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Solution 9

Problem 1: Let G = (V,E) be an arbitrary undirected graph with n vertices.

1. Assume that H1 and H2 are (1+ε)-spectral sparsifiers of G with corresponding Laplacian matrices
LH1 and LH2 . Prove or disprove by counterexample the following statement: “The graph defined
by the Laplacian matrix (1/2) · (LH1 + LH2) is a (1 + ε)-spectral sparsifier of G as well.”

2. Assume that G = (V,E) is an unweighted and complete graph. Prove or disprove the following
statement: “The graph consisting of O(n log n/ε2) edges, where every edge is sampled uniformly
at random from G, is a (1 + ε)-spectral sparsifier of G. ”

3. Assume that G = (V,E) is an arbitrary unweighted graph. Prove or disprove the following
statement: “The graph consisting of O(n log n/ε2) edges, where every edge is sampled uniformly
at random from G, is a (1 + ε)-spectral sparsifier of G. ”

4. Prove or disprove by counterexample the following statement: “If H is a (1 + ε)-spectral sparsifier
of G = (V,E), then for any subset S ⊆ V , the cut value between S and V \ S in G and the one
in H is approximately the same up to a multiplicative factor of (1± ε).”

Solution:

1. By definition of (1 + ε)-spectral sparsifiers we have that for any x ∈ Rn it holds

(1− ε)xᵀLGx ≤ xᵀLH1x ≤ (1 + ε)xᵀLGx

(1− ε)xᵀLGx ≤ xᵀLH2x ≤ (1 + ε)xᵀLGx

Adding the two equations and multiplying by 1/2 implies that the graph defined by the Laplacian
matrix (1/2) · (LH1 + LH2) is a (1 + ε)-spectral sparsifier of G.

2. First, we will show that in a complete graph the effective resistance of every edge e, Reff(e)
is the same. To see this, recall that the effective resistance Reff(e) in an undirected graph
G is the probability that e is selected in a spanning tree of G. However, by symmetry, these
probabilities must be the same for every edge e. Note that since the graph is unweighted, the
leverage coefficients `e = Reff(e).

Since the leverage coefficients are constant, we can essentially follow the algorithm presented in
the lecture notes for constructing spectral sparsifiers, noting that the sampling probability for
every edge is the same. This corresponds to sampling the edges uniformly at random from E(G).
Hence, after reweighing all the sampled edges by the same weight, this method indeed produces a
(1 + ε) spectral sparsifier of G.

3. The statement is incorrect, and the following graph G can be used as a counterexample: let G be
the graph consisting of 2 disjoint complete graphs, each of which has n/2 vertices, and a single
edge connecting these two graphs. Hence, graph G has Ω(n2) edges and, the probability that the
middle edge doesn’t get sampled is

1−Θ

(
n log n

n2 · ε2

)
= 1−Θ

(
log n

n · ε2

)
.

On the other side, as long as the middle edge isn’t sampled, the resulting graph is disconnected
and cannot form a spectral sparsifier of G.



4. Let S be a subset of V and χS be the indicator vector of the set S. Then, it holds that

χᵀ
SLGχS =

∑
u∼v

w(u, v) (χS(u)− χS(v))2 = wG(S, V/S),

and similarly
χᵀ
SLHχS = wH(S, V/S).

By definition of spectral sparsifier, we see that

(1− ε)wG(S, V/S) ≤ wH(S, V/S) ≤ (1 + ε)wG(S, V/S).

Problem 2: LetH be a (1+ε)-spectral sparsifier of graph G = (V,E,w) for some constant ε ∈ (0, 1/3).
Prove that, for any set S ⊂ V , the conductance φH(S) of set S in H and the one φG(S) satisfies

φH(S) ≤ (1 + 3ε)φG(S).

Solution: Let S ⊂ V be an arbitrary set, and let χS be the indicator vector of S. Then, it holds that

φH(S)

φG(S)
=
χᵀ
SLHχS

χᵀ
SLGχS

· volG(S)

volH(S)

≤ (1 + ε) ·
∑

uwG(u)∑
uwH(u)

= (1 + ε) ·
∑

u χ
ᵀ
uLGχu∑

u χ
ᵀ
uLHχu

≤ (1 + ε) · 1

1− ε
·
∑

u χ
ᵀ
uLHχu∑

u χ
ᵀ
uLHχu

≤ (1 + 3ε),

where the inequalities in lines 2 and 4 follow from the definition of (1 + ε)-spectral sparsification and
the inequality in the last line from the choice of ε ∈ (0, 1/3).
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