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Problem 1: Consider the matrix

A =


1 2
−1 2
1 −2
−1 −2

 .

1. Run the power method starting from x =

(
1
1

)
for k = 3 steps. What does this give as estimates

for v1 and σ1?

2. What are the actual values of vi’s, σi’s and ui’s? You might find it helpful to first compute the
eigenvalues and eigenvectors of B = AᵀA.

3. Suppose matrix A is a database of restaurant ratings: each row corresponds to a person, each
column to a restaurant, and the entries Aij represent how much person i likes restaurant j. What
might v1 represent? What about ui? What about the gap σ1 − σ2?

Solution:

1. Recall that the power method computes a sequence of vectors {xn} such that xi = Bxi−1 for all
1 ≤ i ≤ k, where the matrix B = AᵀA. In our case we have that

B =

(
1 −1 1 −1
2 2 −2 −2

)
1 2
−1 2
1 −2
−1 −2

 =

(
4 0
0 16

)

After k = 3 runs of the power method, we obtain a vector

x3 = B3x =

(
4 0
0 16

)3(
1
1

)
=

(
64 0
0 4096

)(
1
1

)
=

(
64

4096

)
The estimate for v1 is given by

ṽ1 =
x3
‖x3‖

'
(

0.0152
0.9998

)
.

Also, the estimate for σ1 is given by

σ̃1 = ‖Aṽ1‖ ' 3.9996.

2. Since the matrix B is already in diagonal form, its eigenvaues are simply the entries on the
diagonal. Thus we have that λ1 = 16 and λ2 = 4. Recall that the eigenvalues of B are the squares
of the singular values of the matrix A, therefore σ1 = 4 and σ2 = 2. Moreover, we know that the

right-singular vectors vi are the eigenvectors of B corresponding to λi. One has that v1 =

(
0
1

)
and v2 =

(
1
0

)
. For the left-singular vectors ui we compute

u1 =
1

σ1
Av1 =

1

4


2
2
−2
−2

 =
1

2


1
1
−1
−1





and

u1 =
1

σ2
Av2 =

1

2


1
−1
1
−1


3. Recall that

v1 , arg max
‖v‖=1

‖Av‖ = arg max
‖v‖=1

d∑
i=1

(Aiv) .

Each Ai represents the ratings that customer i gives to each restaurant. Therefore v1 is indicating
the most preferred restaurant according to the customers. Similarly, u1 indicates the most prefered
customer from the perspective of the most popular restaurant. The gap σ1 − σ2 indicates the
difference between the top two most preferred restaurants.

Problem 2: Let v ∈ Rn such that ‖v‖ = 1. Sample uniformly x ∈ {−1, 1}n, and define S = 〈x, v〉.
Prove that

E
[
S4
]

= 3
n∑

i=1

v2i − 2
n∑

i=1

v4i ≤ 3.

That is, prove the inequality from the Proof of Lemma 2 in Lecture 6.

Solution: We have that

E
[
S4
]

= E

( n∑
i=1

xivi

)2


= E

 n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

xixjxkx`vivjvkv`


=

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

E [xixjxkx` ] vivjvkv`

=

n∑
i=1

E
[
x4i
]
v4i +

1

2

(
4

2

)∑
i 6=j

E
[
x2ix

2
j

]
v2i v

2
j

=
n∑

i=1

v4i + 3
∑
i 6=j

v2i v
2
j

= 3

(
n∑

i=1

v2i

) n∑
j=1

v2j

− 2

n∑
i=1

v4i

= 3 ‖v‖4 − 2
n∑

i=1

v4i

≤ 3.

In the third line we used the linearity of the expectation. The equality in the fourth line comes from
the fact that under expectation, all products of xi’s vanish when at least one factor has odd power.
Finally the last inequality comes from the fact that we chose v to be a unit vector.

Problem 3: Let A ∈ Rn×n be a symmetric and PSD matrix. Show that the power method can be
applied to approximately compute the smallest eigenvalue of A.
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Solution: Suppose A has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, counting multiplicities. First, we
can run the power method to find a good approximation of the largest eigenvalue of A, say d is the
approximated largest eigenvalue of λ1. Using this, we can upper bound λ1 by a constant, say 2d.
Consider the matrix B = 2D −A, where D is a diagonal matrix with each diagonal entry being equal
to d. Notice that this ensures that matrix B is a PSD matrix. We claim that for every eigenvalue λi of
A with corresponding eigenvector vi, 2d− λi is an eigenvalue of B. Indeed we have that

Bvi = (2D −A)vi = 2Dvi −Avi = 2dvi − λivi = (2d− λi)vi.

Also note that the smallest eigenvalue of A, i.e. λn, corresponds to the largest eigenvalue of B, which is
2d− λn. Hence we can run the power method for B to get an estimate for 2d− λn and subtract it from
2d to get an estimate of λn.

Problem 4: Let u be a fixed vector. Show that maximising xᵀuuᵀ(1− x) subject to xi ∈ {0, 1} is
equivalent to partitioning the coordinates of u into two subsets where the sum of the elements in both
subsets are as equal as possible.

