University of Edinburgh

INFR11156: Algorithmic Foundations of Data Science (2019)
 Solution 5

Problem 1: Let $H=\left\{h:[m] \rightarrow\{0,1\}^{n}\right\}$ be a family of pairwise independent hash functions. Let $I \subseteq[m]$ and $\mu:=\frac{|I|}{2^{n}}$. Then, it holds for every $y \in\{0,1\}^{n}$ that

$$
\mathbb{P}_{h \sim H}[| |\{i \in I: h(i)=y\}|-\mu|>\varepsilon \mu]<\frac{1}{\varepsilon^{2} \mu}
$$

where $h \sim H$ stands for the fact that h is chosen uniformly at random from H.

Solution: We fix an arbitrary $y \in\{0,1\}^{n}$, and for any $i \in I$ defined a random variable X_{i}, where $X_{i}=1$ if $h(i)=y$, and $X_{i}=0$ otherwise. Since H is a family of pairwise independent hash functions, we have that

$$
\mathbb{P}\left[X_{i}=1\right]=1 / 2^{n}
$$

which implies that $\mathbb{E}\left[X_{i}\right]=1 / 2^{n}$ and

$$
\mathbb{V}\left[X_{i}\right]=\mathbb{E}\left[X_{i}^{2}\right]-\left(\mathbb{E}\left[X_{i}\right]\right)^{2} \leq \mathbb{E}\left[X_{i}\right]
$$

Moreover, we have that

$$
\mathbb{E}\left[\sum_{i \in I} X_{i}\right]=\frac{|I|}{2^{n}}=\mu
$$

and

$$
\mathbb{V}\left[\sum_{i \in I} X_{i}\right]=\sum_{i \in I} \mathbb{V}\left[X_{i}\right] \leq \sum_{i \in I} \mathbb{E}\left[X_{i}\right]=\mu
$$

By applying the Chebshev's inequality we have that

$$
\begin{aligned}
& \mathbb{P}_{h \sim H}[| |\{i \in I: h(i)=y\}|-\mu|>\varepsilon \mu] \\
& =\mathbb{P}_{h \sim H}\left[\left|\sum_{i \in I} X_{i}-\mathbb{E}\left[\sum_{i \in I} X_{i}\right]\right|>\varepsilon \mu\right] \\
& \leq \frac{1}{(\varepsilon \mu)^{2}} \cdot \mathbb{V}\left[\sum_{i \in I} X_{i}\right] \\
& \leq \frac{1}{(\varepsilon \mu)^{2}} \cdot \mu \\
& =\frac{1}{\varepsilon^{2} \mu}
\end{aligned}
$$

which proves the statement.

Problem 2: Let Y_{1}, \ldots, Y_{n} be independent random variables with $\mathbb{P}\left[Y_{i}=0\right]=\mathbb{P}\left[Y_{i}=1\right]=1 / 2$. Let $Y:=\sum_{i=1}^{n} Y_{i}$ and $\mu:=\mathbb{E}[Y]=n / 2$. Apply the uniform Chernoff Bound to prove it holds for any $0<\lambda<\mu$ that

$$
\mathbb{P}[Y \geq \mu+\lambda] \leq \mathrm{e}^{-2 \lambda^{2} / n}
$$

Solution: Consider the substitution $X_{i}=2\left(Y_{i}-\mathbb{E}\left[Y_{i}\right]\right)$ and let $X=\sum_{i=1}^{n} X_{i}$. It is easy to see that $\mathbb{P}\left[X_{i}=-1\right]=\left[X_{i}=1\right]=1 / 2$. We have that

$$
X=\sum_{i=1}^{n} X_{i}=\sum_{i=1}^{n} 2\left(Y_{i}-\mathbb{E}\left[Y_{i}\right]\right)=2 \sum_{i=1}^{n} Y_{i}-2 \mathbb{E}\left[\sum_{i=1}^{n} Y_{i}\right]=2 Y-2 \mathbb{E}[Y]=2 Y-2 \mu .
$$

Therefore we see that $Y=\frac{1}{2} X+\mu$ and hence

$$
\mathbb{P}[Y \geq \mu+\lambda]=\mathbb{P}\left[\frac{1}{2} X+\mu \geq \mu+\lambda\right]=\mathbb{P}[X \geq 2 \lambda] \leq \mathrm{e}^{-(2 \lambda)^{2} / 2 n}=\mathrm{e}^{-2 \lambda^{2} / n}
$$

where the inequality comes from applying the Chernoff Bound to the random variable X.

