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Solutions

Problem 1:  Project the volume of a d-dimensional ball of radius v/d onto a line through the centre.
For large d, give an intuitive argument that the projected volume should behave like a Gaussian.

Solution: Projecting the volume of a d-dimensional ball corresponds to assigning a function
f : [-Vd,\/d] such that f(zx) is the volume of a (d — 1)-dimensional ball with radius v/d — 2. This
function is 0 on the endpoints of its domain, reaches its maximal value for z = 0 and is an even function,
i.e., f(—x) = f(z). We will show that, as x is increasing on the interval [0, v/d], the function f decreases
exponentially in 2.

We will assume that d — 1 = 2k, for some natural number k, as the other case is done similarly. Let

V. (R) denote the volume of a ball in n dimensions of radius R. Then, we know that
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Problem 2: Consider a nonorthogonal basis ey, ez, ...,eq. The e; are a set of linearly independent
unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique;

2. Calculate the squared length of z = gel + ez where e; = (1,0) and eg = (—g, ?),

3. Ify= Z?:l a;e; and z = Z?:l bie;, with 0 < a; < b; for all 1 < i < d, is it necessarily true that
the length of z is greater than the length of y? If yes give a proof of the statement, if no find a
counterexample;
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4. Consider the basis €1 = (1,0) and ez = (—72, 7)

(a) What is the representation of the vector v = (0,1) in the basis (e1,e2)? Le. find scalars a,b
such that v = aeq + bes.
(b) What is the representation of the vector (@, g) in the basis (e1,e2)?

(c) What is the representation of the vector (1,2) in the basis (e1,e2)?

Solution:

1. Let v be an arbitrary vector. Since the vectors {e;}’s form a basis, they span the entire space.
So there exists a representation v = Z?:l a;ej. Suppose v can also be represented as Z?zl Bie;.

Then it holds that . J
> e =) Bie
i=1 i=1

which gives us that Zle(ai — Bi)e; = 0. Since the vectors are linearly independent, we must
have that a; = §; for all . We conclude that the two representations are the same.
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2. We have z = @el +ez = ( 8 ) + < \/52 ) = <\/§> Therefore the length of z is ||z|| = ?
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3. We will show that the answer is false. Let ui,us,...,uq be the standard basis, i.e. u; is the
vector with 1 in position ¢ and 0 everywhere else. We can rewrite the vectors ej, for all 7, as

follows:
d
e = E aijuj.
=1

Substituting in the representations of y and z we see that
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Moreover, we see that the two norms can be expressed as
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Since the two lengths are positive real numbers, it is sufficient to compare their squared norms.
We have that
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For certain choices of the numbers «;;, 0 < a; < b;, the right hand side can be negative. For
example, take
1 2 1
a—\/g(_l _2>, a1—0.9, CL2—0.1, bl—bg—l.
4. Suppose v = aej + bea. We substitute the values for the three vectors and solve for a and b as
follows:

Problem 3: Compute the right-singular vectors v;, the left-singular vectors u;, the singular values
o; and hence find the Singular value decomposition of
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Solution: Throughout the solution we will make use of the following lemma.

Lemma 1. Let a and b be two real numbers satisfying a®> +b*> = 1 and a > 0. The product ab is

mazximised when a = b = g

Proof. Using the initial conditions we can rewrite a = v/1 — b2. Hence maximising the product ab
reduces to maximising the function f(z) = xv1—22. A point zp maximises f(z) if g > 0 and

f(xg) = 0. We have that
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We conclude that x¢ = g which gives a = b =

1. For finding the first right-singular vector vy, we look at any vector v = <Z> such that ||v]| =1

and v maximises ||Av||. Without loss of generality we can also assume that a > 0. Firstly, note
that maximising || Av|| is equivalent to maximising || Av||*. We also have that:
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Since ||v|| = 1, we have that a® + b*> = 1. Therefore ||Av||* = 10(a? 4 b?) + 2ab = 10 + 2ab.
We see that ||Av||? is maximised if and only if ab is maximised. Using Lemma [1| that happens
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when a = b = ot So the first right-singular vector v; = 7 <1) and the first singular value is

o1 = ||Av1|| = V/11. For the first left-singular vector u; we compute
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For the second right-singular vector vy, we look at vectors v = <a> such that |jv]| =1, v L vy

b/
and v maximises ||Av||. Without loss of generality we can assume a’ > 0. Since v L v; this implies
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that a’ +b" = 0. Solving a’* 4+ b* = 1 gives us that a' = 75 Hence vy = 7 (_1>. Moreover,

the second singular value is 02 = ||Ava|| = 3. The second left-singular vector ug is computed by
0
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The singular value decomposition of A is
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2. Again, for finding v; we look at any vector v = <Z> such that ||v]] =1 and v maximises ||Av]|.
Without loss of generality we can assume a > 0.
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a+ 3b
3a + 3b

| Av||* = = 4a® 4 4% + (a + 3b)? + (3a + b)? = 14(a® + b?) + 12ab.

Using that |[v|| = 1 we have that ||Av||* = 14 4+ 12ab which, by Lemma , is maximised for
a = b= —. Therefore we have that v; = - <1 and o1 = v/20. The first left-singular vector u;
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is given by
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A similar reasoning to the previous part tells us that vy = % <_11> and og = ||Ava|| = /8. We

also have that
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Hence, the singular value decomposition of A is
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