University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019)

Solutions 3
Solutions

Problem 1: Project the volume of a d-dimensional ball of radius \sqrt{d} onto a line through the centre. For large d, give an intuitive argument that the projected volume should behave like a Gaussian.

Solution: Projecting the volume of a d-dimensional ball corresponds to assigning a function $f:[-\sqrt{d}, \sqrt{d}]$ such that $f(x)$ is the volume of a $(d-1)$-dimensional ball with radius $\sqrt{d-x^{2}}$. This function is 0 on the endpoints of its domain, reaches its maximal value for $x=0$ and is an even function, i.e., $f(-x)=f(x)$. We will show that, as x is increasing on the interval $[0, \sqrt{d}]$, the function f decreases exponentially in x^{2}.

We will assume that $d-1=2 k$, for some natural number k, as the other case is done similarly. Let $V_{n}(R)$ denote the volume of a ball in n dimensions of radius R. Then, we know that

$$
\begin{aligned}
f(x) & =V_{d-1}\left(\sqrt{d-x^{2}}\right)=\frac{\pi^{k}}{k!} \cdot\left(\sqrt{d-x^{2}}\right)^{d-1} \\
& =\frac{\pi^{k}}{k!} \cdot d^{(d-1) / 2} \cdot\left(1-\frac{x^{2}}{d}\right)^{(d-1) / 2} \\
& \approx \frac{\pi^{k}}{k!} \cdot d^{(d-1) / 2} \cdot \mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

Problem 2: Consider a nonorthogonal basis $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{d}}$. The $\mathbf{e}_{\mathbf{i}}$ are a set of linearly independent unit vectors that span the space.

1. Prove that the representation of any vector in this basis is unique;
2. Calculate the squared length of $\mathbf{z}=\frac{\sqrt{2}}{2} \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}$ where $\mathbf{e}_{\mathbf{1}}=(1,0)$ and $\mathbf{e}_{\mathbf{2}}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$;
3. If $\mathbf{y}=\sum_{i=1}^{d} a_{i} \mathbf{e}_{\mathbf{i}}$ and $\mathbf{z}=\sum_{i=1}^{d} b_{i} \mathbf{e}_{\mathbf{i}}$, with $0<a_{i}<b_{i}$ for all $1 \leq i \leq d$, is it necessarily true that the length of \mathbf{z} is greater than the length of \mathbf{y} ? If yes give a proof of the statement, if no find a counterexample;
4. Consider the basis $\mathbf{e}_{1}=(1,0)$ and $\mathbf{e}_{2}=\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
(a) What is the representation of the vector $\mathbf{v}=(0,1)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right)$? I.e. find scalars a, b such that $\mathbf{v}=a \mathbf{e}_{\mathbf{1}}+b \mathbf{e}_{\mathbf{2}}$.
(b) What is the representation of the vector $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}\right)$?
(c) What is the representation of the vector $(1,2)$ in the basis $\left(\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}\right)$?

Solution:

1. Let \mathbf{v} be an arbitrary vector. Since the vectors $\left\{\mathbf{e}_{\mathbf{i}}\right\}$'s form a basis, they span the entire space. So there exists a representation $v=\sum_{i=1}^{d} \alpha_{i} \mathbf{e}_{\mathbf{i}}$. Suppose \mathbf{v} can also be represented as $\sum_{i=1}^{d} \beta_{i} \mathbf{e}_{\mathbf{i}}$. Then it holds that

$$
\sum_{i=1}^{d} \alpha_{i} \mathbf{e}_{\mathbf{i}}=\sum_{i=1}^{d} \beta_{i} \mathbf{e}_{\mathbf{i}}
$$

which gives us that $\sum_{i=1}^{d}\left(\alpha_{i}-\beta_{i}\right) \mathbf{e}_{\mathbf{i}}=0$. Since the vectors are linearly independent, we must have that $\alpha_{i}=\beta_{i}$ for all i. We conclude that the two representations are the same.
2. We have $\mathbf{z}=\frac{\sqrt{2}}{2} \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}=\binom{\frac{\sqrt{2}}{2}}{0}+\binom{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=\binom{0}{\frac{\sqrt{2}}{2}}$. Therefore the length of \mathbf{z} is $\|\mathbf{z}\|=\frac{\sqrt{2}}{2}$.
3. We will show that the answer is false. Let $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathbf{d}}$ be the standard basis, i.e. $\mathbf{u}_{\mathbf{i}}$ is the vector with 1 in position i and 0 everywhere else. We can rewrite the vectors $\mathbf{e}_{\mathbf{i}}$, for all i, as follows:

$$
\mathbf{e}_{\mathbf{i}}=\sum_{j=1}^{d} \alpha_{i j} \mathbf{u}_{\mathbf{j}}
$$

