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Problem 1: Prove the following Courant-Fischer Min-Max Characterisation of Eigenvalues. Let
A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding eigenvectors
f1, . . . , fn. Then, it holds for any 1 ≤ i ≤ n that

λi = min
S:dimS=i

max
x∈S,x6=0

xᵀAx

xᵀx
= max

S:dimS=n−i+1
min

x∈S,x6=0

xᵀAx

xᵀx
,

where S is a subspace of Rn.

Solution: Let us define the Rayleigh quotient of a non-zero vector x by

RA(x) =
xᵀAx

xᵀx
.

Let S be an i-dimensional subspace. By a dimensionality argument, the intersection of S with
span {fi, . . . , fn} is nontrivial. Let x be a non-zero vector in this intesection and write

x =
n∑

j=i

ajfj .

We have that

RA(x) =
xᵀAx

xᵀx
=

∑n
j=i λja

2
j∑n

j=i a
2
j

≥ λi.

Now, we see that

max
x∈S,x6=0

xᵀAx

xᵀx
= max

x∈S,x6=0
RA(x) ≥ λi.

As S was arbitrarily chosen, we have that

min
S:dimS=i

max
x∈S,x6=0

RA(x) ≥ λi.

The equality follows by choosing S = span{f1, . . . , fi} and x = fi.
The second statement is proven is a similar fashion. Choose any (n− i+ 1)-dimensional subspace

S and consider its intersection with span{f1, . . . , fi}. Let x =
∑i

j=1 ajfj be a non-zero vector in this
intersection. We have the following

RA(x) =
xᵀAx

xᵀx
=

∑i
j=1 λja

2
j∑i

j=1 a
2
j

≤ λi,

and hence
min

x∈S,x6=0

xᵀAx

xᵀx
= min

x∈S,x6=0
RA(x) ≤ λi.

As S was arbitrarily chosen, we have that

max
S:dimS=n−i+1

min
x∈S,x6=0

RA(x) ≤ λi.

The equality follows by choosing S = span{fi, . . . , fn} and x = fi.



Problem 2 (challenging): We know that every rule for clustering must display some strange
behaviour. In this problem, you will prove this for partitioning a weighted graph G = (V,E,w) by
minimising the conductance hG. In particular, you will consider dividing a graph into two pieces by
finding the set S ⊆ V with vol(S) ≤ vol(V )/2 minimising

hG(S) ,
w(S, V \ S)

vol(S)
.

You need to show that it is possible to split a cluster by adding an edge to the cluster or by increasing
the weight of an edge inside the cluster. That is, construct a graph G so that if S is the set minimising
hG, there is an edge you can add between the vertices of S, or an edge between the vertices of S whose
weight you can increase, so that after you do this the set S′ minimising hG is a proper subset of S.
This goal will consists of the following two tasks:

1. Describe your graph G, the set S minimising hG, and prove your claim.

2. Describe the edge you add or whose weight you increase to produce a new graph G′; describe the
set S′ minimising hG′ in the modified graph and prove your claim.

Solution:

1. Let G be a path on 6 vertices labeled from 1 to 6 such that every vertex (except for the endpoints)
i is connected to vertices i−1 and i+1. Also consider the edge weights to be 50, 10, 100, 15, 10000,
for the respective edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}. Let S ⊆ V be a set minimising hG(S).
First, we will show that we can assume without loss of generality that S is a path. Suppose S is
not a path. Then we can write it as S = S1 ∪ S2 such that there are no edges between S1 and S2.
This implies that vol(S) = vol(S1) + vol(S2). Moreover, we see that

w(S, V \ S) = w(S1 ∪ S2, V \ S)
= w(S1, V \ S) + w(S2, V \ S) = w(S1, V \ S1) + w(S2, V \ S2).

Hence,

hG(S) ,
w(S, V \ S)

vol(S)
=
w(S1, V \ S1) + w(S2, V \ S2)

vol(S1) + vol(S2)

≥ min{hG(S1), hG(S2)},

where the last inequality comes from the general inequality a1+a2
b1+b2

≥ min{a1b1 ,
a2
b2
}, for all

a1, a2, b1, b2 ≥ 0 and some bi > 0. We can now reason inductively to conclude that S is at
least as good as a path.

Second, it is easy to see that S must contain at least 2 vertices as hG({i}) = 1 for every vertex i,
which is clearly not minimised. Moreover, S cannot contain both vertices 5 and 6 as that would
make vol(S) too large. Similarly, if S contains vertex 5, the vaue hG(S) is very close to 1 because
both the numerator and the denominator will be dominated by the weight of the edge {5, 6} since
it is much larger compared to the other edge weights. This reduces the candidates for set S to 6
choices : {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}. A direct calculation shows that the
minimum hG(S) =

15
335 is achieved for the last set.

2. We can increase the value of the edge {1, 2} from 50 to 500 and repeat the analysis from the
previous part, then see that the minimum cut in this case is achieved for S′ = {1, 2} which is a
proper subset for S.
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