## University of Edinburgh <br> INFR11156: Algorithmic Foundations of Data Science (2019) <br> Homework 7

Problem 1: Prove that $G$ has exactly $k$ connected components if and only if $\lambda_{k}=0$ and $\lambda_{k+1}>0$.

## Solution:

1. First, we will show that if $G$ has exactly $k$ connected components, then $\lambda_{k}=0$ and $\lambda_{k+1}>0$. Let $S_{1}, S_{2}, \ldots, S_{k}$ be the connected components of $G$, and we define the indicator vector $\mathbf{1}_{S_{i}} \in\{0,1\}^{n}$ corresponding to each $S_{i}$ by

$$
\left(\mathbf{1}_{S_{i}}\right)_{v}= \begin{cases}1 & \text { if } v \in S_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Since

$$
\mathcal{L} D^{1 / 2} \mathbf{1}_{S_{i}}=D^{-1 / 2}(D-A) D^{-1 / 2} D^{1 / 2} \mathbf{1}_{S_{i}}=D^{-1 / 2}(D-A) \cdot \mathbf{1}_{S_{i}}=0,
$$

and $\left\langle\mathbf{1}_{S_{i}}, \mathbf{1}_{S_{j}}\right\rangle=0$ for any $1 \leq i \neq j \leq k, D^{1 / 2} \mathbf{1}_{S_{i}}$ is an eigenvector of $\mathcal{L}$ corresponding to the eigenvalue $\lambda=0$. Hence, $\lambda_{1}=0$ has multiplicity at least $k$, i.e., $\lambda_{k}=0$.
Now suppose for contradiction that $\lambda_{k+1}=0$ and let $x$ be an eigenvector of $\lambda_{k+1}$, linearly independent from the set $\left\{D^{1 / 2} \mathbf{1}_{S_{i}}\right\}_{i}$. We have that

$$
0=x^{\top} \mathcal{L} x=\sum_{u \sim v}\left(\frac{x_{u}}{\sqrt{d_{u}}}-\frac{x_{v}}{\sqrt{d_{v}}}\right)^{2} .
$$

Therefore, we see that $\left(D^{-1 / 2} x\right)_{u}=\left(D^{-1 / 2} x\right)_{v}$ holds for every $u \sim v$. Let $y=D^{-1 / 2} x$ and notice that $y$ is constant on every connected component of $G$. Therefore $y \in \operatorname{span}\left\{\mathbf{1}_{S_{i}}\right\}_{i}$ and hence $x \in \operatorname{span}\left\{D^{1 / 2} \mathbf{1}_{S_{i}}\right\}_{i}$. This contradicts the choice of $x$ being linearly independent from $\left\{D^{1 / 2} \mathbf{1}_{S_{i}}\right\}_{i}$. Therefore, we have that $\lambda_{k+1}>0$.
2. Now we prove that, if $\lambda_{k}=0$ and $\lambda_{k+1}>0$, then $G$ has exactly $k$ connected components. Let $S_{1}, S_{2}, \ldots, S_{r}$ be the connected components of $G$ and $x_{1}, x_{2}, \ldots, x_{k}$ be linearly independent eigenvectors corresponding to $\lambda=0$. By the previous part we see that for every $j \leq k$, $x_{j} \in \operatorname{span}\left\{D^{1 / 2} \mathbf{1}_{S_{i}}\right\}_{i}$. Since $\left\{x_{j}\right\}$ 's are chosen to be linearly independent, we must have $k \leq r$. If $r>k$, again by the previous part we can conclude that $0=\lambda_{1}=\cdots=\lambda_{k}=\lambda_{k+1}=\cdots=\lambda_{r}$, which contradicts the fact that $\lambda_{k+1}>0$. Therefore, we have that $k=r$, i.e., $G$ has exactly $k$ connected components.

Problem 2: Prove that, for any connected graph $G$ with diameter $\alpha$, it holds that

$$
\lambda_{2} \geq \frac{1}{\alpha \cdot \operatorname{vol}(G)}
$$

Solution: Let $f \in \mathbb{R}^{n}, f \perp D \mathbf{1}$ be such that

$$
\lambda_{2}=\frac{\sum_{u \sim v}\left(f_{u}-f_{v}\right)^{2}}{\sum_{u} d_{u} \cdot f_{u}^{2}} .
$$