Problem 3: Prove that the median of the returned values from $\Theta(\log (1 / \delta))$ independent copies of the BJKST algorithm gives an (ε, δ)-approximation of F_{0}.

Solution: First, we will show that each instance of the algorithm outputs a good approximation of F_{0}, with constant probability. Let $X_{r, j}$ be a sequence of indicator random variables such that $X_{r, j}=1$ if and only if $\rho(h(j)) \geq r$. Also define $Y_{r}:=\sum_{j=1}^{n} X_{r, j}$ so that Y_{r} denotes the number of items j that reach level r. Smilarly to the analysis of the AMS algorithm, we have that

$$
\mathbb{E}\left(Y_{r}\right)=\frac{F_{0}}{2^{r}} \quad \text { and } \quad \mathbb{V}\left(Y_{r}\right) \leq \frac{F_{0}}{2^{r}}
$$

Let \bar{z} be the final value of z at the end of the algorithm and let Z be the output of the algorithm. It is easy to see that $Z=Y_{\bar{z}} \cdot 2^{\bar{z}}$. We further introduce a parameter s satisfying

$$
\frac{\varepsilon^{2} F_{0}}{10} \leq 2^{s} \leq \frac{\varepsilon^{2} F_{0}}{5}
$$

Notice that such s always exists. Hence we have that

$$
\begin{aligned}
\mathbb{P}\left(\left|Z-F_{0}\right|>\varepsilon F_{0}\right) & =\mathbb{P}\left(\left|Y_{\bar{z}} \cdot 2^{\bar{z}}-F_{0}\right|>\varepsilon F_{0}\right) \\
& =\mathbb{P}\left(\left|Y_{\bar{z}}-\frac{F_{0}}{2^{\bar{z}}}\right|>\frac{\varepsilon F_{0}}{2^{\bar{z}}}\right) \\
& =\mathbb{P}\left(\left|Y_{\bar{z}}-\mathbb{E}\left(Y_{\bar{z}}\right)\right|>\frac{\varepsilon F_{0}}{2^{\bar{z}}}\right) \\
& =\sum_{z=1}^{\log n} \mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}} \wedge \bar{z}=z\right) \\
& =\sum_{z=1}^{s-1} \mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}} \wedge \bar{z}=z\right)+\sum_{z=s}^{\log n} \mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}} \wedge \bar{z}=z\right) \\
& \leq \sum_{z=1}^{s-1} \mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}}\right)+\sum_{z=s}^{\log n} \mathbb{P}(\bar{z}=z) \\
& =\sum_{z=1}^{s-1} \mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}}\right)+\mathbb{P}(\bar{z} \geq s)
\end{aligned}
$$

By Chebyshev's inequality we have that

$$
\mathbb{P}\left(\left|Y_{z}-\mathbb{E}\left(Y_{z}\right)\right|>\frac{\varepsilon F_{0}}{2^{z}}\right) \leq \frac{\mathbb{V}\left(Y_{z}\right)}{\left(\frac{\varepsilon F_{0}}{2^{z}}\right)^{2}} \leq \frac{2^{z}}{\varepsilon^{2} F_{0}}
$$

Also by construction of the algorithm and Markov's inequality, we know that

$$
\mathbb{P}(\bar{z} \geq s)=\mathbb{P}\left(Y_{s-1}>\frac{100}{\varepsilon^{2}}\right) \leq \mathbb{E}\left(Y_{s-1}\right) \cdot \frac{\varepsilon^{2}}{100}=\frac{\varepsilon^{2} \cdot F_{0}}{100 \cdot 2^{s-1}}
$$

Therefore we can conclude that

$$
\begin{aligned}
\mathbb{P}\left(\left|Z-F_{0}\right|>\varepsilon F_{0}\right) & \leq \sum_{z=1}^{s-1} \frac{2^{z}}{\varepsilon^{2} F_{0}}+\frac{\varepsilon^{2} \cdot F_{0}}{100 \cdot 2^{s-1}} \\
& \leq \frac{2^{s}}{\varepsilon^{2} F_{0}}+\frac{\varepsilon^{2} \cdot F_{0}}{100 \cdot 2^{s-1}} \\
& \leq 2 / 5,
\end{aligned}
$$

where the last inequality holds by the choice of s. We can improve this δ by running $\Theta(\log (1 / \delta))$ instances of the algorithm and returning the median of the returned values. Thus BJKST gives an (ε, δ)-approximation for F_{0}.

