University of Edinburgh
 INFR11156: Algorithmic Foundations of Data Science (2019)
 Solution 8

Problem 1: Prove the following Courant-Fischer Min-Max Characterisation of Eigenvalues. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and corresponding eigenvectors f_{1}, \ldots, f_{n}. Then, it holds for any $1 \leq i \leq n$ that

$$
\lambda_{i}=\min _{S: \operatorname{dim} S=i} \max _{x \in S, x \neq 0} \frac{x^{\top} A x}{x^{\top} x}=\max _{S: \operatorname{dim} S=n-i+1} \min _{x \in S, x \neq 0} \frac{x^{\top} A x}{x^{\top} x},
$$

where S is a subspace of \mathbb{R}^{n}.
Solution: Let us define the Rayleigh quotient of a non-zero vector x by

$$
\mathcal{R}_{A}(x)=\frac{x^{\top} A x}{x^{\top} x} .
$$

Let S be an i-dimensional subspace. By a dimensionality argument, the intersection of S with $\operatorname{span}\left\{f_{i}, \ldots, f_{n}\right\}$ is nontrivial. Let x be a non-zero vector in this intesection and write

$$
x=\sum_{j=i}^{n} a_{j} f_{j} .
$$

We have that

$$
\mathcal{R}_{A}(x)=\frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{j=i}^{n} \lambda_{j} a_{j}^{2}}{\sum_{j=i}^{n} a_{j}^{2}} \geq \lambda_{i} .
$$

Now, we see that

$$
\max _{x \in S, x \neq 0} \frac{x^{\top} A x}{x^{\top} x}=\max _{x \in S, x \neq 0} \mathcal{R}_{A}(x) \geq \lambda_{i} .
$$

As S was arbitrarily chosen, we have that

$$
\min _{S: \operatorname{dim} S=i} \max _{x \in S, x \neq 0} \mathcal{R}_{A}(x) \geq \lambda_{i} .
$$

The equality follows by choosing $S=\operatorname{span}\left\{f_{1}, \ldots, f_{i}\right\}$ and $x=f_{i}$.
The second statement is proven is a similar fashion. Choose any $(n-i+1)$-dimensional subspace S and consider its intersection with $\operatorname{span}\left\{f_{1}, \ldots, f_{i}\right\}$. Let $x=\sum_{j=1}^{i} a_{j} f_{j}$ be a non-zero vector in this intersection. We have the following

$$
\mathcal{R}_{A}(x)=\frac{x^{\top} A x}{x^{\top} x}=\frac{\sum_{j=1}^{i} \lambda_{j} a_{j}^{2}}{\sum_{j=1}^{i} a_{j}^{2}} \leq \lambda_{i},
$$

and hence

$$
\min _{x \in S, x \neq 0} \frac{x^{\top} A x}{x^{\top} x}=\min _{x \in S, x \neq 0} \mathcal{R}_{A}(x) \leq \lambda_{i} .
$$

As S was arbitrarily chosen, we have that

$$
\max _{S: \operatorname{dim} S=n-i+1} \min _{x \in S, x \neq 0} \mathcal{R}_{A}(x) \leq \lambda_{i} .
$$

The equality follows by choosing $S=\operatorname{span}\left\{f_{i}, \ldots, f_{n}\right\}$ and $x=f_{i}$.

Problem 2 (challenging): We know that every rule for clustering must display some strange behaviour. In this problem, you will prove this for partitioning a weighted graph $G=(V, E, w)$ by minimising the conductance h_{G}. In particular, you will consider dividing a graph into two pieces by finding the set $S \subseteq V$ with $\operatorname{vol}(S) \leq \operatorname{vol}(V) / 2$ minimising

$$
h_{G}(S) \triangleq \frac{w(S, V \backslash S)}{\operatorname{vol}(S)} .
$$

You need to show that it is possible to split a cluster by adding an edge to the cluster or by increasing the weight of an edge inside the cluster. That is, construct a graph G so that if S is the set minimising h_{G}, there is an edge you can add between the vertices of S, or an edge between the vertices of S whose weight you can increase, so that after you do this the set S^{\prime} minimising h_{G} is a proper subset of S. This goal will consists of the following two tasks:

1. Describe your graph G, the set S minimising h_{G}, and prove your claim.
2. Describe the edge you add or whose weight you increase to produce a new graph G^{\prime}; describe the set S^{\prime} minimising $h_{G^{\prime}}$ in the modified graph and prove your claim.

Solution:

1. Let G be a path on 6 vertices labeled from 1 to 6 such that every vertex (except for the endpoints) i is connected to vertices $i-1$ and $i+1$. Also consider the edge weights to be $50,10,100,15,10000$, for the respective edges $\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\}$. Let $S \subseteq V$ be a set minimising $h_{G}(S)$. First, we will show that we can assume without loss of generality that S is a path. Suppose S is not a path. Then we can write it as $S=S_{1} \cup S_{2}$ such that there are no edges between S_{1} and S_{2}. This implies that $\operatorname{vol}(S)=\operatorname{vol}\left(S_{1}\right)+\operatorname{vol}\left(S_{2}\right)$. Moreover, we see that

$$
\begin{aligned}
w(S, V \backslash S) & =w\left(S_{1} \cup S_{2}, V \backslash S\right) \\
& =w\left(S_{1}, V \backslash S\right)+w\left(S_{2}, V \backslash S\right)=w\left(S_{1}, V \backslash S_{1}\right)+w\left(S_{2}, V \backslash S_{2}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
h_{G}(S) & \triangleq \frac{w(S, V \backslash S)}{\operatorname{vol}(S)}=\frac{w\left(S_{1}, V \backslash S_{1}\right)+w\left(S_{2}, V \backslash S_{2}\right)}{\operatorname{vol}\left(S_{1}\right)+\operatorname{vol}\left(S_{2}\right)} \\
& \geq \min \left\{h_{G}\left(S_{1}\right), h_{G}\left(S_{2}\right)\right\},
\end{aligned}
$$

where the last inequality comes from the general inequality $\frac{a_{1}+a_{2}}{b_{1}+b_{2}} \geq \min \left\{\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right\}$, for all $a_{1}, a_{2}, b_{1}, b_{2} \geq 0$ and some $b_{i}>0$. We can now reason inductively to conclude that S is at least as good as a path.
Second, it is easy to see that S must contain at least 2 vertices as $h_{G}(\{i\})=1$ for every vertex i, which is clearly not minimised. Moreover, S cannot contain both vertices 5 and 6 as that would make $\operatorname{vol}(S)$ too large. Similarly, if S contains vertex 5 , the vaue $h_{G}(S)$ is very close to 1 because both the numerator and the denominator will be dominated by the weight of the edge $\{5,6\}$ since it is much larger compared to the other edge weights. This reduces the candidates for set S to 6 choices: $\{1,2\},\{2,3\},\{3,4\},\{1,2,3\},\{2,3,4\},\{1,2,3,4\}$. A direct calculation shows that the minimum $h_{G}(S)=\frac{15}{335}$ is achieved for the last set.
2. We can increase the value of the edge $\{1,2\}$ from 50 to 500 and repeat the analysis from the previous part, then see that the minimum cut in this case is achieved for $S^{\prime}=\{1,2\}$ which is a proper subset for S.