Let $v_{0}$ be such that $\left|f_{v_{0}}\right|=\max _{v}\left|f_{v}\right|$. Since $\sum_{v} f_{v} d_{v}=0$, there exists a vertex $u_{0}$ such that $f_{v_{0}} \cdot f_{u_{0}}<0$. Let $\mathcal{P}$ be the shortest path between $u_{0}$ and $v_{0}$. Since it holds by the Cauchy-Schwarz inequality that

$$
\left|f_{u_{0}}-f_{v_{0}}\right|=\left|\sum_{\{u, v\} \in \mathcal{P}}\left(f_{u}-f_{v}\right)\right| \leq \sum_{\{u, v\} \in \mathcal{P}}\left|f_{u}-f_{v}\right| \leq \sqrt{\sum_{\{u, v\} \in \mathcal{P}}\left(f_{u}-f_{v}\right)^{2}} \cdot \sqrt{|\mathcal{P}|},
$$

where $|\mathcal{P}|$ is the length of path $\mathcal{P}$, we have

$$
\lambda_{2}=\frac{\sum_{u \sim v}\left(f_{u}-f_{v}\right)^{2}}{\sum_{u} d_{u} f_{u}^{2}} \geq \frac{\sum_{\{u, v\} \in \mathcal{P}}\left(f_{u}-f_{v}\right)^{2}}{\operatorname{vol}(G) \cdot f_{v_{0}}^{2}} \geq \frac{(1 /|\mathcal{P}|) \cdot\left(f_{u_{0}}-f_{v_{0}}\right)^{2}}{\operatorname{vol}(G) \cdot f_{v_{0}}^{2}} \geq \frac{1}{|\mathcal{P}| \cdot \operatorname{vol}(G)} \geq \frac{1}{\alpha \cdot \operatorname{vol}(G)},
$$

Problem 3: Prove that for any graph $G, \lambda_{2} \leq n /(n-1)$ and $\lambda_{2}=n /(n-1)$ if and only if $G$ is the complete graph.

Solution: We first show that, if $G$ is the complete graph, then $\lambda_{2}=n /(n-1)$. Let $v_{1}, \ldots, v_{n}$ be the vertices of $G$. We will construct $n-1$ linearly independent vectors $f^{1}, \ldots, f^{n-1}$ as follows: for all $1 \leq i \leq n-1$ let

$$
\left(f^{i}\right)_{u}= \begin{cases}1 & \text { if } u=v_{i} \\ -1 & \text { if } u=v_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Since $G$ is the complete graph, it is $(n-1)$-regular and $\mathcal{L}=I-\frac{1}{n-1} A$. We also have that for every $i \leq n-1$, it holds that

$$
\mathcal{L} f^{i}=f^{i}-\frac{1}{n-1} A f^{i}=f^{i}+\frac{1}{n-1} f^{i}=\frac{n}{n-1} f^{i}
$$

Hence, each of the $f^{i}$ s is an eigenvector of $\mathcal{L}$, and the eigenvalue $\lambda=n /(n-1)$ has multiplicity $n-1$. Along with $\lambda_{1}=0$ they form the entire spectrum of $\mathcal{L}$. We conclude that $\lambda_{2}=\lambda_{3}=\cdots=\lambda_{n}=n /(n-1)$.

For the other implication we can use the result from the lecture notes which says that if $G$ is not the complete graph, then $\lambda_{2} \leq 1$. We see that if $\lambda_{2}=n /(n-1)>1$ then $G$ must be the complete graph.

Problem 4: ${ }^{1}$ Let $G$ be an undirected and connected $d$-regular graph, and let $\mathbf{A}$ be its adjacency matrix with the eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$.

1. Prove that $\lambda_{n}=-d$ if and only if $G$ is bipartite.
2. Assume that $G=(V, W, E)$ is bipartite and $\max _{2 \leq i \leq n-1}\left|\lambda_{i}\right|=\mu$. For any $S \subseteq V$ and $T \subseteq W$, let $e(S, T)$ be the number of edges between $S$ and $T$. Prove that

$$
e(S, T) \leq \frac{2 d|S||T|}{|S|+|T|}+\mu n
$$

## Solution:

1. We first prove that $\lambda_{n} \geq-d$, which is equivalent to prove $d+\lambda_{n} \geq 0$. Since

$$
\begin{aligned}
d+\lambda_{n} & =\min _{x \in \mathbb{R}^{n}, x \neq 0} \frac{d x^{\top} x+x^{\top} A x}{x^{\top} x}=\min _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\sum_{u} d_{u} \cdot x_{u}^{2}+\sum_{u \sim v} 2 x_{u} x_{v}}{x^{\top} x} \\
& =\min _{x \in \mathbb{R}^{n}, x \neq 0} \frac{\sum_{u \sim v}\left(x_{u}+x_{v}\right)^{2}}{x^{\top} x} \geq 0,
\end{aligned}
$$

we have $\lambda_{n} \geq-d$ for any graph. Moreover, our calculation shows that $\lambda_{n}=-d$ if and only if $x_{u}+x_{v}=0$ for any edge $u \sim v$, which is the case if and only if the set $L=\left\{u: x_{u}>0\right\}$ and $R=\left\{u: x_{u}<0\right\}$ forms a bipartition of $G$.