Substituting in the representations of \mathbf{y} and \mathbf{z} we see that

$$
\begin{aligned}
& \mathbf{y}=\sum_{i=1}^{d} a_{i}\left(\sum_{j=1}^{d} \alpha_{i j} \mathbf{u}_{\mathbf{j}}\right)=\sum_{j=1}^{d}\left(\sum_{i=1}^{d} a_{i} \alpha_{i j}\right) \mathbf{u}_{\mathbf{j}}, \\
& \mathbf{z}=\sum_{i=1}^{d} b_{i}\left(\sum_{j=1}^{d} \alpha_{i j} \mathbf{u}_{\mathbf{j}}\right)=\sum_{j=1}^{d}\left(\sum_{i=1}^{d} b_{i} \alpha_{i j}\right) \mathbf{u}_{\mathbf{j}} .
\end{aligned}
$$

Moreover, we see that the two norms can be expressed as

$$
\begin{aligned}
& \|y\|^{2}=\sum_{j=1}^{d}\left(\sum_{i=1}^{d} a_{i} \alpha_{i j}\right)^{2} \\
& \|z\|^{2}=\sum_{j=1}^{d}\left(\sum_{i=1}^{d} b_{i} \alpha_{i j}\right)^{2} .
\end{aligned}
$$

Since the two lengths are positive real numbers, it is sufficient to compare their squared norms. We have that

$$
\|z\|^{2}-\|y\|^{2}=\sum_{j=1}^{d}\left(\left(\sum_{i=1}^{d} b_{i} \alpha_{i j}\right)^{2}-\left(\sum_{i=1}^{d} a_{i} \alpha_{i j}\right)^{2}\right)=\sum_{j=1}^{d}\left(\left(\sum_{i=1}^{d} \alpha_{i j}\left(a_{i}+b_{i}\right)\right)\left(\sum_{i=1}^{d} \alpha_{i j}\left(b_{i}-a_{i}\right)\right)\right) .
$$

For certain choices of the numbers $\alpha_{i j}, 0<a_{i}<b_{i}$, the right hand side can be negative. For example, take

$$
\alpha=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right), \quad a_{1}=0.9, \quad a_{2}=0.1, \quad b_{1}=b_{2}=1 .
$$

4. Suppose $\mathbf{v}=a \mathbf{e}_{\mathbf{1}}+b \mathbf{e}_{\mathbf{2}}$. We substitute the values for the three vectors and solve for a and b as follows:
(a)

$$
\binom{0}{1}=a\binom{1}{0}+b\binom{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}} \Leftrightarrow\left\{\begin{array} { l l }
{ a - \frac { \sqrt { 2 } } { 2 } b } & { = 0 } \\
{ \frac { \sqrt { 2 } } { 2 } b } & { = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
a=1 \\
b=\sqrt{2}
\end{array}\right.\right.
$$

(b) $a=\sqrt{2}, b=1$.
(c) $a=3, b=2 \sqrt{2}$.

Problem 3: Compute the right-singular vectors v_{i}, the left-singular vectors u_{i}, the singular values σ_{i} and hence find the Singular value decomposition of

1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 3 \\ 3 & 0\end{array}\right)$;
2. $A=\left(\begin{array}{ll}0 & 2 \\ 2 & 0 \\ 1 & 3 \\ 3 & 1\end{array}\right)$.

Solution: Throughout the solution we will make use of the following lemma.
Lemma 1. Let a and b be two real numbers satisfying $a^{2}+b^{2}=1$ and $a \geq 0$. The product ab is maximised when $a=b=\frac{\sqrt{2}}{2}$.

Proof. Using the initial conditions we can rewrite $a=\sqrt{1-b^{2}}$. Hence maximising the product $a b$ reduces to maximising the function $f(x)=x \sqrt{1-x^{2}}$. A point x_{0} maximises $f(x)$ if $x_{0} \geq 0$ and $f^{\prime}\left(x_{0}\right)=0$. We have that

$$
f^{\prime}(x)=\sqrt{1-x^{2}}+\frac{-x^{2}}{\sqrt{1-x^{2}}}=\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}
$$

We conclude that $x_{0}=\frac{\sqrt{2}}{2}$ which gives $a=b=\frac{\sqrt{2}}{2}$.

