximises ‖Av‖. Without loss of generality we can assume a′ ≥ 0. Since v ⊥ v1 this implies

that a′ + b′ = 0. Solving a′2 + b′2 = 1 gives us that a′ = 1√
2
. Hence v2 = 1√

2

(
1
−1

)
. Moreover,

the second singular value is σ2 = ‖Av2‖ = 3. The second left-singular vector u2 is computed by

u2 =
1

σ2
Av2 =

1√
2

 0
−1
1

 .

The singular value decomposition of A is

A = UDV T =


2√
22

0

3√
22

−1√
2

3√
22

1√
2


(√

11 0
0 3

)
1√
2

1√
2

1√
2

− 1√
2

 .
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2. Again, for finding v1 we look at any vector v =
(
a
b

)
such that ‖v‖ = 1 and v maximises ‖Av‖.

Without loss of generality we can assume a ≥ 0.

‖Av‖2 =

∥∥∥∥∥∥∥∥


2b
2a

a+ 3b
3a+ 3b


∥∥∥∥∥∥∥∥
2

= 4a2 + 4b2 + (a+ 3b)2 + (3a+ b)2 = 14(a2 + b2) + 12ab.

Using that ‖v‖ = 1 we have that ‖Av‖2 = 14 + 12ab which, by Lemma 1, is maximised for

a = b = 1√
2
. Therefore we have that v1 = 1√

2

(
1
1

)
and σ1 =

√
20. The first left-singular vector u1

is given by

u1 =
1

σ1
Av1 =

1

2
√
10


2
2
4
4

 =
1√
10


1
1
2
2

 .

A similar reasoning to the previous part tells us that v2 = 1√
2

(
1
−1

)
and σ2 = ‖Av2‖ =

√
8. We

also have that

u2 =
1

σ2
Av2 =

1

4


−2
2
−2
2

 =
1

2


−1
1
−1
1

 .

Hence, the singular value decomposition of A is

A = UDV T =



1√
10

−1
2

1√
10

1
2

2√
10

−1
2

2√
10

1
2


(√

20 0

0
√
8

)
1√
2

1√
2

1√
2

− 1√
2

 .
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