Solution: Suppose that the vectors x and u are n-dimensional. Let f(x) = xᵀuuᵀ(1− x). We have
that

f(x) =

(
n∑

i=1

xiui

) n∑
j=1

uj(1− xj)


=

n∑
i,j=1

xi(1− xj)uiuj

=
∑

i:xi=1

∑
j:xj=0

xi(1− xj)uiuj

=

( ∑
i:xi=1

ui

) ∑
j:xj=0

uj

 .

Let a =
(∑

i:xi=1 ui
)
and b =

(∑
j:xj=0 uj

)
. Note that a + b =

∑n
i=1 ui = c for some constant c

since the vector u is fixed. Therefore, the problem of maximising f(x) subject to x, is equivalent to
maximising the product ab, subject to the constraint a+ b = c. We have seen from last week’s tutorial
that ab is maximised for a = b. In our case a and b take discrete values over the random sampling of x,
hence f(x) is maximised when |a− b| is minimised. In other words, when we can partition the entries
of u into two sets such that the sum of entries in the two sets is as equal as possible.

Problem 5 (Optional): Let x1, x2, . . . , xn be n points in a d-dimensional space and let X be an
n× d matrix whose rows are the n points. Suppose we know only the matrix D of pairwise distances
between points and not the coordinates of the points themselves. The set of points x1, x2, . . . , xn giving
rise to the matrix D is not unique since any translation, rotation or reflection of the coordinate system
preserves the distances. Fix the origin of the coordinate system so that the centroid of the set of points
is at the origin. That is,

∑n
i=1 xi = 0.

1. Show that the elements of XXᵀ are given by

xᵀi xj = −1

2

(
d2ij −

1

n

n∑
k=1

d2ik −
1

n

n∑
k=1

d2kj +
1

n2

n∑
k=1

n∑
`=1

d2k`

)
.

2. Describe an algorithm for determining the matrix X whose rows are the xi.
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Solution: We will write the points xᵀi = (x1i , x
2
i , . . . , x

d
i ) for each 1 ≤ i ≤ n. We will refer to xri as

the r’th entry of the i’th point xi. Since the mean of the points is the origin, it holds that
∑n

i=1 x
r
i = 0

for every 1 ≤ r ≤ d. Moreover,

d2ij = ‖xi − xj‖2 =

d∑
r=1

(xri − xrj)2

.

1. Observe that

1

n

n∑
k=1

d2ik =
1

n

n∑
k=1

d∑
r=1

(xri − xrk)2

=
1

n

n∑
k=1

d∑
r=1

(
(xri )

2 + (xrk)2 − 2xrix
r
k

)
=

(
1

n

d∑
r=1

n(xri )
2

)
+

1

n

(
n∑

k=1

d∑
r=1

(xrk)2

)
− 2

n

d∑
r=1

xri

(
n∑

k=1

xrk

)

=

d∑
r=1

(xri )
2 +

1

n

n∑
k=1

d∑
r=1

(xrk)2.

Similarly we have that
1

n

n∑
k=1

d2kj =

d∑
r=1

(xrj)
2 +

1

n

n∑
k=1

d∑
r=1

(xrk)2.

Finally we see that

1

n2

n∑
k=1

n∑
`=1

d2k` =
1

n2

n∑
k=1

n∑
`=1

d∑
r=1

(xrk − xr`)2

=
1

n2

n∑
k=1

n∑
`=1

d∑
r=1

(xrk)2 + (xr`)
2 − 2xrkx

r
`

=
1

n

d∑
r=1

∑
k=1

(xrk)2 +
1

n

d∑
r=1

∑
`=1

(xr`)
2.

Putting everything together we see that

d2ij −
1

n

n∑
k=1

d2ik −
1

n

n∑
k=1

d2kj +
1

n2

n∑
k=1

n∑
`=1

d2k`

=

d∑
r=1

(xri − xrj)2

−
d∑

r=1

(xri )
2 − 1

n

n∑
k=1

d∑
r=1

(xrk)2

−
d∑

r=1

(xrj)
2 − 1

n

n∑
k=1

d∑
r=1

(xrk)2

+
1

n

d∑
r=1

∑
k=1

(xrk)2 +
1

n

d∑
r=1

∑
`=1

(xr`)
2

= −2

d∑
r=1

xrix
r
j

= −2xᵀi xj .
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Dividing by −2 gives our desired result.

2. Let A = XXᵀ. We can compute the singular value decomposition for A and write it as

A =
n∑

i=1

σiuiv
ᵀ
i . (1)

Taking the transpose in (1) and using the fact that A is symmetric, we see that

A =
n∑

i=1

σiviu
ᵀ
i .

Therefore A can be written as A = UΣUᵀ, where Σ is the diagonal matrix with σi in the i’th row
and matrix U has columns precisely the singular vectors of A. Take X = UΣ1/2 to conclude the
result.
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