1. For finding the first right-singular vector v_{1}, we look at any vector $v=\binom{a}{b}$ such that $\|v\|=1$ and v maximises $\|A v\|$. Without loss of generality we can also assume that $a \geq 0$. Firstly, note that maximising $\|A v\|$ is equivalent to maximising $\|A v\|^{2}$. We also have that:

$$
\|A v\|^{2}=\left\|\left(\begin{array}{c}
a+b \\
3 b \\
3 a
\end{array}\right)\right\|^{2}=(a+b)^{2}+9 b^{2}+9 a^{2}
$$

Since $\|v\|=1$, we have that $a^{2}+b^{2}=1$. Therefore $\|A v\|^{2}=10\left(a^{2}+b^{2}\right)+2 a b=10+2 a b$. We see that $\|A v\|^{2}$ is maximised if and only if $a b$ is maximised. Using Lemma 1 that happens when $a=b=\frac{1}{\sqrt{2}}$. So the first right-singular vector $v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and the first singular value is $\sigma_{1}=\left\|A v_{1}\right\|=\sqrt{11}$. For the first left-singular vector u_{1} we compute

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{22}}\left(\begin{array}{l}
2 \\
3 \\
3
\end{array}\right)
$$

For the second right-singular vector v_{2}, we look at vectors $v=\binom{a^{\prime}}{b^{\prime}}$ such that $\|v\|=1, v \perp v_{1}$ and v maximises $\|A v\|$. Without loss of generality we can assume $a^{\prime} \geq 0$. Since $v \perp v_{1}$ this implies that $a^{\prime}+b^{\prime}=0$. Solving $a^{\prime 2}+b^{\prime 2}=1$ gives us that $a^{\prime}=\frac{1}{\sqrt{2}}$. Hence $v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$. Moreover, the second singular value is $\sigma_{2}=\left\|A v_{2}\right\|=3$. The second left-singular vector u_{2} is computed by

$$
u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

The singular value decomposition of A is

$$
A=U D V^{T}=\left(\begin{array}{cc}
\frac{2}{\sqrt{22}} & 0 \\
\frac{3}{\sqrt{22}} & \frac{-1}{\sqrt{2}} \\
\frac{3}{\sqrt{22}} & \frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{11} & 0 \\
0 & 3
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

2. Again, for finding v_{1} we look at any vector $v=\binom{a}{b}$ such that $\|v\|=1$ and v maximises $\|A v\|$. Without loss of generality we can assume $a \geq 0$.

$$
\|A v\|^{2}=\left\|\left(\begin{array}{c}
2 b \\
2 a \\
a+3 b \\
3 a+3 b
\end{array}\right)\right\|^{2}=4 a^{2}+4 b^{2}+(a+3 b)^{2}+(3 a+b)^{2}=14\left(a^{2}+b^{2}\right)+12 a b .
$$

Using that $\|v\|=1$ we have that $\|A v\|^{2}=14+12 a b$ which, by Lemma 1 , is maximised for $a=b=\frac{1}{\sqrt{2}}$. Therefore we have that $v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$ and $\sigma_{1}=\sqrt{20}$. The first left-singular vector u_{1} is given by

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{2 \sqrt{10}}\left(\begin{array}{l}
2 \\
2 \\
4 \\
4
\end{array}\right)=\frac{1}{\sqrt{10}}\left(\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right) .
$$

A similar reasoning to the previous part tells us that $v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}$ and $\sigma_{2}=\left\|A v_{2}\right\|=\sqrt{8}$. We also have that

$$
u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{4}\left(\begin{array}{c}
-2 \\
2 \\
-2 \\
2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right) .
$$

Hence, the singular value decomposition of A is

$$
A=U D V^{T}=\left(\begin{array}{cc}
\frac{1}{\sqrt{10}} & -\frac{1}{2} \\
\frac{1}{\sqrt{10}} & \frac{1}{2} \\
\frac{2}{\sqrt{10}} & -\frac{1}{2} \\
\frac{2}{\sqrt{10}} & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{20} & 0 \\
0 & \sqrt{8}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) .
$$