[^0]2. Let $S \subseteq V$ and $T \subseteq W$ be two arbitrary subsets. Let $\mathbf{1}_{S}$ and $\mathbf{1}_{T}$ be indicator vectors of sets $S$ and $T$. Assume that $\lambda_{1} \geq \ldots \geq \lambda_{n}$ are the eigenvalues of matrix $\mathbf{A}$ with the corresponding orthonormal eigenvectors $v_{1}, \ldots v_{n}$. Then, we can write $\mathbf{1}_{S}=\sum_{i=1}^{n} \alpha_{i} v_{i}$ and $\mathbf{1}_{T}=\sum_{i=1}^{n} \beta_{i} v_{i}$, and
$$
e(S, T)=\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right)^{\top} A\left(\sum_{i=1}^{n} \beta_{i} v_{i}\right)=\sum_{i=1}^{n} \lambda_{i} \alpha_{i} \beta_{i}
$$

Since $G$ is connected, we know that

$$
v_{1}=\frac{\mathbf{1}_{V}+\mathbf{1}_{W}}{\sqrt{n}}=\frac{\mathbf{1}}{\sqrt{n}}
$$

and also because $G$ is bipartite, we can write without loss of generality that

$$
v_{n}=\frac{\mathbf{1}_{V}-\mathbf{1}_{W}}{\sqrt{n}}
$$

Moreover, it holds that

$$
\alpha_{1}=\left\langle\mathbf{1}_{S}, v_{1}\right\rangle=\frac{|S|}{\sqrt{n}}, \quad \beta_{1}=\left\langle\mathbf{1}_{T}, v_{1}\right\rangle=\frac{|T|}{\sqrt{n}}
$$

as well as

$$
\alpha_{n}=\left\langle\mathbf{1}_{S}, v_{n}\right\rangle=\frac{|S|}{\sqrt{n}}, \quad \beta_{n}=\left\langle\mathbf{1}_{T}, v_{n}\right\rangle=-\frac{|T|}{\sqrt{n}}
$$

Hence, we have that

$$
\begin{aligned}
e(S, T) & =\frac{d|S||T|}{n}+\frac{d|S||T|}{n}+\sum_{i=2}^{n-1} \lambda_{i} \alpha_{i} \beta_{i} \\
& \leq \frac{2 d|S||T|}{n}+\mu \sqrt{\sum_{i=2}^{n-1} \alpha_{i}^{2}} \sqrt{\sum_{i=2}^{n-1} \beta_{i}^{2}} \\
& \leq \frac{2 d|S||T|}{n}+\mu \sqrt{|S| \cdot|T|} \\
& \leq \frac{2 d|S||T|}{|S|+|T|}+\mu n,
\end{aligned}
$$

which proves the statement.

Problem 5 (challenging): Let $G=(V, E)$ be an undirected graph with $m$ edges. Prove that, for any fixed $k$, the number of cycles of length $k$ in $G$ is at most $O\left(\mathrm{~m}^{k / 2}\right)$.

Solution: Let $A$ be the adjacency matrix of graph $G$, and $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ are the eigenvalues of $A$. We recall the fact that the trace of $A$ satisfies the following property:

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}(A)=\sum_{i=1}^{n} A_{i, i}
$$

Hence, the number of cycles of length $k$ in $G$ is at most $\sum_{i=1}^{n} A_{i, i}^{k}=\sum_{i=1}^{n} \lambda_{i}^{k}(A)$. Since it holds for any $k \geq 3$ that

$$
\left(\sum_{i=1}^{n} \lambda_{i}^{k}(A)\right)^{1 / k} \leq\left(\sum_{i=1}^{n} \lambda_{i}^{2}(A)\right)^{1 / 2}=\left(\sum_{i=1}^{n} A_{i, i}^{2}\right)^{1 / 2}=(2 m)^{1 / 2}
$$

we have that the number of cycles in $G$ is at most $O\left(m^{k / 2}\right)$. Here, the first inequality holds by the fact that for any $\left\{x_{i}\right\}_{i=1}^{n}$ and $p \geq q$, it holds that

$$
\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{q}\right)^{1 / q}
$$


[^0]:    ${ }^{1}$ This problem appeared in the last year's AFDS final exam. You should be able to answer questions of a similar level of difficulty in your final exam.

